# Lecture 7.5: Euclidean domains and algebraic integers

Size: px
Start display at page:

Transcription

1 Lecture 7.5: Euclidean domains and algebraic integers Matthew Macauley Department of Mathematical Sciences Clemson University Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 1 / 12

2 The Euclidean algorithm Around 300 B.C., Euclid wrote his famous book, the Elements, in which he described what is now known as the Euclidean algorithm: Proposition VII.2 (Euclid s Elements) Given two numbers not prime to one another, to find their greatest common measure. The algorithm works due to two key observations: If a b, then gcd(a, b) = a; If a = bq + r, then gcd(a, b) = gcd(b, r). This is best seen by an example: Let a = 654 and b = = gcd(654, 360) = gcd(360, 294) 360 = gcd(360, 294) = gcd(294, 66) 294 = gcd(294, 66) = gcd(66, 30) 66 = gcd(66, 30) = gcd(30, 6) 30 = 6 5 gcd(30, 6) = 6. We conclude that gcd(654, 360) = 6. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 2 / 12

3 Euclidean domains Loosely speaking, a Euclidean domain is any ring for which the Euclidean algorithm still works. Definition An integral domain R is Euclidean if it has a degree function d : R Z satisfying: (i) non-negativity: d(r) 0 r R. (ii) monotonicity: d(a) d(ab) for all a, b R. (iii) division-with-remainder property: For all a, b R, b 0, there are q, r R such that a = bq + r with r = 0 or d(r) < d(b). Note that Property (ii) could be restated to say: If a b, then d(a) d(b); Examples R = Z is Euclidean. Define d(r) = r. R = F [x] is Euclidean if F is a field. Define d(f (x)) = deg f (x). The Gaussian integers R 1 = Z[ 1] = {a + bi : a, b Z} is Euclidean with degree function d(a + bi) = a 2 + b 2. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 3 / 12

4 Euclidean domains Proposition If R is Euclidean, then U(R) = {x R : d(x) = d(1)}. Proof : First, we ll show that associates have the same degree. Take a b in R : a b = d(a) d(b) b a = d(b) d(a) = d(a) = d(b). If u U(R), then u 1, and so d(u) = d(1). : Suppose x R and d(x) = d(1). Then 1 = qx + r for some q R with either r = 0 or d(r) < d(x) = d(1). If r 0, then d(1) d(r) since 1 r. Thus, r = 0, and so qx = 1, hence x U(R). M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 4 / 12

5 Euclidean domains Proposition If R is Euclidean, then R is a PID. Proof Let I 0 be an ideal and pick some b I with d(b) minimal. Pick a I, and write a = bq + r with either r = 0, or d(r) < d(b). This latter case is impossible: r = a bq I, and by minimality, d(b) d(r). Therefore, r = 0, which means a = bq (b). Since a was arbitrary, I = (b). Exercises. (i) The ideal I = (3, 2 + 5) is not principal in R 5. (ii) If R is an integral domain, then I = (x, y) is not principal in R[x, y]. Corollary The rings R 5 (not a PID or UFD) and R[x, y] (not a PID) are not Euclidean. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 5 / 12

6 Algebraic integers The algebraic integers are the roots of monic polynomials in Z[x]. This is a subring of the algebraic numbers (roots of all polynomials in Z[x]). Assume m Z is square-free with m 0, 1. Recall the quadratic field Definition Q( m) = { p + q m p, q Q }. The ring R m is the set of algebraic integers in Q( m), i.e., the subring consisting of those numbers that are roots of monic quadratic polynomials x 2 + cx + d Z[x]. Facts R m is an integral domain with 1. Since m is square-free, m 0 (mod 4). For the other three cases: Z[ m] = { a + b m : a, b Z } m 2 or 3 (mod 4) R m = Z [ 1+ ] { ( m 2 = a + b 1+ m ) : a, b Z } m 1 (mod 4) 2 R 1 is the Gaussian integers, which is a PID. (easy) R 19 is a PID. (hard) M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 6 / 12

