Algebra. Pang-Cheng, Wu. January 22, 2016

Size: px
Start display at page:

Download "Algebra. Pang-Cheng, Wu. January 22, 2016"

Transcription

1 Algebra Pang-Cheng, Wu January 22, 2016 Abstract For preparing competitions, one should focus on some techniques and important theorems. This time, I want to talk about a method for solving inequality which is called Schur s decomposition and facts about polynomials. 1 Polynomials 1.1 Something you should know Here are consequences without proofs because I suppose that the readers already know how to prove the following results. Proposition If A, B are two polynomials, then deg A B) max dega, degb) deg AB) = dega degb Theorem Given polynomials A, B 0, there are unique polynomials Q, R such that with degr < degb. A = BQ R Lemma If a polynomial P is divisible by a polynomial Q, then every zero of Q is also a zero of P. In particular, if P is divisible by x a, then P a) = 0. Theorem A real polynomial has a factorization of the form x r 1 ) x r k ) x 2 a 1 x b 1 ) x 2 a l x b l ) 1

2 1 POLYNOMIALS 2 Theorem Vieta s formula). If α 1,..., α n are zeros of the polynomial P = x n a 1 x n 1 a n, then a k = 1) k Σx i1 x i2...x ik with the sum being over all k-element subsets of {1,..., n}. Theorem Fundamental Theorem of Algebra). A non-constant complex polynomial has at least one root. Corollary A complex polynomial of degree n 1 has exactly n roots in C. Theorem Gauss Lemma). A non-constant integer polynomial is irreducible over Z[x] if and only if it s also irreducible over Q[x]. Theorem Eisenstein s Criterion). Suppose P is a polynomial with integer coefficients. Precisely, we have If there is a prime p satisfies 1. p divides a i for all i = 0,..., n 1 2. p isn t a divisor of a n 3. p 2 isn t a divisor of a 0 Then P is irreducible over rationals. P x) = a n x n a 0 for x Corollary Cohn s Criterion). For an integer b 2, if P = a n x n a 0 is a polynomial such that 0 a i b 1 for all i = 0,..., n. Moreover, P b) is a prime, then P is irreducible over Z[x]. Proposition If P is a polynomial with integer coefficients, then P a) P b) is divisible by a b for any distinct integers a, b. Lemma If a rational number q p is a root of an integer polynomial P = a nx n a 0, then q a 0 and p a n. Theorem For any given numbers y 0,...y n and distinct x 0,..., x n, there is a unique polynomial P of degree n such that P x i ) = y i for i = 1,...n. Furthermore, it s given by ) n x x j P x) = y i x i x j i=0 j i

3 1 POLYNOMIALS Something you maybe need to know Theorem Descarte s Law). If the coefficients and roots of the polynomial P are real, then the number of positive roots is equal to the number of sign change in the sequence of coefficients of P. Corollary If the coefficients and roots of the polynomial P are real, then the number of positive roots in the interval a, b) is equal to the number of sign change in the sequence of coefficients of P x a) minus that of P x b). For the next theorem, assume that the polynomial P has only simple roots and set P 1 to be its derivative. Then using Euclid s algorithm for P and P 1, we ll get P = P 1 Q 1 P 2 P 1 = P 2 Q 2 P 3 P 2 = P 3 Q 3 P 4 P k 1 = P k Q k In this way, we construct a sequence of polynomials with decreasing degrees,. P, P 1, P 2,..., P k, which is called Sturm chain for P. Now, choose x such that it s not a root for any of polynomials in Sturm chain. Define σ x) to be the number of sign changes in the following sequence sgn P x)), sgn P 1 x)), sgn P 2 x)),..., sgn P k x)) Theorem Sturm s Theorem). The number of real roots of P in the interval a, b) is σ a) σ b) Theorem Perron s Criterion). Suppose P = x n a n 1 x n 1 a 0 is a polynomial such that a 0 0 and Then P is irreducible. a n 1 > 1 a n 2 a 0 Theorem Schur s Theorem). If S is the set of all non-zero values of a nonconstant integer polynomial P, then the set of primes that divide some member of S is infinite. Theorem Sylvester s Theorem). If a b, then a 1) a b) has a prime factor which is greater than b. Theorem Hensel s Lemma). If P = a n x n a 0 is an integer polynomial and x is an integer such that P x) is a multiple of a prime p and P x) isn t a multiple of p. Then there exists an unique residue y such that p, p k are divisors of x y, P y), respectively.

