Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Size: px
Start display at page:

Download "Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7"

Transcription

1 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every countng problem #A n #, tere s a probablstc algortm C tat on nput x, computes wt g probablty a value v suc tat (1 ɛ)#a(x) v (1 + ɛ)#a(x) (1) n tme polynomal n x and n 1 ɛ, usng an oracle for N. Gven wat we proved n te prevous lecture, t only remans to develop an approxmate comparson algortm for #CSAT, tat s, an algortm a comp suc tat for every crcut C: If #CSAT (C) k+1 ten a comp(c, k) = YES wt g probablty; If #CSAT (C) < k ten a comp(c, k) = NO wt g probablty. Te dea of te proof s to pck a random functon : {0, 1} n {0, 1} k, and ten consder te number of satsfyng assgnments for te crcut C (x) := C(x) ((x) = 0). If #CSAT (C) k+1 ten, on average over te coce of, C (x) as at least two satsfyng assgnments, but f #CSAT (C) k+1 ten, on average over te coce of, C (x) as less tan one satsfyng assgnments. Ceckng f C s satsfable s a test tat we would expect to dstngus te two cases. To make ts argument rgorous, we cannot pck te functon unformly at random among all functons, because ten would be an object requrng an exponental sze descrpton, and a descrpton of (n te form of an evaluaton algortm) as to be part of te crcut C. Instead we wll pck from a parwse ndependent dstrbuton of functons. To mprove te dstngusng probablty and smplfy te analyss, we wll work wt functons : {0, 1} n {0, 1} k 5, and we wll treat te case k 5 separately. 1.1 arwse ndependent as functons Defnton Let H be a dstrbuton over functons of te form : {0, 1} n {0, 1} m. We say tat H s a parwse ndependent dstrbuton of as functons f for every two dfferent nputs x, y {0, 1} n and for every two possble outputs s, t {0, 1} m we ave [(x) = s (y) = t] = 1 H m 1

2 Anoter way to look at te defnton s tat for every x y, wen we pck at random ten te random varables (x) and (y) are ndependent and unformly dstrbuted. In partcular, for every x y and for every s, t we ave [(x) = s (y) = t] = [(x) = s] A smple constructon of parwse ndependent as functons s as follows: pck a matrx A {0, 1} m n and a vector b {0, 1} m unformly at random, and ten defne te functon A,b (x) := Ax + b were te matrx product and vector addton operatons are performed over te feld F. (Tat s, tey are performed modulo.) To see tat te parwse ndependence property s satsfed, consder any two dstnct nputs x, y {0, 1} n and any two outputs s, t {0, 1} m. If we call a 1,..., a m te rows of A ten we ave [Ax + b = s Ay + b = t] = A,b m [a T x + b = s a T y + b = t ] =1 because te events (a T x + b = s a T y + b = t ) are all mutually ndependent. Te condton (a T x + b = s a T y + b = t ) can be equvalently rewrtten as and as a T x s = a T y t b = a T x s and ts probablty s a T (x y) = s t b = a T x s [a T (x y) = s t b = a T x s ] = [a T (x y) = s t ] [b = a T x s a T (x y) = s t ] = 1 1 = 1 4 Because x y s a non-zero vector, and so a T (x y) s a vector bt, and because b s a random bt ndependent of x, y. In concluson, we ave ( ) 1 m [Ax + b = s Ay + b = t] = A,b 4 as desred. We wll use te followng fact about parwse ndependent as functons.

3 Lemma 3 Let H be a dstrbuton of parwse ndependent as functons {0, 1} n {0, 1} m, and Let S {0, 1} n. Ten, for every t [ {a S : (a) = 0} S ] m t S t m. () H roof: We wll use Cebysev s Inequalty to bound te falure probablty. Let S = {a 1,..., a k }, and pck a random H. We defne random varables X 1,..., X k as X = { 1 f (a ) = 0 0 oterwse. (3) Clearly, {a S : (a) = 0} = X. We now calculate te expectatons. For eac, [X = 1] = 1 and E[X m ] = 1. Hence, m [ ] E X = S m. (4) Also we calculate te varance Var[X ] = E[X ] E[X ] E[X ] Because X 1,..., X k are parwse ndependent, [ ] Var X = = E[X ] = 1 m. Var[X ] S m. (5) Usng Cebysev s Inequalty, we get [ {a S : (a) = 0} S ] [ m t = X E[ Var[ X ] t = S t m ] X ] t] 1. Te algortm a-comp We defne te algortm a-comp as follows. nput: C, k f k 5 ten ceck exactly weter #CSAT (C) k. 3

