1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

Size: px
Start display at page:

Download "1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F."

Transcription

1 Hmewrk- Capter REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree rays rm te tp te bject t te surace te mrrr, ten tree relecte rays, an nally tree vrtual rays extenng ben te mrrr an meetng at te tp te mage. Te scale te ray tracng wll etermne te lcatn an egt te mage. Te tree sets rays are:. An ncent ray rm te bject t te mrrr, parallel t te prncpal axs an ten relecte trug te cal pnt F. 2. An ncent ray rm te bject t te mrrr, rectly away rm te cal pnt F an ten relecte parallel t te prncpal axs. (Te ncent ray cannt pass rm te bject trug te cal pnt, as ts wul take t away rm te mrrr, an t wul nt be relecte.) 3. An ncent ray rm te bject t te mrrr, rectly away rm te center curvature C, ten relecte back trug C. SOLUTION C Image (vrtual) 7.6 cm tall F cm 28 cm Object 3.0 cm tall Scale: 6.0 cm

2 a. Te ray agram ncates tat te mage s 28 cm ben te mrrr. b. We see rm te ray agram tat te mage s 7.6 cm tall. 6. REASONING We wll start by rawng te tw stuatns n wc te bject s 25 cm an 5 cm rm te mrrr, makng sure tat all stances (nclung te raus curvature te mrrr) an egts are t scale. Fr eac lcatn te bject, we wll raw several rays t lcate te mage (see te Reasnng Strategy r cnvex mrrrs n Sectn 25.5). Once te mages ave been lcate, we can realy answer te questns regarng ter pstns an egts. SOLUTION Te llwng tw ray agrams llustrate te stuatns were te bjects are at erent stances rm te cnvex mrrr.

3 Image Object 3 25 cm F C Image Object 3 F C 5 cm

4 a. As te bject mves clser t te mrrr, t can be seen tat te magntue te mage stance becmes smaller. b. As te bject mves clser t te mrrr, te magntue te mage egt becmes larger. c. By measurng te mage egts, we n tat te rat te mage egt wen te bject stance s 5 cm t tat wen te bject stance s 25 cm s REASONING Fr an mage tat s n rnt a mrrr, te mage stance s pstve. Snce te mage s nverte, te mage egt s negatve. Gven te mage stance, te mrrr equatn can be use t etermne te cal lengt, but t s a value r te bject stance s als neee. Te bject an mage egts, tgeter wt te knwlege tat te mage s nverte, allws us t calculate te magncatn m. Te magncatn m s gven by m = / (Equatn 25.4), were an are te mage an bject stances, respectvely. SOLUTION Accrng t Equatn 25.4, te magncatn s m r Substtutng ts result nt te mrrr equatn, we btan F HG O Q F 5 H G I 3 cmk J L cm N M b. g b3.5 cmg I K J P 0. cm r 9. cm

5 23. REASONING Snce te mage s ben te mrrr, te mage s vrtual, an te mage stance s negatve, s tat 34.0 cm. Te bject stance s gven as 7.50 cm. Te mrrr equatn relates tese stances t te cal lengt te mrrr. I te cal lengt s pstve, te mrrr s cncave. I te cal lengt s negatve, te mrrr s cnvex. SOLUTION Accrng t te mrrr equatn (Equatn 25.3), we ave r 7.50 cm 34.0 cm 9.62 cm Snce te cal lengt s pstve, te mrrr s cncave. 26. REASONING Te magncatn m s gven by m = / (Equatn 25.4), were an are te mage an bject stances, respectvely. Te bject stance s knwn, an we can btan te mage stance rm te mrrr equatn: (25.3) SOLUTION Slvng te mrrr equatn (Equatn 25.3) r te mage stance gves r = r Substtutng ts result nt te magncatn equatn (Equatn 25.4) gves