4 1 POLYNOMIALS A piece of cake Example Find all polynomials of the form a n x n a 0 with a j { 1, 1} for all j = 0,..., n whose roots are all real. Example If a 1,..., a n are integers, show that the polynomial x a 1 ) x a n ) 1 is irreducible. Example If p is a prime number, show that the polynomial x p 1 1 is irreducible. Example Let P be a polynomial with integer coefficients. If P P P x) )) = x for some integer x, then P P x)) = x. 1.4 One eyewitness is better than ten hearsays Problem Find all polynomials P such that P 0) = 0 and P x 3 x 2 ) = P x) 3 P x) 2 Problem If 2b 2 < 5c, then the following polynomial has at least one complex root. x 5 bx 4 cx 3 dx 2 ex f = 0 Problem Let P be an integer polynomial. Suppose a, b are integers such that Prove that P a) P b) = 0. P a) P b) = a b) 2 Problem Find all real polynomials P satisfying P P x)) = P x n ) P x) 1 for all x R Problem If P is a polynomial with real coefficients with degree 2n 1 such that P k) = x for all x = n,... 1, 1,...n. Find P 0). Problem Assume P an integer polynomial such that P n) > n for n N. Also, for every integer m, there is a term of 1, P 1), P P 1)),... which is divisible by m. Show that P x) = x 1. Problem Determine the least positive integer n so that there is a real polynomial P x) = a 2n x 2n a 0 with a real root satisfying a i [2014, 2015] for all i = 0,..., 2n. Problem For a rational polynomial f of degree n whose coefficients aren t all integers, is it possible to find an integer polynomial g and S = {x 1, x 2,..., x n1 } such that f t) = g t) for all t S?

5 1 POLYNOMIALS A rolling stone gathers no moss Exercise Show that the maximum in absolute value of any monic real polynomial of degree n on [ 1, 1] is not less than 1 2 n 1. Exercise Find all real polynomials P that P x P x)) = P x) P P x)) for all x R Exercise Find all real polynomials P satisfying P x 2 1) = P x) 2 1 for all x R. Exercise If P is a real polynomial such that P x) 0 for each x 0. Prove that there are real polynomials A, B so that P 2 = A 2 xb 2. Exercise Prove that the polynomial P x) = x 2 x) is irreducible. Exercise Prove that there is no polynomial P C[x] so that the set {P z) z = 1} in complex plane forms a polygon. Exercise Find all co-prime polynomials P, Q, R with complex coefficients such that P 3 Q 4 = R 5 Exercise Let p, q R[x] such that p z) q z) R for all z C. p x) = kq x) for some constant k R or q x) = 0. Prove that Exercise A real polynomial P has the property that for every y Q, there exists x Q such that P x) = y. Prove that P is linear. Exercise If P is a complex polynomial such that P z) R for all z C with z = 1, then P is constant.

6 2 INEQUALITY 6 2 Inequality 2.1 Good medicine for health tastes bitter to the mouth Recall that for all non-negative reals a, b, c and r > 0, we have a r a b) a c) b r b a) b c) c r c a) c b) 0 The equality cases occur when a = b = c or when two of a, b, c are equal and the third is 0. Now, we re going to look its generalized form. Theorem Let a b c be reals and x, y, z be non-negative reals. Then x a b) a c) y b a) b c) z c a) c b) 0 holds if one of the following conditions is fulfilled: x z y ax cz by x,y,z are the squares of the side-lengths of a triangle. ax, by, cz are the squares of the side-lengths of a triangle. There is a convex function f such that x = f a), y = f b), z = f c) Theorem If g is an odd, monotonically increasing function such that g s) 0 for all non-negative real s. Then the inequality xg a b) g a c) yg b a) g b c) zg c a) g c b) 0 holds if one of the following conditions is fulfilled: x z y x,y,z are the squares of the side-lengths of a triangle. There is a convex function f such that x = f a), y = f b), z = f c) Theorem The inequality x a b) a c) y b a) b c) z c a) c b) 0 holds if and only if we can find a convex function f such that. x = b c) 2 f a), y = c a) 2 f b), z = a b) 2 f c)