4 f k 6 pck from a set of parwse ndependent as functons : {0, 1} n {0, 1} m, were m = k 5 answer YES ff tere are more ten 48 nputs x to C suc tat C(x) = 1 and (x) = 0. Notce tat te test at te last step can be done wt one access to an oracle to N and tat te overall algortm runs n probablstc polynomal tme gven an N oracle. We now analyze te correctness of te algortm. Let S {0, 1} n be te set of nputs x suc tat C(x) = 1. Tere are cases. If S k+1, let S S be an arbtrary subset of S of sze exactly k+1. S / m = 64 and we can use Lemma 3 to estmate te error probablty as: Ten [ {x S : (x) = 0} 48] H [ {x S : (x) = 0} 48] H [ S ] = {x S : (x) = 0} 16 H m 1 16 S m = 1 4 If S < k, ten S / m < 3, and te probablty of error can be estmated as [ {x S : (x) = 0} > 48] H [ ] {x S : (x) = 0} S 16 m H 1 16 S m 1 8 Terefore, te algortm wll gve te correct answer wt probablty at least 3/4, wc can ten be amplfed to, say, 1 1/4n (so tat all n nvocatons of a-comp are lkely to be correct) by repeatng te procedure O(log n) tmes and takng te majorty answer. Te Valant-Vazran Reducton We say tat an nstance C of crcut-sat s unquely satsfable f t as exactly one satsfyng assgnment. Valant and Vazran proved tat f tere s a polynomal tme randomzed algortm tat, gven a unquely satsfable crcut, fnds ts satsfyng assgnment, ten crcut-sat (and, ence, all oter problems n N) can be solved n randomzed polynomal tme. Te dea s related to te argument n te prevous secton. Gven a satsfable crcut C, we guess a number k suc tat k s approxmately te number of satsfyng assgnments 4

5 of C, we pck at random a parwse ndependent as functon : {0, 1} n {0, 1} k, and we construct te crcut C suc tat C (x) := C(x) ((x) = 0). Wt constant probablty, C as exactly one satsfyng assgnment, and ten te ypotetcal algortm tat solves unquely satsfable nstances wll fnd a satsfyng assgnment for C, and ence for C. It remans to prove tat f we ave a set S {0, 1} n, and we pck a parwse ndependent as functon : {0, 1} n {0, 1} k, were k log S, ten tere s a constant tat (x) = 0 for exactly one element of S. It wll not be possble to make ts argument work by usng Cebysev s nequalty, because wen te expected number of elements tat as to 0 s around 1, te standard devaton wll be too g. Instead, we use parwse ndependence to argue tat eac element of S as probablty Ω(1/ S ) of beng te unque element of S asng to 0; tese events are dsjont, and so ter probablty can be added up. Lemma 4 (Valant-Vazran) Let S {0, 1} n, let k be suc tat k S k+1, and let H be a famly of parwse ndependent as functons of te form : {0, 1} n {0, 1} k+. Ten f we pck at random from H, tere s probablty at least 1/8 tat tere s a unque element x S suc tat (x) = 0. recsely, r H [ {x S : (x) = 0} = 1] 1 8 (6) roof: For eac element x S, te probablty tat x s te unque element of S asng to 0 s [(x) = 0 ( y S {x}.(y) 0] Were = [(x) = 0] [(x) = 0 ( y S {x}.(y) = 0)] [(x) = 0] = 1 k+ and, usng a unon bound and parwse ndependence, [(x) = 0 ( y S {x}.(y) = 0)] y S {x} [(x) = (y) = 0] = S 1 k+4 1 k+3 Te probablty tat x s te unque element of S tat ases to 0 s tus [(x) = 0 ( y S {x}.(y) 0] 1 k+3 and te probablty tat a unque element of S ases to 0 s te sum of te above probabltes over all elements of S, and so t s at least S / k+3, wc s at least 1/8. We ave proved te followng result. Teorem 5 Suppose tat tere s a randomzed polynomal tme algortm A suc tat, gven a unquely satsfable crcut C, A fnds te satsfyng assgnment of C. Ten every problem n N s solvable n randomzed polynomal tme. 5