7 Algebraic integers Definition For x = r + s m Q( m), define the norm of x to be N(x) = (r + s m)(r s m) = r 2 ms 2. R m is norm-euclidean if it is a Euclidean domain with d(x) = N(x). Note that the norm is multiplicative: N(xy) = N(x)N(y). Exercises Assume m Z is square-free, with m 0, 1. u U(R m) iff N(u) = 1. If m 2, then U(R m) is infinite. U(R 1) = {±1, ±i} and U(R 3) = { } ± 1, ± 1± 3 2. If m = 2 or m < 3, then U(R m) = {±1}. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 7 / 12

8 Euclidean domains and algebraic integers Theorem R m is norm-euclidean iff m { 11, 7, 3, 2, 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}. Theorem (D.A. Clark, 1994) The ring R 69 is a Euclidean domain that is not norm-euclidean. Let α = (1 + 69)/2 and c > 25 be an integer. Then the following degree function works for R 69, defined on the prime elements: { N(p) if p α d(p) = c if p = α Theorem If m < 0 and m { 11, 7, 3, 2, 1}, then R m is not Euclidean. Open problem Classify which R m s are PIDs, and which are Euclidean. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 8 / 12

9 PIDs that are not Euclidean Theorem If m < 0, then R m is a PID iff m { 1, 2, 3, 7, 11, 19, 43, 67, 163}. }{{} Euclidean Recall that R m is norm-euclidean iff m { 11, 7, 3, 2, 1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}. Corollary If m < 0, then R m is a PID that is not Euclidean iff m { 19, 43, 67, 163}. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 9 / 12

10 Algebraic integers Figure: Algebraic numbers in the complex plane. Colors indicate the coefficient of the leading term: red = 1 (algebraic integer), green = 2, blue = 3, yellow = 4. Large dots mean fewer terms and smaller coefficients. Image from Wikipedia (made by Stephen J. Brooks). M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 10 / 12

11 Algebraic integers Figure: Algebraic integers in the complex plane. Each red dot is the root of a monic polynomial of degree 7 with coefficients from {0, ±1, ±2, ±3, ±4, ±5}. From Wikipedia. M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 11 / 12

12 Summary of ring types all rings RG M n(r) commutative rings H Z Z Z 6 integral domains Z[x 2, x 3 ] R 5 2Z UFDs F [x, y] Z[x] R 43 PIDs R 67 R 19 Euclidean domains R 163 Z F [x] fields C Z p R 1 A Q R F 69 p n R( π, i) R Q( m) M. Macauley (Clemson) Lecture 7.5: Euclidean domains & algebraic integers Math 4120, Modern algebra 12 / 12

### Chapter 14: Divisibility and factorization

Chapter 14: Divisibility and factorization Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Summer I 2014 M. Macauley (Clemson) Chapter

### Lecture 7.4: Divisibility and factorization

Lecture 7.4: Divisibility and factorization Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

### Modern Algebra Lecture Notes: Rings and fields set 6, revision 2

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Kevin Broughan University of Waikato, Hamilton, New Zealand May 20, 2010 Solving quadratic equations: traditional The procedure Work in

### 1. Factorization Divisibility in Z.

8 J. E. CREMONA 1.1. Divisibility in Z. 1. Factorization Definition 1.1.1. Let a, b Z. Then we say that a divides b and write a b if b = ac for some c Z: a b c Z : b = ac. Alternatively, we may say that

### 6]. (10) (i) Determine the units in the rings Z[i] and Z[ 10]. If n is a squarefree

Quadratic extensions Definition: Let R, S be commutative rings, R S. An extension of rings R S is said to be quadratic there is α S \R and monic polynomial f(x) R[x] of degree such that f(α) = 0 and S

