Chapter 5 Geometrical Optics-Paraxial Theory

Size: px
Start display at page:

Download "Chapter 5 Geometrical Optics-Paraxial Theory"

Transcription

1 Chapter 5 Gemetrcal Optcs-Paraxal Thery Hecht by YHLEE;100510; Intrductn An magng system Rays dverge frm S and cnverge t P P s a perfect mage f S An ptcal system n terms f wave: The bject space An ptcal system The mage space Cllectn Reshape f wavefrnt. f wavefrnt. The prncple f reversblty S s a perfect mage f P : Cnjugate pnts A real magng system: A pnt bject An ptcal system Blur spt (Stll an mage) Fnte extent. Dffractn Partal cllectn. The best pssble mage s called dffractn lmted λ 0 Rectlnear prpagatn f the lght : Gemetrcal ptcs N dffractn

2 5. Lenses A refractng devce that reshapes the wavefrnt. Hecht by YHLEE;100510; 5- A. Asphercal Surfaces Asphercs : Lenses and mrrrs wth nn-planar r nn-sphercal surfaces (Dffcult t make) Hyperbldal and ellpsdal refractng surfaces Perfectly parallel beam B. Refractn at Sphercal Surfaces Sphercal surfaces are easer t grnd than aspherc surfaces [p 153] A sphercal surface can have aberratns (Imagng errrs), but they can be crrected t make the system dffractn lmted. Refractn at a sphercal surface Optcal Path Length f a ray S A P : OPL = n l + n l 1 ( ) ( ) l = R + s + R R s + R csϕ ( ) ( ) l = R + s R + R s R csϕ Fermat s prncple dopl b g = 0 dϕ n l F HG n 1 ns ns + = l R l l 1 1 I KJ (1) Nte (1) Ths eq. s exact () Dfferent ϕ Dfferent A. Dfferent s, Dfferent pstn P Dfferent l, l. (NOT magng)

3 Paraxal rays : Rays nearly parallel t the ptcal axs Small ϕ and h csϕ 1, snϕ ϕ Hecht by YHLEE;100510; 5-3 Then (1) becmes n s n n + = s n 1 1 R : Independent f A (Perfect mage at P ) Ths s called Frst-rder ptcs, Paraxal ptcs, r Gaussan ptcs A perfect mage s pssble wth sphercal surfaces Devatns frm the paraxal apprxmatn (Ideal system) Aberratns The frst and secnd fcal lengths The frst fcal length r the bject fcal length n1 n n n1 + = s s R = f, = The secnd fcal length r the mage fcal length n1 n n n1 + = s s R =, = f A vrtual mage : Rays dverge frm t n the mage space A vrtual bject : Rays cnverge tward t n the bject space Nte s < 0, R < 0 Nte s < 0, R < 0 (Sgn cnvectn Table 5.1)

4 C. Thn Lenses Lens Smple lens Cmpund lens Thn lens Thck lens : It cnssts f tw r mre refractng surfaces. It has at least ne curved surface. : One element lens : Many element lens Hecht by YHLEE;100510; 5-4 Cnvex, cnvergng, r pstve lens Cncave, dvergng, r negatve lens Specal lenses Gradent-ndex lens (GRIN), Hlgraphc lens Thn-Lens Equatns At the frst refractng surface : n m nl nl nm + =, s 1 < 0, vrtual mage s1 s1 R1 nl nm nm nl At the secnd surface : + =, R < 0, s = s1 + d s s R Add tw eqs. : n m nm 1 1 nd l + = bnl nmg F I s1 s R1 R bs1 dgs1 A thn lens, d 0, n the ar, n m = F I + = n l s s R R b g : Thn-lens equatn r Lensmaker s frmula HG 1 KJ = : Gaussan lens frmula s s f The fcal lengths : 1 1 = = n l f f R R b g F HG HG 1 I KJ KJ +

5 Parallel rays at dfferent ncdent angles Dfferent fcal pnts n σ centered n C Hecht by YHLEE;100510; 5-5 Fr paraxal rays, σ becmes a plane near the ptcal axs Fcal plane In a lens, parallel paraxal rays fcus nt a secnd fcal plane, r back fcal plane. Smlarly the frst fcal plane r the frnt fcal plane s n the bject space. Fnte Imagery Imgng by a lens Three rays are used (1) A ray thrugh the ptcal center () A ray trugh the frst fcal pnt (3) A ray parallel t the ptcal axs