6 roof: It s enoug to sow tat, under te assumpton of te teorem, gven a (not necessarly unquely) satsfable crcut C, we can fnd a satsfyng assgnment for t n randomzed polynomal tme wt constant probablty. To do so, f n s te number of nputs of te gven crcut C, we try all k = 0,..., n, and for eac k we pck a parwse ndependent as functon k : {0, 1} n {0, 1} k+, and we run algortm A on te crcut C k (x) := C(x) ((x) = 0). For te coce of k suc tat te number of satsfyng assgnments of C s between k and k+1, we ave a constant probablty tat C k s unquely satsfable and tat A wll fnd a satsfyng assgnment. 3 Approxmate Samplng So far we ave consdered te followng queston: for an N-relaton R, gven an nput x, wat s te sze of te set R x = {y : (x, y) R}? A related queston s to be able to sample from te unform dstrbuton over R x. Wenever te relaton R s downward self reducble (a tecncal condton tat we won t defne formally), t s possble to prove tat tere s a probablstc algortm runnng n tme polynomal n x and 1/ɛ to approxmate wtn 1 + ɛ te value R x f and only f tere s a probablstc algortm runnng n tme polynomal n x and 1/ɛ tat samples a dstrbuton ɛ-close to te unform dstrbuton over R x. We sow ow te above result apples to 3SAT (te general result uses te same proof dea). For a formula φ, a varable x and a bt b, let us defne by φ x b te formula obtaned by substtutng te value b n place of x. 1 If φ s defned over varables x 1,..., x n, t s easy to see tat #φ = #φ x 0 + #φ x 1 Also, f S s te unform dstrbuton over satsfyng assgnments for φ, we note tat [x 1 = b] = #φ x b (x 1,...,x n) S #φ Suppose ten tat we ave an effcent samplng algortm tat gven φ and ɛ generates a dstrbuton ɛ-close to unform over te satsfyng assgnments of φ. Let us ten ran te samplng algortm wt approxmaton parameter ɛ/n and use t to sample about Õ(n /ɛ ) assgnments. By computng te fracton of suc assgnments avng x 1 = 0 and x 1 = 1, we get approxmate values p 0, p 1, suc tat p b (x1,...,x n) S[x 1 = b] ɛ/n. Let b be suc tat p b 1/, ten #φ x b /p b s a good approxmaton, to wtn a multplcatve factor (1 + ɛ/n) to #φ, and we can recurse to compute #φ x b to wtn a (1 + ɛ/n) n 1 factor. Conversely, suppose we ave an approxmate countng procedure. Ten we can approxmately compute p b = #φ x b #φ, generate a value b for x 1 wt probablty approxmately p b, and ten recurse to generate a random assgnment for #φ x b. Te same equvalence olds, clearly, for SAT and, among oter problems, for te problem of countng te number of perfect matcngs n a bpartte grap. It s known 1 Specfcally, φ x 1 s obtaned by removng eac occurrence of x from te clauses were t occurs, and removng all te clauses tat contan an occurrence of x; te formula φ x 0 s smlarly obtaned. 6

7 tat t s N-ard to perform approxmate countng for SAT and ts result, wt te above reducton, mples tat approxmate samplng s also ard for SAT. Te problem of approxmately samplng a perfect matcng as a probablstc polynomal soluton, and te reducton mples tat approxmately countng te number of perfect matcngs n a grap can also be done n probablstc polynomal tme. Te reducton and te results from last secton also mply tat 3SAT (and any oter N relaton) as an approxmate samplng algortm tat runs n probablstc polynomal tme wt an N oracle. Wt a careful use of te tecnques from last week t s ndeed possble to get an exact samplng algortm for 3SAT (and any oter N relaton) runnng n probablstc polynomal tme wt an N oracle. Ts s essentally best possble, because te approxmate samplng requres randomness by ts very defnton, and generatng satsfyng assgnments for a 3SAT formula requres at least an N oracle. 7