### Example: This theorem is the easiest way to test an ideal (or an element) is prime. Z[x] (x)

Math 4010/5530 Factorization Theory January 2016 Let R be an integral domain. Recall that s, t R are called associates if they differ by a unit (i.e. there is some c R such that s = ct). Let R be a commutative

### 2. THE EUCLIDEAN ALGORITHM More ring essentials

2. THE EUCLIDEAN ALGORITHM More ring essentials In this chapter: rings R commutative with 1. An element b R divides a R, or b is a divisor of a, or a is divisible by b, or a is a multiple of b, if there

### RINGS: SUMMARY OF MATERIAL

RINGS: SUMMARY OF MATERIAL BRIAN OSSERMAN This is a summary of terms used and main results proved in the subject of rings, from Chapters 11-13 of Artin. Definitions not included here may be considered

### Lecture 7.3: Ring homomorphisms

Lecture 7.3: Ring homomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 7.3:

### Euclidean Domains. Kevin James

Suppose that R is an integral domain. Any function N : R N {0} with N(0) = 0 is a norm. If N(a) > 0, a R \ {0 R }, then N is called a positive norm. Suppose that R is an integral domain. Any function N

### Factorization in Domains

Last Time Chain Conditions and s Uniqueness of s The Division Algorithm Revisited in Domains Ryan C. Trinity University Modern Algebra II Last Time Chain Conditions and s Uniqueness of s The Division Algorithm

### Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 17, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Factorization 0.1.1 Factorization of Integers and Polynomials Now we are going

### Honors Algebra 4, MATH 371 Winter 2010 Assignment 3 Due Friday, February 5 at 08:35

Honors Algebra 4, MATH 371 Winter 2010 Assignment 3 Due Friday, February 5 at 08:35 1. Let R 0 be a commutative ring with 1 and let S R be the subset of nonzero elements which are not zero divisors. (a)

### ALGEBRA HANDOUT 2.3: FACTORIZATION IN INTEGRAL DOMAINS. In this handout we wish to describe some aspects of the theory of factorization.

ALGEBRA HANDOUT 2.3: FACTORIZATION IN INTEGRAL DOMAINS PETE L. CLARK In this handout we wish to describe some aspects of the theory of factorization. The first goal is to state what it means for an arbitrary

### Discrete valuation rings. Suppose F is a field. A discrete valuation on F is a function v : F {0} Z such that:

Discrete valuation rings Suppose F is a field. A discrete valuation on F is a function v : F {0} Z such that: 1. v is surjective. 2. v(ab) = v(a) + v(b). 3. v(a + b) min(v(a), v(b)) if a + b 0. Proposition:

### Math 547, Exam 2 Information.

Math 547, Exam 2 Information. 3/19/10, LC 303B, 10:10-11:00. Exam 2 will be based on: Homework and textbook sections covered by lectures 2/3-3/5. (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

### g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

6 Polynomial Rings We introduce a class of rings called the polynomial rings, describing computation, factorization and divisibility in such rings For the case where the coefficients come from an integral

### Section III.6. Factorization in Polynomial Rings

III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

### Part IX ( 45-47) Factorization

Part IX ( 45-47) Factorization Satya Mandal University of Kansas, Lawrence KS 66045 USA January 22 45 Unique Factorization Domain (UFD) Abstract We prove evey PID is an UFD. We also prove if D is a UFD,

### Computations/Applications

Computations/Applications 1. Find the inverse of x + 1 in the ring F 5 [x]/(x 3 1). Solution: We use the Euclidean Algorithm: x 3 1 (x + 1)(x + 4x + 1) + 3 (x + 1) 3(x + ) + 0. Thus 3 (x 3 1) + (x + 1)(4x

### Divisibility. Def: a divides b (denoted a b) if there exists an integer x such that b = ax. If a divides b we say that a is a divisor of b.