6 Hecht by YHLEE;100510; 5-6 A thn lens can be replaced by a plane Sgn cnventn y > 0, y < 0 Gaussan lens eq. Frm the trangles AOF and PPF 1 Frm the trangles SSO 1 and PPO 1 Frm (1) and () y y y y = f s f b g (1) s = () s = s s f Newtnan lens eq. Frm the trangles BOF and S SF 1 Frm (1) and (3) xx = f y y = b s f f g (3) x > 0 : The bject s t the left f F x > 0 : The mage s t the rght f F The mage by a thn lens

7 The ray parallel t the ptcal axs determnes the heght f the real mage Hecht by YHLEE;100510; 5-7 Nnlnear transfrmatn alng the axs The bject frm t F The mage frm F t F. Object mves alng the axs Axal change > Heght change Transverse magnfcatn : MT y / y Lngtudnal magnfcatn : M dx / dx = M L T Thn-Lens Cmbnatns [1] Ignre L fr a mment [] Rays 1 and 3 t fnd P 1 [3] Lne frm P 1 t O [4] Put lens L n O N change fr ray 4 But refractn f 3 by L [5] The mage by 3 and 4

8 Hecht by YHLEE;100510; 5-8 Analytc calculatns Analytc calculatns Fr lens L 1 : Fr lens L : = s s f =, where s1 + s = d s s f Cmbne the three equatns f d f s f / bs f s = d f s f / s f s 1, s, s s 1 b g g ( ) ( ) f d f1 = d f + f b b 1 f1 d f d f + f 1 g g : back fcal length : frnt fcal length When d=0, f. f. l = b. f. l. = f1f f + f = + : Effectve Fcal Length f f1 f The ttal transverse magnfcatn M = M M T T1 T

9 5.3 Stps A. Aperture and Feld Stps Aperture stp : It lmts the amunt f lght reachng the mage (The rm f a lens) Hecht by YHLEE;100510; 5-9 Feld stp : It lmts the sze f the mage (The edge f a flm) It determnes the angular extent f the bject, Feld f Vew. B. Entrance and Ext Pupls Entrance pupl : The mage f A.S. frmed tward the bject. Ext pupl : The mage f A.S. frmed tward the mage. The cne f EnP The amunt f lght enterng the system. The cne f ExP The amunt f lght leavng the system.

10 Chef ray Margnal ray : A ray frm an ff-axs bject pnt crssng the center f A.S It passes thrugh the centers f EnP and ExP. : A ray frm the axal bject pnt tuchng the edge f A.S Hecht by YHLEE;100510; 5-10 Vgnettng : Cne f rays becmes narrwer fr ff axs bject pnts. Image fade ut frm n-axs t ff-axs. C. Relatve Aperture and f-number The rradance at the mage ~ D / f f f-number s defned as f /# D : speed f camera lens f/1.4 at 1/500 sec = f/ at 1/50 sec :The same amunt f lght at the flm

11 5.4 Mrrrs Fr hgh reflectn Fr ultrahgh reflectn : Plshed substrate + Al catng + Prtectve catng. : Multlayered delectrc catngs. Hecht by YHLEE;100510; 5-11 A. Planar Mrrrs Same dstance frm mrrr t bject and t mage Inversn va reflectn Twce tlt f the reflected beam B. Asphercal Mrrrs C. Sphercal Mrrrs The same lens maker s frmula = = : f > 0 fr cncave mrrrs, f < 0 fr cnvex mrrrs s s f R

12 5.5 Prsms Applcatns : Beam spltters, Plarzng devces, Interfermeters, Measurng n( ω ). Hecht by YHLEE;100510; 5-1 Man characterstcs : 5.6 Fber Optcs Dspersn. Change n the mage rentatn. Change n the beam prpagatn. 5.7 Optcal Systems A. Eyes (1) A sngle centered lens : Vertebrates. A real mage n retna () A multfaceted cmpund lens : Insects. N real mage n retna Electrcal synthess n the nervus system (3) A smple lensless hle Structure f the Human Eye The eye s almst sphercal (4mm lng, mm acrss) Crnea : The strngest cnvex element n c = (water n w = 133. ). Crystallne lens : A layered fbrus mass Crnea + Crystallne lens (Duble-lens system) Fsh mves the lens tself. Shell fsh cntract r expand the whle eye. Brds f prey change the crnea curvature. Irs Aqueus humr Retna : Aperture stp (Eye clr, mm ~ 8mm) : Thck gel : electrchemcal reactns. Tw knds f phtreceptr cells n retna Rds : Hgh speed, peratn at dm lght, black and whte, sharp mage, Cnes : Lw-speed, peratn at brght lght, clr mage. Operatn wavelength 390 nm ~ 780 nm (310 nm ~ 1050 nm, fr sme peple) Macula Fvea centrals : Center f the retna. Twce as many cnes as rds. : 0.3 mm n da. at the center f macula. Rd-free regn. (The mage f full mn ~0.mm) The perceptn f an mage A cntnuus analyss f the tme-varyng retnal mage by the eye-bran system Fr detaled vew f mage The cntnuus mvement f eye ball Cntnuus shft f the mage acrss the phtreceptrs. N fadng ut f mage.