7 2 INEQUALITY 7 Perhaps the readers know a little about SOS, and thus, this may be a useful identity: x a b) a c) = cyc cyc Finally, review the theorem about SOS method. y z x) 2 b c) 2 Theorem Consider the sum S = S a b c) 2 S b c a) 2 S c a b) 2. Then S is non-negative if one of the following conditions is fulfilled: S a, S c, S a 2S b, S c 2S b are all non-negative. S b, S a S b, S b S c are non-negative when b is the median. S b, S c, b 2 S a a 2 S b are non-negative when a b c. 2.2 Practice makes perfect Example Prove that for any three non-negative reals a, b, c, b 2 c 2) 2 c 2 a 2) 2 a 2 b 2) 2 4 b c) c a) a b) a b c) 0 Example For any triangle ABC, show the following inequality cosasin A B) sin A C)cosBsin B A) sin B C)cosCsin C A) sin C B) 0 Example If a, b, c are non-negative reals, then the following inequality holds. a 2016b) a 2016c) a b 2016a) b 2016c) b c 2016a) c 2016b) c Example If a b c and x y z are non-negative reals, then x b c) 2 b c a) y c a) 2 c a b) z a b) 2 a b c) 0 Example Suppose a, b, c are non-negatives such that a b c = 1, then 1 a2 b 2 c 2 1 a 2 b 2 c 2 1 a 2 b 2 c a 2 b 2 c 2 ) 0 Example Let a, b, c be positive reals. Prove that the following inequality. a b b c c ab bc ca a a 2 b 2 c Example Consider a, b, c > 0, show that a 2 b b2 2 c c2 8 ab bc ca) 11 2 a2 a 2 b 2 c 2

8 2 INEQUALITY Look before you leap Exercise If x, y, z are non-zero reals so that x y z = xyz, then ) x 2 2 ) 1 y 2 2 ) 1 z x y z Exercise For non-negative reals a, b, c, the following inequality holds. a b 5 c 5 ) a 2 bc b c5 a 5 ) b 2 ca c a5 b 5 ) c 2 ab Exercise Suppose that a, b, c > 0, try to show a 4 b 4 c 4 a 3 b 2 b 3 c 2 c 3 a 2) 2 3abc a 4 b 3 b 4 c 3 c 4 a 3) Exercise Let a, b, c be positives satisfying a b c = 3. Then a 5 b 5 c a 3 b 3 c 3 3 ) Exercise Consider positive reals a, b, c, we have a b a b b c c c a 9 ab bc ca) 2 a 2 b 2 c 2 ) Exercise If a, b, c are positive reals such that a b c = 1, prove that a b c) 2 b c a) 2 c a b) 2 3 Exercise Suppose a, b, c > 0. Then the following inequality holds. a b 2 c 2 ) b c2 a 2 ) c a2 b 2 ) 6 a2 b 2 c 2 ) c 2 a 2 b 2 a b c Exercise Let a, b, c, d be positives satisfying a b c d = 4. Prove 1 a 1 b 1 c 1 d 1 3 a 2 b 2 c 2 d 2) 4

Mathematical Olympiad Training Polynomials

Mathematical Olympiad Training Polynomials Mathematical Olympiad Training Polynomials Definition A polynomial over a ring R(Z, Q, R, C) in x is an expression of the form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, a i R, for 0 i n. If a n 0,

More information

Section IV.23. Factorizations of Polynomials over a Field

Section IV.23. Factorizations of Polynomials over a Field IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

More information

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series. 6 Polynomial Rings We introduce a class of rings called the polynomial rings, describing computation, factorization and divisibility in such rings For the case where the coefficients come from an integral