Divisibility Def: a divides b (denoted a b) if there exists an integer x such that b ax. If a divides b we say that a is a divisor of b. Thm: (Properties of Divisibility) 1 a b a bc 2 a b and b c a c 3

### 4 Powers of an Element; Cyclic Groups

4 Powers of an Element; Cyclic Groups Notation When considering an abstract group (G, ), we will often simplify notation as follows x y will be expressed as xy (x y) z will be expressed as xyz x (y z)

### D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains

D-MATH Algebra I HS18 Prof. Rahul Pandharipande Solution 6 Unique Factorization Domains 1. Let R be a UFD. Let that a, b R be coprime elements (that is, gcd(a, b) R ) and c R. Suppose that a c and b c.

### 36 Rings of fractions

36 Rings of fractions Recall. If R is a PID then R is a UFD. In particular Z is a UFD if F is a field then F[x] is a UFD. Goal. If R is a UFD then so is R[x]. Idea of proof. 1) Find an embedding R F where

### CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

CHAPTER I Rings 1.1 Definitions and Examples Definition 1.1.1. A ring R is a set with two binary operations, addition + and multiplication satisfying the following conditions for all a, b, c in R : (i)

### Polynomials. Chapter 4

Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

### Lecture 6.3: Polynomials and irreducibility

Lecture 6.3: Polynomials and irreducibility Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

### Factorization in Polynomial Rings

Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18. PIDs Definition 1 A principal ideal domain (PID) is an integral

### The Euclidean Algorithm and Multiplicative Inverses

1 The Euclidean Algorithm and Multiplicative Inverses Lecture notes for Access 2009 The Euclidean Algorithm is a set of instructions for finding the greatest common divisor of any two positive integers.

### x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0

1. (a) i. State and prove Wilson's Theorem. ii. Show that, if p is a prime number congruent to 1 modulo 4, then there exists a solution to the congruence x 2 1 mod p. (b) i. Let p(x), q(x) be polynomials

### M3P14 LECTURE NOTES 8: QUADRATIC RINGS AND EUCLIDEAN DOMAINS

M3P14 LECTURE NOTES 8: QUADRATIC RINGS AND EUCLIDEAN DOMAINS 1. The Gaussian Integers Definition 1.1. The ring of Gaussian integers, denoted Z[i], is the subring of C consisting of all complex numbers

### 12 16 = (12)(16) = 0.

Homework Assignment 5 Homework 5. Due day: 11/6/06 (5A) Do each of the following. (i) Compute the multiplication: (12)(16) in Z 24. (ii) Determine the set of units in Z 5. Can we extend our conclusion

### 5: The Integers (An introduction to Number Theory)

c Oksana Shatalov, Spring 2017 1 5: The Integers (An introduction to Number Theory) The Well Ordering Principle: Every nonempty subset on Z + has a smallest element; that is, if S is a nonempty subset

### Math 547, Exam 1 Information.

Math 547, Exam 1 Information. 2/10/10, LC 303B, 10:10-11:00. Exam 1 will be based on: Sections 5.1, 5.2, 5.3, 9.1; The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

Mathematical Olympiad Training Polynomials Definition A polynomial over a ring R(Z, Q, R, C) in x is an expression of the form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, a i R, for 0 i n. If a n 0,

### Algebra. Pang-Cheng, Wu. January 22, 2016

Algebra Pang-Cheng, Wu January 22, 2016 Abstract For preparing competitions, one should focus on some techniques and important theorems. This time, I want to talk about a method for solving inequality

### The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers:

Divisibility Euclid s algorithm The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers: Divide the smaller number into the larger, and

### Total 100

Math 542 Midterm Exam, Spring 2016 Prof: Paul Terwilliger Your Name (please print) SOLUTIONS NO CALCULATORS/ELECTRONIC DEVICES ALLOWED. MAKE SURE YOUR CELL PHONE IS OFF. Problem Value 1 10 2 10 3 10 4