13 Hecht by YHLEE;100510; 5-13 Accmmdatn (The fne fcusng) The lens Lgaments Clary muscles. Near pnt Far pnt : The clsest pnt the eye can fcus. 7cm fr teens 1 cm fr yung adults 8~40 cm fr mddle-aged 100 cm fr 60 years f age : The mst dstant pnt the eye can fcus. Infnty fr the nrmal eye. B. Eyeglasses Dpter = 1 f : f n m = + a = a1 + a f f1 f The nrmal eye = 58.6a : 19=a frm the crystallne lens, 43=a frm the crnea) The secnd fcal pnt nt n the retna due t crnea, lens r eye ball length Farsghtedness, nearsghtedness, astgmatsm Cmmn cause

14 Nearsghtedness Parallel rays are fcused n frnt f the retna. The far pnt dstance s nt nfnty. Hecht by YHLEE;100510; 5-14 The fcal length f the crrectn lens = The far pnt dstance Mvng the far pnt t nfnty. Example An eye wth a far pnt f m = + f s s f = m (a=-0.5d) =, -, Brng bjects frm nfnty t wthn m

15 Farsghtedness Parallel rays are fcused behnd the retna. The near pnt dstance s lnger than the nrmal (5cm). Hecht by YHLEE;100510; 5-15 Example An eye wth the near pnt f 15cm = + f = 31cm (a=+3.d) f s s 5cm -15cm Astgmatsm Due t an uneven curvature f the crnea.

16 C. The Magnfyng Glass D. Eyepeces r Ocular E. The Cmpund Mcrscpe Hecht by YHLEE;100510; 5-16 F. The Camera The pnhle camera Well defned, undstrted mage ver a wde angular feld and a large range f dstances Great depth f fcus Great depth f feld [Fg ] [p. 17] G. The Telescpe 5.8 Wavefrnt Shapng A. Adaptve Optcs B. Phase Cnjugatn

Introductory Optomechanical Engineering. 2) First order optics

Introductory Optomechanical Engineering. 2) First order optics Introductory Optomechancal Engneerng 2) Frst order optcs Moton of optcal elements affects the optcal performance? 1. by movng the mage 2. hgher order thngs (aberratons) The frst order effects are most

More information

Physics 107 HOMEWORK ASSIGNMENT #20

Physics 107 HOMEWORK ASSIGNMENT #20 Physcs 107 HOMEWORK ASSIGNMENT #0 Cutnell & Jhnsn, 7 th etn Chapter 6: Prblems 5, 7, 74, 104, 114 *5 Cncept Smulatn 6.4 prves the ptn f explrng the ray agram that apples t ths prblem. The stance between

More information

Ch 35 Images. Eunil Won Department of Physics Korea University. Fundamentals of Physics by Eunil Won, Korea University 1

Ch 35 Images. Eunil Won Department of Physics Korea University. Fundamentals of Physics by Eunil Won, Korea University 1 Ch 35 Images Eunl Won Department of Physcs Korea Unversty Fundamentals of Physcs by Eunl Won, Korea Unversty We wll cover... Plane mrrors Thn Lenses Three proofs Sphercal mrrors Sphercal refrtng Surfes

More information

Answers to the Conceptual Questions

Answers to the Conceptual Questions Chapter 18 Reractn Lght 219 Resurce CD. They are rganzed by textbk chapter, and each anmatn cmes wthn a shell that prvdes nrmatn n hw t use the anmatn, explratn actvtes, and a shrt quz. Answers t the Cnceptual

More information

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas Sectn : Detaled Slutns f Wrd Prblems Unt : Slvng Wrd Prblems by Mdelng wth Frmulas Example : The factry nvce fr a mnvan shws that the dealer pad $,5 fr the vehcle. If the stcker prce f the van s $5,, hw

More information

Geometrical Optics Mirrors and Prisms

Geometrical Optics Mirrors and Prisms Phy 322 Lecture 4 Chapter 5 Geometrcal Optc Mrror and Prm Optcal bench http://webphyc.davdon.edu/applet/optc4/default.html Mrror Ancent bronze mrror Hubble telecope mrror Lqud mercury mrror Planar mrror

More information

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

V. Electrostatics Lecture 27a: Diffuse charge at electrodes V. Electrstatcs Lecture 27a: Dffuse charge at electrdes Ntes by MIT tudent We have talked abut the electrc duble structures and crrespndng mdels descrbng the n and ptental dstrbutn n the duble layer. Nw

More information

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Problem 1. Refracting Surface (Modified from Pedrotti 2-2) .70 Optc Hmewrk # February 8, 04 Prblem. Reractng Surace (Me rm Pertt -) Part (a) Fermat prncple requre that every ray that emanate rm the bject an pae thrugh the mage pnt mut be chrnu (.e., have equal

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California Vlume Change fr a Unaxal Stress Istrpc lastcty n 3D Istrpc = same n all drectns The cmplete stress-stran relatns fr an strpc elastc Stresses actng n a dfferental vlume element sld n 3D: (.e., a generalzed

More information

Introduction to Electronic circuits.