6 m /c Usng ts result wt te gven values r te cal lengt an bject stances, we n Smaller bject stance m cm cm 9. 0 cm b gb g Greater bject stance m cm cm 8. 0 cm b gb g REASONING Te cal lengt te water rp s gven by te mrrr equatn (Equatn 25.3), were an are, respectvely, te bject stance an te mage stance. Te bject stance ( = 3.0 cm) s gven, an we wll etermne te mage stance rm te magncatn equatn m (Equatn 25.4), were s te ameter te lwer an s te ameter ts mage. Te water rp acts as a cnvex spercal mrrr, s te mage s uprgt. Terere, te mage egt s pstve, an we expect te cal lengt t be negatve. SOLUTION Slvng (Equatn 25.4) r an takng te recprcal, we btan r () Substtutng Equatn () nt (Equatn 25.3) yels

7 (2) Takng te recprcal Equatn (2), we n tat te cal lengt te water rp s 3.0 cm 0.6 cm 2.0 cm 0.0 cm Capter REASONING a. Te reracte ray s swn crrectly. Wen lgt ges rm a meum lwer nex reractn (n =.4) t ne ger nex reractn (n =.6), te reracte ray s bent twar te nrmal, as t es n part (a). b. Te reracte ray s swn ncrrectly. Wen lgt ges rm a meum lwer nex reractn (n =.5) t ne ger nex reractn (n =.6), te reracte ray must ben twar te nrmal, nt away rm t, as part (b) te rawng sws. c. Te reracte ray s swn crrectly. Wen lgt ges rm a meum ger nex reractn (n =.6) t ne lwer nex reractn (n =.4), te reracte ray bens away rm te nrmal, as t es part (c) te rawng.. Te reracte ray s swn ncrrectly. Wen te angle ncence s 0, te angle reractn s als 0, regarless te nces reractn. SOLUTION a. Te angle reractn 2 s gven by Snell s law, Equatn 26.2, as

8 n sn.4 sn 55 sn sn n 2 b. Te actual angle reractn s n sn.5 sn 55 sn sn n 2 c. Te angle reractn s n sn.6 sn 55 sn sn n 2. Te actual angle reractn s nsn.6 sn 0 2 sn sn 0 n REASONING AND SOLUTION Te angle ncence s un rm te rawng t be 8.0 m = tan = m Snell's law gves te angle reractn t be sn 2 = (n /n 2 ) sn = (.000/.333) sn 73 = 0.72 r 2 = 46 Te stance s un rm te rawng t be

9 = 8.0 m + (4.0 m) tan 2 = 2. m

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Problem 1. Refracting Surface (Modified from Pedrotti 2-2) .70 Optc Hmewrk # February 8, 04 Prblem. Reractng Surace (Me rm Pertt -) Part (a) Fermat prncple requre that every ray that emanate rm the bject an pae thrugh the mage pnt mut be chrnu (.e., have equal

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

Experiment 6: Constructing a Microscope

Experiment 6: Constructing a Microscope Experment 6: Cnstructng a Mcrscpe Pre-lab Preparatn: Revew the llwng sectns rm the Yung an reeman textbk page reerences gven r th etn: Sectn 3.: Thn Lenses, p. 7 8 Sectn 3.7: The Magner, p. 89 90 Sectn

More information

Answers to the Conceptual Questions

Answers to the Conceptual Questions Chapter 18 Reractn Lght 219 Resurce CD. They are rganzed by textbk chapter, and each anmatn cmes wthn a shell that prvdes nrmatn n hw t use the anmatn, explratn actvtes, and a shrt quz. Answers t the Cnceptual

More information

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = +

{ } MATH section 7.2 Volumes (Washer Method) Page 1 of 8. = = 5 ; about x-axis. y x y x. r i. x 5= interval: 0. = x + 0 = x + = + = + MATH sectn 7. Vlumes (Washer Methd) Page f 8 6) = = 5 ; abut x-axs x x x = 5 x 5 ( x+ )( x ) = 5 x 5= x+ = x = 5 x= x= ( x ) = nterval: x r = (5 x ) + = (5 x ) r = x + = x A = (5 x ) = (5 x + x ) A = x

More information

Answers to the Conceptual Questions

Answers to the Conceptual Questions hapter 17 Lght 205 shne re laser lght nt a tube f REST tthpaste. The re seems t sappear. Next we use ur clr aer. It s a bx cntanng lght bulbs fr each f the three prmary clrs behn a translucent screen.