### University of Ottawa

University of Ottawa Department of Mathematics and Statistics MAT3143: Ring Theory Professor: Hadi Salmasian Final Exam April 21, 2015 Surname First Name Instructions: (a) You have 3 hours to complete

### Polynomials over UFD s

Polynomials over UFD s Let R be a UFD and let K be the field of fractions of R. Our goal is to compare arithmetic in the rings R[x] and K[x]. We introduce the following notion. Definition 1. A non-constant

### MODEL ANSWERS TO HWK #10

MODEL ANSWERS TO HWK #10 1. (i) As x + 4 has degree one, either it divides x 3 6x + 7 or these two polynomials are coprime. But if x + 4 divides x 3 6x + 7 then x = 4 is a root of x 3 6x + 7, which it

### be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

### MTH310 EXAM 2 REVIEW

MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not

### Chapter 5: The Integers

c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

### QUADRATIC RINGS PETE L. CLARK

QUADRATIC RINGS PETE L. CLARK 1. Quadratic fields and quadratic rings Let D be a squarefree integer not equal to 0 or 1. Then D is irrational, and Q[ D], the subring of C obtained by adjoining D to Q,

### Definition For a set F, a polynomial over F with variable x is of the form

*6. Polynomials Definition For a set F, a polynomial over F with variable x is of the form a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 1 x + a 0, where a n, a n 1,..., a 1, a 0 F. The a i, 0 i n are the

### Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

### a + bi by sending α = a + bi to a 2 + b 2. To see properties (1) and (2), it helps to think of complex numbers in polar coordinates:

5. Types of domains It turns out that in number theory the fact that certain rings have unique factorisation has very strong arithmetic consequences. We first write down some definitions. Definition 5.1.

### COMP239: Mathematics for Computer Science II. Prof. Chadi Assi EV7.635

COMP239: Mathematics for Computer Science II Prof. Chadi Assi assi@ciise.concordia.ca EV7.635 The Euclidean Algorithm The Euclidean Algorithm Finding the GCD of two numbers using prime factorization is

### Factorization in Integral Domains II

Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

### Math 2070BC Term 2 Weeks 1 13 Lecture Notes

Math 2070BC 2017 18 Term 2 Weeks 1 13 Lecture Notes Keywords: group operation multiplication associative identity element inverse commutative abelian group Special Linear Group order infinite order cyclic

### MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION 1. Polynomial rings (review) Definition 1. A polynomial f(x) with coefficients in a ring R is n f(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n i=0

### Recall, R is an integral domain provided: R is a commutative ring If ab = 0 in R, then either a = 0 or b = 0.

Recall, R is an integral domain provided: R is a commutative ring If ab = 0 in R, then either a = 0 or b = 0. Examples: Z Q, R Polynomials over Z, Q, R, C The Gaussian Integers: Z[i] := {a + bi : a, b

### Algebraic structures I

MTH5100 Assignment 1-10 Algebraic structures I For handing in on various dates January March 2011 1 FUNCTIONS. Say which of the following rules successfully define functions, giving reasons. For each one

### Homework 3, solutions

Homework 3, solutions Problem 1. Read the proof of Proposition 1.22 (page 32) in the book. Using simialr method prove that there are infinitely many prime numbers of the form 3n 2. Solution. Note that

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Finite Fields. Mike Reiter

1 Finite Fields Mike Reiter reiter@cs.unc.edu Based on Chapter 4 of: W. Stallings. Cryptography and Network Security, Principles and Practices. 3 rd Edition, 2003. Groups 2 A group G, is a set G of elements

### Lecture 7: Polynomial rings

Lecture 7: Polynomial rings Rajat Mittal IIT Kanpur You have seen polynomials many a times till now. The purpose of this lecture is to give a formal treatment to constructing polynomials and the rules

### CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

### Lecture Notes. Advanced Discrete Structures COT S

Lecture Notes Advanced Discrete Structures COT 4115.001 S15 2015-01-13 Recap Divisibility Prime Number Theorem Euclid s Lemma Fundamental Theorem of Arithmetic Euclidean Algorithm Basic Notions - Section

### (Rgs) Rings Math 683L (Summer 2003)

(Rgs) Rings Math 683L (Summer 2003) We will first summarise the general results that we will need from the theory of rings. A unital ring, R, is a set equipped with two binary operations + and such that

### Lecture 1.4: Inner products and orthogonality

Lecture 1.4: Inner products and orthogonality Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics M.

### Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

### Informal Notes on Algebra

Informal Notes on Algebra R. Boyer Contents 1 Rings 2 1.1 Examples and Definitions................................. 2 1.2 Integral Domains...................................... 3 1.3 Fields............................................

### Factorization in Polynomial Rings

Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

### Math 611 Homework 6. Paul Hacking. November 19, All rings are assumed to be commutative with 1.

Math 611 Homework 6 Paul Hacking November 19, 2015 All rings are assumed to be commutative with 1. (1) Let R be a integral domain. We say an element 0 a R is irreducible if a is not a unit and there does

### NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

### 1/30: Polynomials over Z/n.

1/30: Polynomials over Z/n. Last time to establish the existence of primitive roots we rely on the following key lemma: Lemma 6.1. Let s > 0 be an integer with s p 1, then we have #{α Z/pZ α s = 1} = s.

### Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R.

Gauss s Theorem Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R. Proposition: Suppose R is a U.F.D. and that π is an irreducible element

### Contents. 4 Arithmetic and Unique Factorization in Integral Domains. 4.1 Euclidean Domains and Principal Ideal Domains

Ring Theory (part 4): Arithmetic and Unique Factorization in Integral Domains (by Evan Dummit, 018, v. 1.00) Contents 4 Arithmetic and Unique Factorization in Integral Domains 1 4.1 Euclidean Domains and

### Part IX. Factorization

IX.45. Unique Factorization Domains 1 Part IX. Factorization Section IX.45. Unique Factorization Domains Note. In this section we return to integral domains and concern ourselves with factoring (with respect

### Part V. Chapter 19. Congruence of integers

Part V. Chapter 19. Congruence of integers Congruence modulo m Let m be a positive integer. Definition. Integers a and b are congruent modulo m if and only if a b is divisible by m. For example, 1. 277

### Ch 4.2 Divisibility Properties

Ch 4.2 Divisibility Properties - Prime numbers and composite numbers - Procedure for determining whether or not a positive integer is a prime - GCF: procedure for finding gcf (Euclidean Algorithm) - Definition:

### Foundations of Cryptography

Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 7 1 of 18 Cosets Definition 2.12 Let G be a

### 6.S897 Algebra and Computation February 27, Lecture 6

6.S897 Algebra and Computation February 7, 01 Lecture 6 Lecturer: Madhu Sudan Scribe: Mohmammad Bavarian 1 Overview Last lecture we saw how to use FFT to multiply f, g R[x] in nearly linear time. We also

### 1 Overview and revision

MTH6128 Number Theory Notes 1 Spring 2018 1 Overview and revision In this section we will meet some of the concerns of Number Theory, and have a brief revision of some of the relevant material from Introduction

### Coding Theory ( Mathematical Background I)

N.L.Manev, Lectures on Coding Theory (Maths I) p. 1/18 Coding Theory ( Mathematical Background I) Lector: Nikolai L. Manev Institute of Mathematics and Informatics, Sofia, Bulgaria N.L.Manev, Lectures

### Prof. Ila Varma HW 8 Solutions MATH 109. A B, h(i) := g(i n) if i > n. h : Z + f((i + 1)/2) if i is odd, g(i/2) if i is even.