Introduction to Electronic circuits. Intrductn t Electrnc crcuts. Passve and Actve crcut elements. Capactrs, esstrs and Inductrs n AC crcuts. Vltage and current dvders. Vltage and current surces. Amplfers, and ther transfer characterstc.

More information

sin sin Reminder, repetition Image formation by simple curved surface (sphere with radius r): The power (refractive strength):

sin sin Reminder, repetition Image formation by simple curved surface (sphere with radius r): The power (refractive strength): Reminder, repetitin Image frmatin by simple curved surface (sphere with radius r): sin sin n n The pwer (refractive strength): n n n n i r D Applicatin: fr the human eye e.g. the pwer f crnea medium r

More information

Microfacet models for reflection and refraction

Microfacet models for reflection and refraction Mcrfacet mdels fr reflectn and refractn Steve Marschner Crnell Unversty CS 6630 Sprng 2012 (based n presentatn fr Walter, Marschner, L, and Trrance EGSR 07) Mcrfacet scatterng mdels Rugh delectrc surface

More information

Analysis of ellipsometric data obtained from curved surfaces. J. Křepelka

Analysis of ellipsometric data obtained from curved surfaces. J. Křepelka Analyss f ellpsmetrc data btaned frm curved surfaces J. Křepelka Jnt Labratry f Optcs f Palacky Unversty and Insttute f Physcs f Academy f Scences f the Czech Republc, 7. lstpadu 5a, 77 7 Olmuc, Czech

More information

Microfacet models for reflection and refraction

Microfacet models for reflection and refraction Mcrfacet mdels fr reflectn and refractn Steve Marschner Crnell Unversty CS 5625 Sprng 2016 (based n presentatn fr Walter, Marschner, L, and Trrance EGSR 07) Mcrfacet scatterng mdels Rugh delectrc surface

More information

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F.

1. An incident ray from the object to the mirror, parallel to the principal axis and then reflected through the focal point F. Hmewrk- Capter 25 4. REASONING Te bject stance ( = cm) s srter tan te cal lengt ( = 8 cm) te mrrr, s we expect te mage t be vrtual, appearng ben te mrrr. Takng Fgure 25.8a as ur mel, we wll trace ut: tree

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Bsystems Mdeln and Cntrl Cell Electrcal Actvty: In Mvement acrss Cell Membrane and Membrane Ptental Dr. Zv Rth (FAU) 1 References Hppensteadt-Peskn, Ch. 3 Dr. Rbert Farley s lecture ntes Inc Equlbra

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

ENGI 4421 Probability & Statistics

ENGI 4421 Probability & Statistics Lecture Ntes fr ENGI 441 Prbablty & Statstcs by Dr. G.H. Gerge Asscate Prfessr, Faculty f Engneerng and Appled Scence Seventh Edtn, reprnted 018 Sprng http://www.engr.mun.ca/~ggerge/441/ Table f Cntents

More information

Beam Expander Basics: Not All Spots Are Created Equal

Beam Expander Basics: Not All Spots Are Created Equal EARNING UNERSTANING INTROUCING APPYING Beam Expander Basics: Nt All Spts Are Created Equal A P P I C A T I O N N O T E S BEAM EXPANERS A laser beam expander is designed t increase the diameter f a cllimated

More information

Chapter 3, Solution 1C.

Chapter 3, Solution 1C. COSMOS: Cmplete Onlne Slutns Manual Organzatn System Chapter 3, Slutn C. (a If the lateral surfaces f the rd are nsulated, the heat transfer surface area f the cylndrcal rd s the bttm r the tp surface

More information

Experiment 6: Constructing a Microscope

Experiment 6: Constructing a Microscope Experment 6: Cnstructng a Mcrscpe Pre-lab Preparatn: Revew the llwng sectns rm the Yung an reeman textbk page reerences gven r th etn: Sectn 3.: Thn Lenses, p. 7 8 Sectn 3.7: The Magner, p. 89 90 Sectn