More information

Chapter 4 The debroglie hypothesis

Chapter 4 The debroglie hypothesis Capter 4 Te debrglie yptesis In 194, te Frenc pysicist Luis de Brglie after lking deeply int te special tery f relatiity and ptn yptesis,suggested tat tere was a mre fundamental relatin between waes and

More information

Fundamental concept of metal rolling

Fundamental concept of metal rolling Fundamental cncept metal rlling Assumptins 1) Te arc cntact between te rlls and te metal is a part a circle. v x x α L p y y R v 2) Te ceicient rictin, µ, is cnstant in tery, but in reality µ varies alng

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Solution Set #3

Solution Set #3 5-55-7 Soluton Set #. Te varaton of refractve ndex wt wavelengt for a transarent substance (suc as glass) may be aroxmately reresented by te emrcal equaton due to Caucy: n [] A + were A and are emrcally

More information

Wp/Lmin. Wn/Lmin 2.5V

Wp/Lmin. Wn/Lmin 2.5V UNIVERITY OF CALIFORNIA Cllege f Engneerng Department f Electrcal Engneerng and Cmputer cences Andre Vladmrescu Hmewrk #7 EEC Due Frday, Aprl 8 th, pm @ 0 Cry Prblem #.5V Wp/Lmn 0.0V Wp/Lmn n ut Wn/Lmn.5V

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Theory of a vertically loaded Suction Pile in SAND

Theory of a vertically loaded Suction Pile in SAND Thery f a vertcally lae Suctn Ple n SAND 1. Cnventn Water t COG Z L Sl z COG D t1 Fgure 1: Overvew f man cmpnents Fgure : Overvew f man parameters Z D L t 1 t W φ φ e c κ p ρ sl γ sl Waterepth Penetratnepth

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

PHY2053 Summer 2012 Exam 2 Solutions N F o f k HY0 Suer 0 Ea Slutns. he ree-bdy dagra r the blck s N F 7 k F g Usng Newtn s secnd law r the -cnents F a F F cs7 k 0 k F F cs7 (0 N ( Ncs7 N he wrk dne by knetc rctn k r csθ ( N(6 cs80 0 N. Mechancal energy

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006

NAME Borough of Manhattan Community College Course Physics 110 Sec 721 Instructor: Dr. Hulan E. Jack Jr. Date December 19, 2006 Brug f Manattan unity llege urse Pysics 110 Sec 721 nstructr: Dr. Hulan E. Jack Jr. Date Deceber 19, 2006 inal Exa NSTRUTONS - D 7 prbles : D Prble 1, 2 fr Prble 2,3 and 4, 2 fr Prbles 5,6 and 7, 2 fr

More information

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E]

WYSE Academic Challenge 2014 Sectional Physics Exam SOLUTION SET. [ F][ d] [ t] [ E] WYSE Aaem Challenge 0 Setnal hss Exam SOLUTION SET. Crret answer: E Unts Trque / unts pwer: [ r ][ ] [ E] [ t] [ r ][ ][ t] [ E] [ r ][ ][ t] [ ][ ] [ r ][ t] [ ] m s m s. Crret answer: D The net external

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Photgraphic camera. How it works? Take a simple converging lens:

Photgraphic camera. How it works? Take a simple converging lens: Phtgraphic camera. Hw it wrks? Take a simple cnverging lens: Image real, inverted, and much smaller than the bject Lens Object usually at a distance much, much larger rm the lens than its cal length T

More information

3/22/18. Onward to Galaxies, starting with our own! Warping of Space by Gravity. Three aspects of falling into a black hole: 1) Spaghettified

3/22/18. Onward to Galaxies, starting with our own! Warping of Space by Gravity. Three aspects of falling into a black hole: 1) Spaghettified ASTR 1040: Stars & Galaxies Prf. Juri Tmre TAs: Peri Jhnsn, Ryan Hrtn Lecture 20 Thur 22 Mar 2018 zeus.clrad.edu/astr1040-tmre M51 Whirlpl Onward t Galaxies, starting with ur wn! Revisit Our Milky Way