1. Show that if A and B are countable, then A B is also countable. Hence, prove by contradiction, that if X is uncountable and a subset A is countable, then X A is uncountable. Solution: Suppose A and

### Commutative Rings and Fields

Commutative Rings and Fields 1-22-2017 Different algebraic systems are used in linear algebra. The most important are commutative rings with identity and fields. Definition. A ring is a set R with two

### 1. Group Theory Permutations.

1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

### Math 412, Introduction to abstract algebra. Overview of algebra.

Math 412, Introduction to abstract algebra. Overview of algebra. A study of algebraic objects and functions between them; an algebraic object is typically a set with one or more operations which satisfies

### 2 (17) Find non-trivial left and right ideals of the ring of 22 matrices over R. Show that there are no nontrivial two sided ideals. (18) State and pr

MATHEMATICS Introduction to Modern Algebra II Review. (1) Give an example of a non-commutative ring; a ring without unit; a division ring which is not a eld and a ring which is not a domain. (2) Show that

### THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION ADVANCED ALGEBRA I.

THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - FALL SESSION 2006 110.401 - ADVANCED ALGEBRA I. Examiner: Professor C. Consani Duration: take home final. No calculators allowed.

### Fundamental theorem of modules over a PID and applications

Fundamental theorem of modules over a PID and applications Travis Schedler, WOMP 2007 September 11, 2007 01 The fundamental theorem of modules over PIDs A PID (Principal Ideal Domain) is an integral domain

### Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

### COMMUTATIVE RINGS. Definition 3: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS Definition 1: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

### Homework 6 Solution. Math 113 Summer 2016.

Homework 6 Solution. Math 113 Summer 2016. 1. For each of the following ideals, say whether they are prime, maximal (hence also prime), or neither (a) (x 4 + 2x 2 + 1) C[x] (b) (x 5 + 24x 3 54x 2 + 6x

### A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

Byte multiplication 1 Field arithmetic A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties: F is an abelian group under addition, meaning - F is closed under

### Chinese Remainder Theorem

Chinese Remainder Theorem Theorem Let R be a Euclidean domain with m 1, m 2,..., m k R. If gcd(m i, m j ) = 1 for 1 i < j k then m = m 1 m 2 m k = lcm(m 1, m 2,..., m k ) and R/m = R/m 1 R/m 2 R/m k ;

### Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

### Quizzes for Math 401

Quizzes for Math 401 QUIZ 1. a) Let a,b be integers such that λa+µb = 1 for some inetegrs λ,µ. Prove that gcd(a,b) = 1. b) Use Euclid s algorithm to compute gcd(803, 154) and find integers λ,µ such that

### Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24

Direct Proof MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Direct Proof Fall 2014 1 / 24 Outline 1 Overview of Proof 2 Theorems 3 Definitions 4 Direct Proof 5 Using

### Norm-Euclidean Ideals in Galois Cubic Fields

Norm-Euclidean Ideals in Galois Cubic Fields Kelly Emmrich and Clark Lyons University of Wisconsin-La Crosse, University of California, Berkeley 2017 West Coast Number Theory Conference December 18, 2017

### Math 120 HW 9 Solutions

Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

### Rings and modular arithmetic

Chapter 8 Rings and modular arithmetic So far, we have been working with just one operation at a time. But standard number systems, such as Z, have two operations + and which interact. It is useful to

### Intermediate Math Circles February 26, 2014 Diophantine Equations I

Intermediate Math Circles February 26, 2014 Diophantine Equations I 1. An introduction to Diophantine equations A Diophantine equation is a polynomial equation that is intended to be solved over the integers.

### SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III Week 1 Lecture 1 Tuesday 3 March.

SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III 2009 Week 1 Lecture 1 Tuesday 3 March. 1. Introduction (Background from Algebra II) 1.1. Groups and Subgroups. Definition 1.1. A binary operation on a set

### Polynomials, Ideals, and Gröbner Bases

Polynomials, Ideals, and Gröbner Bases Notes by Bernd Sturmfels for the lecture on April 10, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra We fix a field K. Some examples of fields