More information

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER 70 CHAPTER 3 ANALYSIS OF KY BOOST CONERTER 3.1 Intrductn The KY Bst Cnverter s a recent nventn made by K.I.Hwu et. al., (2007), (2009a), (2009b), (2009c), (2010) n the nn-slated DC DC cnverter segment,

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune Chapter 7 Flud Systems and Thermal Systems 7.1 INTODUCTION A. Bazune A flud system uses ne r mre fluds t acheve ts purpse. Dampers and shck absrbers are eamples f flud systems because they depend n the

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _

_J _J J J J J J J J _. 7 particles in the blue state; 3 particles in the red state: 720 configurations _J J J _J J J J J J J J _ Dsrder and Suppse I have 10 partcles that can be n ne f tw states ether the blue state r the red state. Hw many dfferent ways can we arrange thse partcles amng the states? All partcles n the blue state:

More information

Chem 204A, Fall 2004, Mid-term (II)

Chem 204A, Fall 2004, Mid-term (II) Frst tw letters f yur last name Last ame Frst ame McGll ID Chem 204A, Fall 2004, Md-term (II) Read these nstructns carefully befre yu start tal me: 2 hurs 50 mnutes (6:05 PM 8:55 PM) 1. hs exam has ttal

More information

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power EE 204 Lecture 25 Mre Examples n Pwer Factr and the Reactve Pwer The pwer factr has been defned n the prevus lecture wth an example n pwer factr calculatn. We present tw mre examples n ths lecture. Example

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

WYSE Academic Challenge 2004 Sectional Physics Solution Set

WYSE Academic Challenge 2004 Sectional Physics Solution Set WYSE Acadec Challenge 004 Sectnal Physcs Slutn Set. Answer: e. The axu pssble statc rctn r ths stuatn wuld be: ax µ sn µ sg (0.600)(40.0N) 4.0N. Snce yur pushng rce s less than the axu pssble rctnal rce,

More information

Feedback Principle :-

Feedback Principle :- Feedback Prncple : Feedback amplfer s that n whch a part f the utput f the basc amplfer s returned back t the nput termnal and mxed up wth the nternal nput sgnal. The sub netwrks f feedback amplfer are:

More information

Analytical Modeling of Natural Convection in Horizontal Annuli

Analytical Modeling of Natural Convection in Horizontal Annuli Analytcal Mdelng f Natural Cnvectn n Hrzntal Annul Peter Teertstra, M. Mchael Yvanvch, J. Rchard Culham Mcrelectrncs Heat Transfer Labratry Department f Mechancal Engneerng Unversty f Waterl Waterl, Ontar,

More information

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function Mdellng Physcal Systems The Transer Functn Derental Equatns U Plant Y In the plant shwn, the nput u aects the respnse the utput y. In general, the dynamcs ths respnse can be descrbed by a derental equatn

More information

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1

Lecture 12. Heat Exchangers. Heat Exchangers Chee 318 1 Lecture 2 Heat Exchangers Heat Exchangers Chee 38 Heat Exchangers A heat exchanger s used t exchange heat between tw fluds f dfferent temperatures whch are separated by a sld wall. Heat exchangers are

More information

Chapter 6 : Gibbs Free Energy

Chapter 6 : Gibbs Free Energy Wnter 01 Chem 54: ntrductry hermdynamcs Chapter 6 : Gbbs Free Energy... 64 Defntn f G, A... 64 Mawell Relatns... 65 Gbbs Free Energy G(,) (ure substances)... 67 Gbbs Free Energy fr Mtures... 68 ΔG f deal

More information

Photgraphic camera. How it works? Take a simple converging lens:

Photgraphic camera. How it works? Take a simple converging lens: Phtgraphic camera. Hw it wrks? Take a simple cnverging lens: Image real, inverted, and much smaller than the bject Lens Object usually at a distance much, much larger rm the lens than its cal length T

More information

Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. (n.b. for now, we do not require that k. vectors as a k 1 matrix: ( )

Fall 2010 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. (n.b. for now, we do not require that k. vectors as a k 1 matrix: ( ) Fall 00 Analyss f Epermental Measrements B. Esensten/rev. S. Errede Let s nvestgate the effect f a change f varables n the real & symmetrc cvarance matr aa the varance matr aa the errr matr V [ ] ( )(

More information

Answers to the Conceptual Questions

Answers to the Conceptual Questions hapter 17 Lght 205 shne re laser lght nt a tube f REST tthpaste. The re seems t sappear. Next we use ur clr aer. It s a bx cntanng lght bulbs fr each f the three prmary clrs behn a translucent screen.