More information

MTH310 EXAM 2 REVIEW

MTH310 EXAM 2 REVIEW MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not

More information

Section III.6. Factorization in Polynomial Rings

Section III.6. Factorization in Polynomial Rings III.6. Factorization in Polynomial Rings 1 Section III.6. Factorization in Polynomial Rings Note. We push several of the results in Section III.3 (such as divisibility, irreducibility, and unique factorization)

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

Lecture 7.5: Euclidean domains and algebraic integers

Lecture 7.5: Euclidean domains and algebraic integers Lecture 7.5: Euclidean domains and algebraic integers Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley

More information

Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings. i=0. i=0. n+m. i=0. k=0 Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

More information

Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings. (Last Updated: December 8, 2017) Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

More information

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION

MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION MATH 431 PART 2: POLYNOMIAL RINGS AND FACTORIZATION 1. Polynomial rings (review) Definition 1. A polynomial f(x) with coefficients in a ring R is n f(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n i=0

More information

Chapter 14: Divisibility and factorization

Chapter 14: Divisibility and factorization Chapter 14: Divisibility and factorization Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Summer I 2014 M. Macauley (Clemson) Chapter

More information

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u. 5. Fields 5.1. Field extensions. Let F E be a subfield of the field E. We also describe this situation by saying that E is an extension field of F, and we write E/F to express this fact. If E/F is a field

More information

Factorization in Integral Domains II

Factorization in Integral Domains II Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

More information

E.J. Barbeau. Polynomials. With 36 Illustrations. Springer

E.J. Barbeau. Polynomials. With 36 Illustrations. Springer E.J. Barbeau Polynomials With 36 Illustrations Springer Contents Preface Acknowledgment of Problem Sources vii xiii 1 Fundamentals 1 /l.l The Anatomy of a Polynomial of a Single Variable 1 1.1.5 Multiplication

More information

Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R.

Gauss s Theorem. Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R. Gauss s Theorem Theorem: Suppose R is a U.F.D.. Then R[x] is a U.F.D. To show this we need to constuct some discrete valuations of R. Proposition: Suppose R is a U.F.D. and that π is an irreducible element

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5 8.4 1 8.4 Partial Fractions Consider the following integral. 13 2x (1) x 2 x 2 dx How might we evaluate this? Suppose that, by some good luck, we knew that 13 2x (2) x 2 x 2 = 3 x 2 5 x + 1 We could then

More information

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 17, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Factorization 0.1.1 Factorization of Integers and Polynomials Now we are going

More information

1/30: Polynomials over Z/n.

1/30: Polynomials over Z/n. 1/30: Polynomials over Z/n. Last time to establish the existence of primitive roots we rely on the following key lemma: Lemma 6.1. Let s > 0 be an integer with s p 1, then we have #{α Z/pZ α s = 1} = s.

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

Further linear algebra. Chapter II. Polynomials.

Further linear algebra. Chapter II. Polynomials. Further linear algebra. Chapter II. Polynomials. Andrei Yafaev 1 Definitions. In this chapter we consider a field k. Recall that examples of felds include Q, R, C, F p where p is prime. A polynomial is

More information

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Kevin Broughan University of Waikato, Hamilton, New Zealand May 20, 2010 Solving quadratic equations: traditional The procedure Work in

More information

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and CHAPTER I Rings 1.1 Definitions and Examples Definition 1.1.1. A ring R is a set with two binary operations, addition + and multiplication satisfying the following conditions for all a, b, c in R : (i)

More information

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p

THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p THE P-ADIC NUMBERS AND FINITE FIELD EXTENSIONS OF Q p EVAN TURNER Abstract. This paper will focus on the p-adic numbers and their properties. First, we will examine the p-adic norm and look at some of

More information

On a Theorem of Dedekind

On a Theorem of Dedekind On a Theorem of Dedekind Sudesh K. Khanduja, Munish Kumar Department of Mathematics, Panjab University, Chandigarh-160014, India. E-mail: skhand@pu.ac.in, msingla79@yahoo.com Abstract Let K = Q(θ) be an