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

18.1 Introduction and Recap

18.1 Introduction and Recap CS787: Advanced Algorthms Scrbe: Pryananda Shenoy and Shjn Kong Lecturer: Shuch Chawla Topc: Streamng Algorthmscontnued) Date: 0/26/2007 We contnue talng about streamng algorthms n ths lecture, ncludng

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

Lecture Space-Bounded Derandomization

Lecture Space-Bounded Derandomization Notes on Complexty Theory Last updated: October, 2008 Jonathan Katz Lecture Space-Bounded Derandomzaton 1 Space-Bounded Derandomzaton We now dscuss derandomzaton of space-bounded algorthms. Here non-trval

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 2/21/2008. Notes for Lecture 8 U.C. Berkeley CS278: Computatonal Complexty Handout N8 Professor Luca Trevsan 2/21/2008 Notes for Lecture 8 1 Undrected Connectvty In the undrected s t connectvty problem (abbrevated ST-UCONN) we are gven

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Handout 6 Luca Trevisan September 12, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 6 Luca Trevsan September, 07 Scrbed by Theo McKenze Lecture 6 In whch we study the spectrum of random graphs. Overvew When attemptng to fnd n polynomal

More information

6.842 Randomness and Computation February 18, Lecture 4

6.842 Randomness and Computation February 18, Lecture 4 6.842 Randomness and Computaton February 18, 2014 Lecture 4 Lecturer: Rontt Rubnfeld Scrbe: Amartya Shankha Bswas Topcs 2-Pont Samplng Interactve Proofs Publc cons vs Prvate cons 1 Two Pont Samplng 1.1

More information

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13] Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities Algorthms Non-Lecture E: Tal Inequaltes If you hold a cat by the tal you learn thngs you cannot learn any other way. Mar Twan E Tal Inequaltes The smple recursve structure of sp lsts made t relatvely easy

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Adaptive Kernel Estimation of the Conditional Quantiles

Adaptive Kernel Estimation of the Conditional Quantiles Internatonal Journal of Statstcs and Probablty; Vol. 5, No. ; 206 ISSN 927-7032 E-ISSN 927-7040 Publsed by Canadan Center of Scence and Educaton Adaptve Kernel Estmaton of te Condtonal Quantles Rad B.

More information

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL TR/9 February 980 End Condtons for Interpolatory Quntc Splnes by G. H. BEHFOROOZ* & N. PAPAMICHAEL *Present address: Dept of Matematcs Unversty of Tabrz Tabrz Iran. W9609 A B S T R A C T Accurate end condtons

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

Problem Set 4: Sketch of Solutions

Problem Set 4: Sketch of Solutions Problem Set 4: Sketc of Solutons Informaton Economcs (Ec 55) George Georgads Due n class or by e-mal to quel@bu.edu at :30, Monday, December 8 Problem. Screenng A monopolst can produce a good n dfferent

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010 Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/2/200 Counting Problems Today we describe counting problems and the class #P that they define, and we show that every counting

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Part (a) (Number of collisions) Recall we showed that if we throw m balls in n bins, the average number of. Use Chebyshev s inequality to show that:

Part (a) (Number of collisions) Recall we showed that if we throw m balls in n bins, the average number of. Use Chebyshev s inequality to show that: Problem 1: Practce wth Chebyshev and Chernoff bounds) When usng concentraton bounds to analyze randomzed algorthms, one often has to approach the problem n dfferent ways dependng on the specfc bound beng

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) Our focus: effcency of

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

arxiv: v1 [math.co] 1 Mar 2014

arxiv: v1 [math.co] 1 Mar 2014 Unon-ntersectng set systems Gyula O.H. Katona and Dánel T. Nagy March 4, 014 arxv:1403.0088v1 [math.co] 1 Mar 014 Abstract Three ntersecton theorems are proved. Frst, we determne the sze of the largest

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II PubH 7405: REGRESSION ANALSIS SLR: INFERENCES, Part II We cover te topc of nference n two sessons; te frst sesson focused on nferences concernng te slope and te ntercept; ts s a contnuaton on estmatng

More information

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds.