More information

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY Name: Perid: Date: BONDING NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback PHYSICS 536 Experment : Applcatns f the Glden Rules fr Negatve Feedback The purpse f ths experment s t llustrate the glden rules f negatve feedback fr a varety f crcuts. These cncepts permt yu t create

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenmena Phsics 5c Lecture Gemetrical Optics (H&L Chapter ) Tw Mre Lectures T G!! Will inish gemetrical ptics tda! Next week will cver less serius material! Laser and hlgraph! Quantum Mechanics Hw

More information

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2

Massachusetts Institute of Technology 2.71/2.710 Optics Spring 2014 Solution for HW2 Mdiied rm Pedrtti 8-9 a) The schematic the system is given belw b) Using matrix methd rm pint A t B, A B M 2lens D 0 0 d d d 0 d d 2 2 2 2 0 0 5 5 2 0 3 0 0 20 2 Frm the abve matrix, we see that A and

More information

Shell Stiffness for Diffe ent Modes

Shell Stiffness for Diffe ent Modes Engneerng Mem N 28 February 0 979 SUGGESTONS FOR THE DEFORMABLE SUBREFLECTOR Sebastan vn Herner Observatns wth the present expermental versn (Engneerng Dv nternal Reprt 09 July 978) have shwn that a defrmable

More information

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o? Crcuts Op-Amp ENGG1015 1 st Semester, 01 Interactn f Crcut Elements Crcut desgn s cmplcated by nteractns amng the elements. Addng an element changes vltages & currents thrughut crcut. Example: clsng a

More information

Exploiting vector space properties for the global optimization of process networks

Exploiting vector space properties for the global optimization of process networks Exptng vectr space prpertes fr the gbal ptmzatn f prcess netwrks Juan ab Ruz Ignac Grssmann Enterprse Wde Optmzatn Meetng March 00 Mtvatn - The ptmzatn f prcess netwrks s ne f the mst frequent prblems

More information

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with Schl f Aerspace Chemcal D: Mtvatn Prevus D Analyss cnsdered systems where cmpstn f flud was frzen fxed chemcal cmpstn Chemcally eactng Flw but there are numerus stuatns n prpulsn systems where chemcal

More information

Thermodynamics of Materials

Thermodynamics of Materials Thermdynamcs f Materals 14th Lecture 007. 4. 8 (Mnday) FUGACITY dg = Vd SdT dg = Vd at cnstant T Fr an deal gas dg = (RT/)d = RT dln Ths s true fr deal gases nly, but t wuld be nce t have a smlar frm fr

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh Frst CIRCLE YOUR DIVISION: Dv. 1 (9:30 am) Dv. (11:30 am) Dv. 3 (:30 m) Prf. Ruan Prf. Na Mr. Sngh Schl f Mechancal Engneerng Purdue Unversty ME315 Heat and Mass ransfer Eam #3 Wednesday Nvember 17 010

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Conservation of Energy

Conservation of Energy Cnservatn f Energy Equpment DataStud, ruler 2 meters lng, 6 n ruler, heavy duty bench clamp at crner f lab bench, 90 cm rd clamped vertcally t bench clamp, 2 duble clamps, 40 cm rd clamped hrzntally t

More information

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions

SAFE HANDS & IIT-ian's PACE EDT-04 (JEE) Solutions ED- (JEE) Slutins Answer : Optin () ass f the remved part will be / I Answer : Optin () r L m (u csθ) (H) Answer : Optin () P 5 rad/s ms - because f translatin ωr ms - because f rtatin Cnsider a thin shell

More information

Computer Simulations of Parallel-to-Series Conversion in Solid State Frame Transfer Image Sensors. J. Bisschop

Computer Simulations of Parallel-to-Series Conversion in Solid State Frame Transfer Image Sensors. J. Bisschop 207 SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 3 Edted by G. Baccaran, M. Rudan - Bologna (Italy) September 26-28,988 - Tecnoprnt Computer Smulatons of Parallel-to-Seres Converson n Sold State

More information

Moveout approximation for horizontal transversely isotropic and vertical transversely isotropic layered medium. Part II: effective model

Moveout approximation for horizontal transversely isotropic and vertical transversely isotropic layered medium. Part II: effective model Gephyscal Prspectng 010 58 599 617 d: 10.1111/j.1365-478.009.00857.x Mveut apprxmatn fr hrzntal transsely strpc and tcal transsely strpc layered medum. Part II: ectve mdel Zv Kren Igr Ravve and Rnt Levy

More information

Supplementary Materials for

Supplementary Materials for advances.scencemag.org/cg/content/full/2/7/e1600304/dc1 Supplementary Materals for Interface-drven topologcal Hall effect n SrRuO3-SrIrO3 blayer Jobu Matsuno, Naok Ogawa, Kenj Yasuda, Fumtaka Kagawa, Wataru