More information

5: The Integers (An introduction to Number Theory)

5: The Integers (An introduction to Number Theory) c Oksana Shatalov, Spring 2017 1 5: The Integers (An introduction to Number Theory) The Well Ordering Principle: Every nonempty subset on Z + has a smallest element; that is, if S is a nonempty subset

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

Example: This theorem is the easiest way to test an ideal (or an element) is prime. Z[x] (x)

Example: This theorem is the easiest way to test an ideal (or an element) is prime. Z[x] (x) Math 4010/5530 Factorization Theory January 2016 Let R be an integral domain. Recall that s, t R are called associates if they differ by a unit (i.e. there is some c R such that s = ct). Let R be a commutative

More information

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6 MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS PETE L. CLARK Contents 1. Polynomial Functions 1 2. Rational Functions 6 1. Polynomial Functions Using the basic operations of addition, subtraction,

More information

Polynomials. Henry Liu, 25 November 2004

Polynomials. Henry Liu, 25 November 2004 Introduction Polynomials Henry Liu, 25 November 2004 henryliu@memphis.edu This brief set of notes contains some basic ideas and the most well-known theorems about polynomials. I have not gone into deep

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

More information

Polynomials over UFD s

Polynomials over UFD s Polynomials over UFD s Let R be a UFD and let K be the field of fractions of R. Our goal is to compare arithmetic in the rings R[x] and K[x]. We introduce the following notion. Definition 1. A non-constant

More information

A Primer on Sizes of Polynomials. and an Important Application

A Primer on Sizes of Polynomials. and an Important Application A Primer on Sizes of Polynomials and an Important Application Suppose p is a prime number. By the Fundamental Theorem of Arithmetic unique factorization of integers), every non-zero integer n can be uniquely

More information

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group.

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group. Algebra Review 2 1 Fields A field is an extension of the concept of a group. Definition 1. A field (F, +,, 0 F, 1 F ) is a set F together with two binary operations (+, ) on F such that the following conditions

More information

Lagrange s polynomial

Lagrange s polynomial Lagrange s polynomial Nguyen Trung Tuan November 16, 2016 Abstract In this article, I will use Lagrange polynomial to solve some problems from Mathematical Olympiads. Contents 1 Lagrange s interpolation

More information

Practice problems for first midterm, Spring 98

Practice problems for first midterm, Spring 98 Practice problems for first midterm, Spring 98 midterm to be held Wednesday, February 25, 1998, in class Dave Bayer, Modern Algebra All rings are assumed to be commutative with identity, as in our text.

More information

Each aix i is called a term of the polynomial. The number ai is called the coefficient of x i, for i = 0, 1, 2,..., n.

Each aix i is called a term of the polynomial. The number ai is called the coefficient of x i, for i = 0, 1, 2,..., n. Polynomials of a single variable. A monomial in a single variable x is a function P(x) = anx n, where an is a non-zero real number and n {0, 1, 2, 3,...}. Examples are 3x 2, πx 8 and 2. A polynomial in

More information

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information MRQ 2017 School of Mathematics and Statistics MT5836 Galois Theory Handout 0: Course Information Lecturer: Martyn Quick, Room 326. Prerequisite: MT3505 (or MT4517) Rings & Fields Lectures: Tutorials: Mon

More information

Section X.55. Cyclotomic Extensions

Section X.55. Cyclotomic Extensions X.55 Cyclotomic Extensions 1 Section X.55. Cyclotomic Extensions Note. In this section we return to a consideration of roots of unity and consider again the cyclic group of roots of unity as encountered

More information

P -adic root separation for quadratic and cubic polynomials

P -adic root separation for quadratic and cubic polynomials P -adic root separation for quadratic and cubic polynomials Tomislav Pejković Abstract We study p-adic root separation for quadratic and cubic polynomials with integer coefficients. The quadratic and reducible

More information

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) KEITH CONRAD We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over

More information

1. Factorization Divisibility in Z.

1. Factorization Divisibility in Z. 8 J. E. CREMONA 1.1. Divisibility in Z. 1. Factorization Definition 1.1.1. Let a, b Z. Then we say that a divides b and write a b if b = ac for some c Z: a b c Z : b = ac. Alternatively, we may say that