Lecture Randomized Load Balancing strategies and their analysis. Probability concepts include, counting, the union bound, and Chernoff bounds. U.C. Berkeley CS273: Parallel and Dstrbuted Theory Lecture 1 Professor Satsh Rao August 26, 2010 Lecturer: Satsh Rao Last revsed September 2, 2010 Lecture 1 1 Course Outlne We wll cover a samplng of the

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013

Stanford University Graph Partitioning and Expanders Handout 3 Luca Trevisan May 8, 2013 Stanford Unversty Graph Parttonng and Expanders Handout 3 Luca Trevsan May 8, 03 Lecture 3 In whch we analyze the power method to approxmate egenvalues and egenvectors, and we descrbe some more algorthmc

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Hardness of Learning Halfspaces with Noise

Hardness of Learning Halfspaces with Noise Hardness of Learnng Halfspaces wth Nose Venkatesan Guruswam Prasad Raghavendra Department of Computer Scence and Engneerng Unversty of Washngton Seattle, WA 98195 Abstract Learnng an unknown halfspace

More information

LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS

LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS LECTURE 5: FIBRATIONS AND HOMOTOPY FIBERS In ts lecture we wll ntroduce two mortant classes of mas of saces, namely te Hurewcz fbratons and te more general Serre fbratons, wc are bot obtaned by mosng certan

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques Internatonal Journal of Dfference Equatons ISSN 0973-6069, Volume 12, Number 1, pp. 145 160 2017) ttp://campus.mst.edu/jde A Dscrete Approac to Contnuous Second-Order Boundary Value Problems va Monotone

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Note on quantum counting classes

Note on quantum counting classes Note on quantum countng classes Yaoyun Sh Shengyu Zhang Abstract We defne countng classes #BPP and #BQP as natural extensons of the classcal well-studed one #P to the randomzed and quantum cases. It s

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

On a nonlinear compactness lemma in L p (0, T ; B).

On a nonlinear compactness lemma in L p (0, T ; B). On a nonlnear compactness lemma n L p (, T ; B). Emmanuel Matre Laboratore de Matématques et Applcatons Unversté de Haute-Alsace 4, rue des Frères Lumère 6893 Mulouse E.Matre@ua.fr 3t February 22 Abstract

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/18.401J Lecture 7 Prof. Potr Indyk Data Structures Role of data structures: Encapsulate data Support certan operatons (e.g., INSERT, DELETE, SEARCH) What data structures

More information

Lecture 3 January 31, 2017

Lecture 3 January 31, 2017 CS 224: Advanced Algorthms Sprng 207 Prof. Jelan Nelson Lecture 3 January 3, 207 Scrbe: Saketh Rama Overvew In the last lecture we covered Y-fast tres and Fuson Trees. In ths lecture we start our dscusson

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Low correlation tensor decomposition via entropy maximization

Low correlation tensor decomposition via entropy maximization CS369H: Herarches of Integer Programmng Relaxatons Sprng 2016-2017 Low correlaton tensor decomposton va entropy maxmzaton Lecture and notes by Sam Hopkns Scrbes: James Hong Overvew CS369H). These notes

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights

A note on almost sure behavior of randomly weighted sums of φ-mixing random variables with φ-mixing weights ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 7, Number 2, December 203 Avalable onlne at http://acutm.math.ut.ee A note on almost sure behavor of randomly weghted sums of φ-mxng

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

A new construction of 3-separable matrices via an improved decoding of Macula s construction

A new construction of 3-separable matrices via an improved decoding of Macula s construction Dscrete Optmzaton 5 008 700 704 Contents lsts avalable at ScenceDrect Dscrete Optmzaton journal homepage: wwwelsevercom/locate/dsopt A new constructon of 3-separable matrces va an mproved decodng of Macula

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information