More information

Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes

Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes Kahu Lu* 1, Chenha Jn* 1, Xapng Hng 1, Jhn Km 1, Alex Zettl 1,2, Enge Wang 3, Feng Wang 1,2 Van der Waals-cupled electrnc states n ncmmensurate duble-walled carbn nantubes S1. Smulated absrptn spectra

More information

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31

Big Data Analytics! Special Topics for Computer Science CSE CSE Mar 31 Bg Data Analytcs! Specal Tpcs fr Cmputer Scence CSE 4095-001 CSE 5095-005! Mar 31 Fe Wang Asscate Prfessr Department f Cmputer Scence and Engneerng fe_wang@ucnn.edu Intrductn t Deep Learnng Perceptrn In

More information

Grade 12 Physics Exam Review

Grade 12 Physics Exam Review Grade 12 Physcs Exam Revew 1. A 40 kg wagn s pulled wth an appled frce f 50 N [E 37 degrees abve the hrzntal. The wagn mves 8 m [E] hrzntally whle 5 N f frctn act. Fnd the wrk dne n the wagn by the...

More information

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES Mhammadreza Dlatan Alreza Jallan Department f Electrcal Engneerng, Iran Unversty f scence & Technlgy (IUST) e-mal:

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

The APS Transfer Line from Linac to Injector Synchrotron.

The APS Transfer Line from Linac to Injector Synchrotron. -------------..., The submtted mclnu;..crpt has been authred by a cntractr f the U. S. Gvernment under cntract N. W 31 19-ENG 38. Accrdngly, the U. S. Gvernment retans a nnexclusve, ryalty-free lcense

More information

Microlens quality assessment using the Extended Nijboer-Zernike diffraction theory

Microlens quality assessment using the Extended Nijboer-Zernike diffraction theory Mcrolens qualty assessment usng the Extended Njboer-Zernke dracton theory J.J.M. Braat, S. van Haver, S.F. Perera Delt Unversty o Technology Department o Imagng Scence and Technology Optcs Research Group

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Physic 231 Lecture 33

Physic 231 Lecture 33 Physc 231 Lecture 33 Man pnts f tday s lecture: eat and heat capacty: Q cm Phase transtns and latent heat: Q Lm ( ) eat flw Q k 2 1 t L Examples f heat cnductvty, R values fr nsulatrs Cnvectn R L / k Radatn

More information

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J. Waeshappg Crcuts and Data Cnerters Lessn #7 Cmparatrs and Schmtt Trggers Sectn. BME 7 Electrncs II 0 Waeshappg Crcuts and Data Cnerters Cmparatrs and Schmtt Trggers Astable Multbratrs and Tmers ectfers,

More information

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud CHPTER 3: FEEDBCK Dr. Wan Mahan Hafzah bnt Wan Mahmud Feedback ntrductn Types f Feedback dvantages, Characterstcs and effect f Negatve Feedback mplfers Crcuts wth negatve feedback Pstve feedback and Oscllatr

More information

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil

XXIX CILAMCE November 4 th to 7 th, 2008 Maceió - Brazil XXIX CILAMCE Nvember 4 th t 7 th, 8 Maceó - Bral ELECTROMAGNETIC SCATTERING PROBLEM SOLVED BY BOTH NODAL AND GALERKIN FEM-BEM APPROACHES M. M. Afns M. O. Schreder T. A. S. Olvera marcmatas@des.cefetmg.br

More information

Semester 1 Honors Chemistry Notebook (unit 1)

Semester 1 Honors Chemistry Notebook (unit 1) Semester 1 Hnrs Chemistry Ntebk (unit 1) Basic infrmatin Chemistry: study f matter Matter: has mass and takes up space Organized by using the peridic table cntains elements Prtns, neutrns, and electrns

More information

Supplementary materials for Self-induced back-action optical pulling force

Supplementary materials for Self-induced back-action optical pulling force Supplementar materals for Self-nduced back-acton optcal pullng force Tongtong Zhu, Yongn Cao, Ln Wang, Zhongquan Ne 2, Tun Cao 3, Fangku Sun, Zehu Jang, Manuel Neto-Vespernas 4, Yongmn Lu 5, Cheng-We Qu

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Lecture Topics VMSC Prof. Dr.-Ing. habil. Hermann Lödding Prof. Dr.-Ing. Wolfgang Hintze. PD Dr.-Ing. habil.