More information

Part IX. Factorization

Part IX. Factorization IX.45. Unique Factorization Domains 1 Part IX. Factorization Section IX.45. Unique Factorization Domains Note. In this section we return to integral domains and concern ourselves with factoring (with respect

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18. PIDs Definition 1 A principal ideal domain (PID) is an integral

More information

CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

A Generalization of Wilson s Theorem

A Generalization of Wilson s Theorem A Generalization of Wilson s Theorem R. Andrew Ohana June 3, 2009 Contents 1 Introduction 2 2 Background Algebra 2 2.1 Groups................................. 2 2.2 Rings.................................

More information

4 Unit Math Homework for Year 12

4 Unit Math Homework for Year 12 Yimin Math Centre 4 Unit Math Homework for Year 12 Student Name: Grade: Date: Score: Table of contents 3 Topic 3 Polynomials Part 2 1 3.2 Factorisation of polynomials and fundamental theorem of algebra...........

More information

Cool Results on Primes

Cool Results on Primes Cool Results on Primes LA Math Circle (Advanced) January 24, 2016 Recall that last week we learned an algorithm that seemed to magically spit out greatest common divisors, but we weren t quite sure why

More information

8 Appendix: Polynomial Rings

8 Appendix: Polynomial Rings 8 Appendix: Polynomial Rings Throughout we suppose, unless otherwise specified, that R is a commutative ring. 8.1 (Largely) a reminder about polynomials A polynomial in the indeterminate X with coefficients

More information

The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers:

The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers: Divisibility Euclid s algorithm The following is an informal description of Euclid s algorithm for finding the greatest common divisor of a pair of numbers: Divide the smaller number into the larger, and

More information

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example: Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a

More information

Chapter 4. Remember: F will always stand for a field.

Chapter 4. Remember: F will always stand for a field. Chapter 4 Remember: F will always stand for a field. 4.1 10. Take f(x) = x F [x]. Could there be a polynomial g(x) F [x] such that f(x)g(x) = 1 F? Could f(x) be a unit? 19. Compare with Problem #21(c).

More information

6.S897 Algebra and Computation February 27, Lecture 6

6.S897 Algebra and Computation February 27, Lecture 6 6.S897 Algebra and Computation February 7, 01 Lecture 6 Lecturer: Madhu Sudan Scribe: Mohmammad Bavarian 1 Overview Last lecture we saw how to use FFT to multiply f, g R[x] in nearly linear time. We also

More information

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R.

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R. Chapter 1 Rings We have spent the term studying groups. A group is a set with a binary operation that satisfies certain properties. But many algebraic structures such as R, Z, and Z n come with two binary

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

Math 547, Exam 2 Information.

Math 547, Exam 2 Information. Math 547, Exam 2 Information. 3/19/10, LC 303B, 10:10-11:00. Exam 2 will be based on: Homework and textbook sections covered by lectures 2/3-3/5. (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

More information

Solutions of exercise sheet 6

Solutions of exercise sheet 6 D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 6 1. (Irreducibility of the cyclotomic polynomial) Let n be a positive integer, and P Z[X] a monic irreducible factor of X n 1

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4 Math 4030-001/Foundations of Algebra/Fall 2017 Polynomials at the Foundations: Rational Coefficients The rational numbers are our first field, meaning that all the laws of arithmetic hold, every number

More information

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer?

2x 1 7. A linear congruence in modular arithmetic is an equation of the form. Why is the solution a set of integers rather than a unique integer? Chapter 3: Theory of Modular Arithmetic 25 SECTION C Solving Linear Congruences By the end of this section you will be able to solve congruence equations determine the number of solutions find the multiplicative

More information

8.6 Partial Fraction Decomposition

8.6 Partial Fraction Decomposition 628 Systems of Equations and Matrices 8.6 Partial Fraction Decomposition This section uses systems of linear equations to rewrite rational functions in a form more palatable to Calculus students. In College

More information

Algebra Qualifying Exam August 2001 Do all 5 problems. 1. Let G be afinite group of order 504 = 23 32 7. a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt 7. (5 points) b.