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2 Mdiied rm Pedrtti 8-9 a) The schematic the system is given belw b) Using matrix methd rm pint A t B, A B M 2lens D 0 0 d d d 0 d d 2 2 2 2 0 0 5 5 2 0 3 0 0 20 2 Frm the abve matrix, we see that A and

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables

A New Method for Solving Integer Linear. Programming Problems with Fuzzy Variables Appled Mathematcal Scences, Vl. 4, 00, n. 0, 997-004 A New Methd fr Slvng Integer Lnear Prgrammng Prblems wth Fuzzy Varables P. Pandan and M. Jayalakshm Department f Mathematcs, Schl f Advanced Scences,

More information

PT326 PROCESS TRAINER

PT326 PROCESS TRAINER PT326 PROCESS TRAINER 1. Descrptn f the Apparatus PT 326 Prcess Traner The PT 326 Prcess Traner mdels cmmn ndustral stuatns n whch temperature cntrl s requred n the presence f transprt delays and transfer

More information

Problem Set 4: Sketch of Solutions

Problem Set 4: Sketch of Solutions Problem Set 4: Sketc of Solutons Informaton Economcs (Ec 55) George Georgads Due n class or by e-mal to quel@bu.edu at :30, Monday, December 8 Problem. Screenng A monopolst can produce a good n dfferent

More information

ELABORATING AND ANALYSING THE REAL BALANCE OF HEAT FOR THE STEAM GENERATOR RGL10/D-D

ELABORATING AND ANALYSING THE REAL BALANCE OF HEAT FOR THE STEAM GENERATOR RGL10/D-D Annals f te Unversty f Petrşan, Mecancal Engneerng, 10 (2008), 155-160 155 ELABORATING AND ANALYSING THE REAL BALANCE OF HEAT FOR THE STEAM GENERATOR RGL10/D-D DAN CODRUŢ PETRILEAN 1 Abstract: Te real

More information

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients

Chapter 3. Differentiation 3.2 Differentiation Rules for Polynomials, Exponentials, Products and Quotients 3.2 Dfferetato Rules 1 Capter 3. Dfferetato 3.2 Dfferetato Rules for Polyomals, Expoetals, Proucts a Quotets Rule 1. Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof.

More information

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008 Mat 324 Advanced Fnancal Matematcs Sprng 28 Fnal Exam Solutons May 2, 28 Ts s an open book take-ome exam. You may work wt textbooks and notes but do not consult any oter person. Sow all of your work and

More information

Heat exchanger. Heat exchanger

Heat exchanger. Heat exchanger s are deves n w eat s transferred between tw fluds at dfferent teperatures wtut any xng f fluds. type. Dret eat transfer type 2. Strage type 3. Dret ntat type ttps://www.faebk./0000085304058/vdes/96230780490756/.

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

WYSE Academic Challenge 2004 State Finals Physics Solution Set

WYSE Academic Challenge 2004 State Finals Physics Solution Set WYSE Acaemc Challenge 00 State nals Physcs Soluton Set. Answer: c. Ths s the enton o the quantty acceleraton.. Answer: b. Pressure s orce per area. J/m N m/m N/m, unts o orce per area.. Answer: e. Aerage

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

Lecture 17. Dielectric Materials

Lecture 17. Dielectric Materials Lecture 17 Dielectric Materials 3/ 3 3 3/ 3/ 4 4 exp = = = e R R B B e B v c B g v c e k k k k E π π π Dielectric aterials play a large rle in electrnics. One exaple was te xide in te MOS structures. Als

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii Prblem 1 STRATEGY KNOWN Resstance f a cmplete sphercal shell: R ( r r / (4 π r rk sphere Inner an uter ra r an r, SOLUTION Part 1: Resstance f a hemsphercal shell: T calculate the resstance f the hemsphere,

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Field and Wave Electromagnetic. Chapter.4