Lecture Topics VMSC Prof. Dr.-Ing. habil. Hermann Lödding Prof. Dr.-Ing. Wolfgang Hintze. PD Dr.-Ing. habil. Lecture Topcs 1. Introducton 2. Sensor Gudes Robots / Machnes 3. Motvaton Model Calbraton 4. 3D Vdeo Metrc (Geometrcal Camera Model) 5. Grey Level Pcture Processng for Poston Measurement 6. Lght and Percepton

More information

Spring 2002 Lecture #17

Spring 2002 Lecture #17 1443-51 Sprng 22 Lecture #17 r. Jaehn Yu 1. Cndtns fr Equlbrum 2. Center f Gravty 3. Elastc Prpertes f Slds Yung s dulus Shear dulus ulk dulus Tday s Hmewrk Assgnment s the Hmewrk #8!!! 2 nd term eam n

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that

Problem 1: To prove that under the assumptions at hand, the group velocity of an EM wave is less than c, I am going to show that PHY 387 K. Solutons for problem set #7. Problem 1: To prove that under the assumptons at hand, the group velocty of an EM wave s less than c, I am gong to show that (a) v group < v phase, and (b) v group

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Introduction to Spacetime Geometry

Introduction to Spacetime Geometry Intrductin t Spacetime Gemetry Let s start with a review f a basic feature f Euclidean gemetry, the Pythagrean therem. In a twdimensinal crdinate system we can relate the length f a line segment t the

More information

Tubular Flow with Laminar Flow (CHE 512) M.P. Dudukovic Chemical Reaction Engineering Laboratory (CREL), Washington University, St.

Tubular Flow with Laminar Flow (CHE 512) M.P. Dudukovic Chemical Reaction Engineering Laboratory (CREL), Washington University, St. Tubular Flw wth Lamnar Flw (CHE 5) M.P. Dudukvc Chemcal Reactn Engneerng Labratry (CREL), Washngtn Unversty, St. Lus, MO 4. TUBULAR REACTORS WITH LAMINAR FLOW Tubular reactrs n whch hmgeneus reactns are

More information

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Transient Conduction: Spatial Effects and the Role of Analytical Solutions Transent Cnductn: Spatal Effects and the Rle f Analytcal Slutns Slutn t the Heat Equatn fr a Plane Wall wth Symmetrcal Cnvectn Cndtns If the lumped capactance apprxmatn can nt be made, cnsderatn must be

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada

Department of Civil Engineering & Applied Mechanics McGill University, Montreal, Quebec Canada Department f Cvl Engneerng & Appled Mechancs McGll Unversty, Mntreal, Quebec Canada CIVE 90 THEMODYNAMICS & HEAT TANSFE Assgnment #6 SOUTIONS. Cnsder a.-m hgh and -m-wde duble-pane wndw cnsstng f tw 3-mmthck

More information

RECEIVED. Negative Transverse Impedance

RECEIVED. Negative Transverse Impedance RECEVED SEP 2 3 996 OSTt > LS- 4 O C a f L W. Chou March 2, 989 (Rev. June 2, 9S9) Negatve Transverse mpedance ntroducton n Ref. ( we report an observaton that the horzontal and the vertcal loss factors

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

4) What is the magnitude of the net electric field at the center of the square?

4) What is the magnitude of the net electric field at the center of the square? Fur charges are n the fur crners f a square. Q = +5C, Q = -0C, Q 3 = +5C, Q 4 = -0C. The side length f each side f the square is 3 m. Q Q ) What is the directin f the frce n Q due t ONLY Q 4? (a) up (b)

More information

Biology 12. Nervous System. Figure 1 Structure of a Neuron

Biology 12. Nervous System. Figure 1 Structure of a Neuron Maintaining Dynamic Equilibrium II Hmestasis is the state f maintaining an internal balance despite changes that may ccur in the external envirnment. Hmestasis is perfrmed by individual cells and whle

More information

Note on the Electron EDM

Note on the Electron EDM Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The well-known relatvstc nteracton of the electron

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Ghost Mode. For Bass Flute, Violin, and Soprano

Ghost Mode. For Bass Flute, Violin, and Soprano Ghst Mde Fr Bass Flute, Vln, and Spran Chace Wall 2 Perfrmance Ntes Ths pece has been cnstructed wth textural balance prmarly n mnd, s extra care shuld be taken t ensure that the dynamc and tmbral shape

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

Hubble s Law PHYS 1301

Hubble s Law PHYS 1301 1 PHYS 1301 Hubble s Law Why: The lab will verify Hubble s law fr the expansin f the universe which is ne f the imprtant cnsequences f general relativity. What: Frm measurements f the angular size and

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

AP Physics Laboratory #4.1: Projectile Launcher

AP Physics Laboratory #4.1: Projectile Launcher AP Physics Labratry #4.1: Prjectile Launcher Name: Date: Lab Partners: EQUIPMENT NEEDED PASCO Prjectile Launcher, Timer, Phtgates, Time f Flight Accessry PURPOSE The purpse f this Labratry is t use the

More information