More information

Lecture 7: Polynomial rings

Lecture 7: Polynomial rings Lecture 7: Polynomial rings Rajat Mittal IIT Kanpur You have seen polynomials many a times till now. The purpose of this lecture is to give a formal treatment to constructing polynomials and the rules

More information

Polynomials. Chapter 4

Polynomials. Chapter 4 Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

Lagrange s polynomial

Lagrange s polynomial Lagrange s polynomial Nguyen Trung Tuan November 13, 2016 Abstract...In numerical analysis, Lagrange polynomials are used for polynomial interpolation. For a given set of distinct points x j and numbers

More information

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman October 31, 2006 TALK SLOWLY AND WRITE NEATLY!! 1 0.1 Symbolic Adjunction of Roots When dealing with subfields of C it is easy to

More information

Favorite Topics from Complex Arithmetic, Analysis and Related Algebra

Favorite Topics from Complex Arithmetic, Analysis and Related Algebra Favorite Topics from Complex Arithmetic, Analysis and Related Algebra construction at 09FALL/complex.tex Franz Rothe Department of Mathematics University of North Carolina at Charlotte Charlotte, NC 3

More information

Math 2070BC Term 2 Weeks 1 13 Lecture Notes

Math 2070BC Term 2 Weeks 1 13 Lecture Notes Math 2070BC 2017 18 Term 2 Weeks 1 13 Lecture Notes Keywords: group operation multiplication associative identity element inverse commutative abelian group Special Linear Group order infinite order cyclic

More information

Polynomial Rings. i=0

Polynomial Rings. i=0 Polynomial Rings 4-15-2018 If R is a ring, the ring of polynomials in x with coefficients in R is denoted R[x]. It consists of all formal sums a i x i. Here a i = 0 for all but finitely many values of

More information

Generalized eigenspaces

Generalized eigenspaces Generalized eigenspaces November 30, 2012 Contents 1 Introduction 1 2 Polynomials 2 3 Calculating the characteristic polynomial 5 4 Projections 7 5 Generalized eigenvalues 10 6 Eigenpolynomials 15 1 Introduction

More information

Example (cont d): Function fields in one variable...

Example (cont d): Function fields in one variable... Example (cont d): Function fields in one variable... Garrett 10-17-2011 1 Practice: consider K a finite extension of k = C(X), and O the integral closure in K of o = C[X]. K = C(X, Y ) for some Y, and

More information

Lecture 6.3: Polynomials and irreducibility

Lecture 6.3: Polynomials and irreducibility Lecture 6.3: Polynomials and irreducibility Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson)

More information

Chapter 2 Formulas and Definitions:

Chapter 2 Formulas and Definitions: Chapter 2 Formulas and Definitions: (from 2.1) Definition of Polynomial Function: Let n be a nonnegative integer and let a n,a n 1,...,a 2,a 1,a 0 be real numbers with a n 0. The function given by f (x)

More information

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory

Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory Course 311: Hilary Term 2006 Part IV: Introduction to Galois Theory D. R. Wilkins Copyright c David R. Wilkins 1997 2006 Contents 4 Introduction to Galois Theory 2 4.1 Polynomial Rings.........................

More information

Irreducible Polynomials over Finite Fields

Irreducible Polynomials over Finite Fields Chapter 4 Irreducible Polynomials over Finite Fields 4.1 Construction of Finite Fields As we will see, modular arithmetic aids in testing the irreducibility of polynomials and even in completely factoring

More information

Test 2. Monday, November 12, 2018

Test 2. Monday, November 12, 2018 Test 2 Monday, November 12, 2018 Instructions. The only aids allowed are a hand-held calculator and one cheat sheet, i.e. an 8.5 11 sheet with information written on one side in your own handwriting. No

More information

(a + b)c = ac + bc and a(b + c) = ab + ac.