Field and Wave Electromagnetic. Chapter.4 Fel an Wave Electromagnetc Chapter.4 Soluton of electrostatc Problems Posson s s an Laplace s Equatons D = ρ E = E = V D = ε E : Two funamental equatons for electrostatc problem Where, V s scalar electrc

More information

MATH1901 Differential Calculus (Advanced)

MATH1901 Differential Calculus (Advanced) MATH1901 Dierential Calculus (Advanced) Capter 3: Functions Deinitions : A B A and B are sets assigns to eac element in A eactl one element in B A is te domain o te unction B is te codomain o te unction

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation)

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation) ME 6590 Multbody Dynamcs Connectn Jonts Part I o Connectn jonts constran te relatve moton between adjonn bodes n a multbody system. Jonts rane rom allown no relatve moton (a rd jont) to allown all motons

More information

Module 7: Solved Problems

Module 7: Solved Problems Mdule 7: Slved Prblems 1 A tn-walled nentr tube eat exanger f 019-m lengt s t be used t eat denzed water frm 40 t 60 at a flw rate f 5 kg/s te denzed water flws trug te nner tube f 30-mm dameter wle t

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 0 Public Exam Questins Unit 1: Circular Mtin NAME: August 009---------------------------------------------------------------------------------------------------------------------- 1. Which describes

More information

Energy & Work

Energy & Work rk Dne by a Cntant Frce 6.-6.4 Energy & rk F N m jule () J rk Dne by a Cntant Frce Example Pullng a Sutcae-n-heel Fnd the wrk dne the rce 45.0-N, the angle 50.0 degree, and the dplacement 75.0 m. 3 ( F

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle?

14. Which shows the direction of the centripetal force acting on a mass spun in a vertical circle? Physics 3204 Public Exam Questins Unit 1: Circular Mtin NAME: August 2009---------------------------------------------------------------------------------------------------------------------- 12. Which

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state): Electc ptental enegy Electstatc fce des wk n a patcle : v v v v W = F s = E s. Ptental enegy (: ntal state f : fnal state): Δ U = U U = W. f ΔU Electc ptental : Δ : ptental enegy pe unt chag e. J ( Jule)

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Solutions to the Extra Problems for Chapter 14

Solutions to the Extra Problems for Chapter 14 Slutins t the Extra Prblems r Chapter 1 1. The H -670. T use bnd energies, we have t igure ut what bnds are being brken and what bnds are being made, s we need t make Lewis structures r everything: + +

More information

Section 2.4: Definition of Function

Section 2.4: Definition of Function Section.4: Definition of Function Objectives Upon completion of tis lesson, you will be able to: Given a function, find and simplify a difference quotient: f ( + ) f ( ), 0 for: o Polynomial functions

More information

Midterm Exam. Thursday, April hour, 15 minutes

Midterm Exam. Thursday, April hour, 15 minutes Economcs of Grow, ECO560 San Francsco Sae Unvers Mcael Bar Sprng 04 Mderm Exam Tursda, prl 0 our, 5 mnues ame: Insrucons. Ts s closed boo, closed noes exam.. o calculaors of an nd are allowed. 3. Sow all

More information

Chapter 3. Differentiation 3.3 Differentiation Rules

Chapter 3. Differentiation 3.3 Differentiation Rules 3.3 Dfferetato Rules 1 Capter 3. Dfferetato 3.3 Dfferetato Rules Dervatve of a Costat Fucto. If f as te costat value f(x) = c, te f x = [c] = 0. x Proof. From te efto: f (x) f(x + ) f(x) o c c 0 = 0. QED

More information

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb?

Chapter A 9.0-V battery is connected to a lightbulb, as shown below. 9.0-V Battery. a. How much power is delivered to the lightbulb? Capter continued carges on te plates were reversed, te droplet would accelerate downward since all forces ten act in te same direction as gravity. 5. A 0.5-F capacitor is able to store 7.0 0 C of carge

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

160 Chapter 3: Differentiation

160 Chapter 3: Differentiation 3. Differentiation Rules 159 3. Differentiation Rules Tis section introuces a few rules tat allow us to ifferentiate a great variety of functions. By proving tese rules ere, we can ifferentiate functions

More information

Chapter (10) lbf Ans. 3-2 Body AB: R R. Body OAC: R R. Chapter 3 - Rev. B, Page 1/100. R R 300 lbf Ans 0 R (10) 100(30) 0

Chapter (10) lbf Ans. 3-2 Body AB: R R. Body OAC: R R. Chapter 3 - Rev. B, Page 1/100. R R 300 lbf Ans 0 R (10) 100(30) 0 Chapter - M 0 8RB 6(00) 0. lbf Ans. RB F y 0 R RB 00 0 R 66.7 lbf Ans. R R. lbf Ans. C B - Bdy AB: F x 0 RAx RBx F y 0 RAy RBy M B 0 RAy (0) RAx (0) 0 R R Ax Ay Bdy OAC: 0 R (0) 00(0) 0 M O RAy Ay 00 lbf

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenmena Phsics 5c Lecture Gemetrical Optics (H&L Chapter ) Tw Mre Lectures T G!! Will inish gemetrical ptics tda! Next week will cver less serius material! Laser and hlgraph! Quantum Mechanics Hw

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Lecture 4. Heritability. Heritability: An Intuitive Approach First Definition

Lecture 4. Heritability. Heritability: An Intuitive Approach First Definition Lecture Hertablty Hertablty: n Intutve pproac Frst enton Broa Sense: Proporton o te penotypc varaton ue to genetc causes H G Y Narro Sense: Proporton o te penotypc varaton ue to atve genetc eects Y Useul

More information

WYSE Academic Challenge 2004 State Finals Mathematics Solution Set

WYSE Academic Challenge 2004 State Finals Mathematics Solution Set WYSE Academic Callenge 00 State Finals Matematics Solution Set. Answer: c. We ave a sstem of tree equations and tree unknowns. We ave te equations: x + + z 0, x + 6 + 7z 9600, and 7x + + z 90. Wen we solve,

More information

Chapter 5 Geometrical Optics-Paraxial Theory

Chapter 5 Geometrical Optics-Paraxial Theory Chapter 5 Gemetrcal Optcs-Paraxal Thery Hecht by YHLEE;100510; 5-1 5.1 Intrductn An magng system Rays dverge frm S and cnverge t P P s a perfect mage f S An ptcal system n terms f wave: The bject space

More information

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018

Review for Exam IV MATH 1113 sections 51 & 52 Fall 2018 Review for Exam IV MATH 111 sections 51 & 52 Fall 2018 Sections Covered: 6., 6., 6.5, 6.6, 7., 7.1, 7.2, 7., 7.5 Calculator Policy: Calculator use may be allowed on part of te exam. Wen instructions call

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and U ANAYSS hapter Snusdal Alternatng Wavefrs and Phasr ncept Snusdal Alternatng Wavefrs and Phasr ncept ONNS. Snusdal Alternatng Wavefrs.. General Frat fr the Snusdal ltage & urrent.. Average alue..3 ffectve

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

f = µ mg = kg 9.8m/s = 15.7N. Since this is more than the applied

f = µ mg = kg 9.8m/s = 15.7N. Since this is more than the applied Phsics 141H lutins r Hmewrk et #5 Chapter 5: Multiple chice: 8) (a) he maimum rce eerted b static rictin is µ N. ince the blck is resting n a level surace, N = mg. the maimum rictinal rce is ( ) ( ) (

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Lucas Imperfect Information Model

Lucas Imperfect Information Model Lucas Imerfect Infrmatn Mdel 93 Lucas Imerfect Infrmatn Mdel The Lucas mdel was the frst f the mdern, mcrfundatns mdels f aggregate suly and macrecnmcs It bult drectly n the Fredman-Phels analyss f the

More information

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2. SE 8 Fnal Project Story Sear Frame Gven: EI ω ω Solve for Story Bendng Beam Gven: EI ω ω 3 Story Sear Frame Gven: L 3 EI ω ω ω 3 3 m 3 L 3 Solve for Solve for m 3 3 4 3 Story Bendng Beam Part : Determnng

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information