(a + b)c = ac + bc and a(b + c) = ab + ac. 2. R I N G S A N D P O LY N O M I A L S The study of vector spaces and linear maps between them naturally leads us to the study of rings, in particular the ring of polynomials F[x] and the ring of (n n)-matrices

More information

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1 POLYNOMIALS A polynomial in x is an expression of the form p(x) = a 0 + a 1 x + a x +. + a n x n Where a 0, a 1, a. a n are real numbers and n is a non-negative integer and a n 0. A polynomial having only

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

A connection between number theory and linear algebra

A connection between number theory and linear algebra A connection between number theory and linear algebra Mark Steinberger Contents 1. Some basics 1 2. Rational canonical form 2 3. Prime factorization in F[x] 4 4. Units and order 5 5. Finite fields 7 6.

More information

Moreover this binary operation satisfies the following properties

Moreover this binary operation satisfies the following properties Contents 1 Algebraic structures 1 1.1 Group........................................... 1 1.1.1 Definitions and examples............................. 1 1.1.2 Subgroup.....................................

More information

7.4: Integration of rational functions

7.4: Integration of rational functions A rational function is a function of the form: f (x) = P(x) Q(x), where P(x) and Q(x) are polynomials in x. P(x) = a n x n + a n 1 x n 1 + + a 0. Q(x) = b m x m + b m 1 x m 1 + + b 0. How to express a

More information

x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0

x 3 2x = (x 2) (x 2 2x + 1) + (x 2) x 2 2x + 1 = (x 4) (x + 2) + 9 (x + 2) = ( 1 9 x ) (9) + 0 1. (a) i. State and prove Wilson's Theorem. ii. Show that, if p is a prime number congruent to 1 modulo 4, then there exists a solution to the congruence x 2 1 mod p. (b) i. Let p(x), q(x) be polynomials

More information

6.3 Partial Fractions

6.3 Partial Fractions 6.3 Partial Fractions Mark Woodard Furman U Fall 2009 Mark Woodard (Furman U) 6.3 Partial Fractions Fall 2009 1 / 11 Outline 1 The method illustrated 2 Terminology 3 Factoring Polynomials 4 Partial fraction

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

RINGS: SUMMARY OF MATERIAL

RINGS: SUMMARY OF MATERIAL RINGS: SUMMARY OF MATERIAL BRIAN OSSERMAN This is a summary of terms used and main results proved in the subject of rings, from Chapters 11-13 of Artin. Definitions not included here may be considered

More information

[06.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ±1 such that AMB is diagonal.

[06.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ±1 such that AMB is diagonal. (January 14, 2009) [06.1] Given a 3-by-3 matrix M with integer entries, find A, B integer 3-by-3 matrices with determinant ±1 such that AMB is diagonal. Let s give an algorithmic, rather than existential,

More information

Algebra in Problem Solving (Senior) Konrad Pilch

Algebra in Problem Solving (Senior) Konrad Pilch Algebra in Problem Solving (Senior) Konrad Pilch March 29, 2016 1 Polynomials Definition. A polynomial is an expression of the form P(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0. n is the degree of the

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone : Lecturer: Math1 Lecture 1 Dr. Robert C. Busby Office: Korman 66 Phone : 15-895-1957 Email: rbusby@mcs.drexel.edu Course Web Site: http://www.mcs.drexel.edu/classes/calculus/math1_spring0/ (Links are case

More information

18.S34 (FALL 2007) PROBLEMS ON ROOTS OF POLYNOMIALS

18.S34 (FALL 2007) PROBLEMS ON ROOTS OF POLYNOMIALS 18.S34 (FALL 2007) PROBLEMS ON ROOTS OF POLYNOMIALS Note. The terms root and zero of a polynomial are synonyms. Those problems which appeared on the Putnam Exam are stated as they appeared verbatim (except

More information

IRREDUCIBILITY TESTS IN Q[T ]

IRREDUCIBILITY TESTS IN Q[T ] IRREDUCIBILITY TESTS IN Q[T ] KEITH CONRAD 1. Introduction For a general field F there is no simple way to determine if an arbitrary polynomial in F [T ] is irreducible. Here we will focus on the case

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information