3 Examples Involving Small Galois Groups

Size: px
Start display at page:

Download "3 Examples Involving Small Galois Groups"

Transcription

1 3 Examples Involving Small Galois Groups In this section we work out some of the details from recent homework problems and some additional results for Galois groups of orders 4 and 8. Throughout this section we will assume all fields have characteristic other than 2. Proposition 3.1. Let L/F be an extension of degree 4. Then L = F (α) where α is a root of a polynomial of the form x 4 + ax 2 + b if and only if L contains a quadratic intermediate field. Proof. If L = F (α) where α is a root of the given equation, then α = ± a± a 2 4b, and hence F (α 2 )=F( a 2 2 4b). This must be a quadratic extension of F,orelse F (α) would be of degree 2 over F, not 4. Conversely, if L/F is an extension of degree 4 having a quadratic intermediate field K = F ( d), then L is a quadratic extension of K, and so necessarily L = K( β),β K. Then β = r + s d K, and so L = F (α) where α = β. Then α is arootofx 4 2rx 2 +r 2 s 2 d, which is a polynomial of the required form. Proposition 3.2. Let f(x) =x 4 + ax 2 + b F [x]. Let±α, ±β be the roots of f(x) where α = a+ a 2 4b. Then f(x) is irreducible over F if and only if 2 α 2,α± β/ F. Proof. We have f(x) =(x α)(x + α)(x β)(x + β). If f(x) isreducible, then it factors as two quadratics (possibly further reducible). Since (x + α) must occur in one of the quadratic factors, there are three possibilities for the factor in which it occurs: (x + α)(x α) =x 2 α 2, (x + α)(x + β) = x 2 +(α + β)x + αβ, and (x + α)(x β) =x 2 +(α β)x αβ. Since each of these factors would need to be in F [x], we see that if f(x) factors, then at least one of α 2,α+ β,α β must be in F. Conversely, if α 2 F, then f(x) =(x α 2 )(x β 2 ) gives a factorization in F [x] (and so β 2 f(x) also). If α ± β F, then (α 2 + β 2 ± 2αβ) F. Now α 2 + β 2 = a, so2αβ F, and so αβ F. Then x 2 +(α ± β)x ± αβ F [x], so again f(x) isreducible over F. Theorem 3.3. Let f(x) be as above, and assume f is irreducible over F. Let G = Gal(f(x)) be the Galois group of f over F. Then 1. G = V, the Klein four-group, if and only if b F 2,ifand only if αβ F. 14

2 2. G = C, the cyclic group of order 4, ifand only if b(a 2 4b) is a square in F,ifand only if F (αβ) =F (α 2 ). 3. G = D 8, the dihedral group of order 8, ifand only if b and b(a 2 4b) are not squares in F,ifand only if αβ / F (α 2 ). Proof. First notice that the Galois closure of F (α) isf (α, β), but β 2 F (α), so [F (α, β) :F ]=4or8. Now D = 4αβ(α 2 β 2 ) 2 = 4 b[(α 2 + β 2 ) 2 4α 2 β 2 ]= 4 b(a 2 4b), so D F if and only if b = αβ F. But D F = G A4, and the only possible group of order 4 inside A 4 is V. If, however, D/ F, then G A 4, and G = V. This proves (1). Now assume b/ F. Note that a 2 4b / F or else α 2 F, contradicting the irreducibility of f(x). Then since G = V, the only possibilities for G are C or D 8.Wehave G = C G has a unique quadratic intermediate field. This happens if and only if F ( b)=f (αβ) =F (α 2 )=F( a 2 4b), if and only if b(a 2 4b) F 2. This leaves G = D 8 under the conditions not yet considered, specifically when b = αβ / F (α 2 ). The following proposition concerning the cyclic group of order 4 C 4 can be derived fairly easily from our analysis above. Proposition 3.4. The group C 4 is realizable as a Galois group over the field F if and only if F contains an element ɛ which is not a square in F, but is a sum of two squares in F.AnyC 4 -extension can be realized via a tower of quadratic extensions F F ( ɛ) F ( a + b ɛ), where a 2 ɛb 2 = ɛz 2 for some z F. The minimal polynomial of this extension is x 4 2ax 2 +a 2 ɛb 2. If f(x) =x 4 + cx 2 + d is an irreducible polynomial over F, then Gal(f) = C 4 if and only if d/ F 2, but d(c 2 4d) F 2. The field F ( ɛ) can be embedded in a cyclic extension of degree 4 precisely when ɛ/ F 2 and ɛ is a sum of two squares in F. A field which fails to have C 4 as a Galois group, i.e. a field in which every sum of squares is in fact a square, is called a pythagorean field. Pythagorean fields are of considerable interest in quadratic form theory. This next result also belongs to the collection of Galois-theoretic folklore. We provide an outline of the proof here. Theorem 3.5. Let a, b F, independent mod F 2. There exists a Galois extension L/F with Gal(L/F ) = D, F F ( a, b) L, and with 15

3 Gal(L/F ( ab)) = C, ifand only if the equation ax 2 +by 2 = z 2 has a nontrivial solution over F.Any such extension can be written as F ( a, b, z + x a), where z 2 ax 2 = by 2 for some y F. Proof. Suppose first that L is a D-extension. Then there are five intermediate subfields of codimension 2 in L. Let K be one of them such that b/ K. Then K = F ( a, t) for some t F ( a), and it follows that L = K( b)= F ( a, b, t). Since L is a C-extension of F ( ab) containing F ( ab, b)as its quadratic intermediate field, we see from the results above that t = z+y b for some z,y F ( ab) where the norm of t over F ( ab),z 2 by 2,isequal to bx 2 for some x F ( ab). Since also t F ( a), it follows that this is also the norm of t over F, and so N F ( a)/f (t) b F ( ab) 2 F = bf 2 af 2.If N(t) af 2,wewould have F ( a, t)being a C-extension of F, which is impossible as C is not a quotient of D. ThusN(t) bf 2, and so z 2 ax 2 = by 2 has a nontrivial solution in F,asclaimed. Conversely, suppose t F ( a)issuch that N(t) =by 2 y F. Let L = F ( a, b, t). One can verify that L is indeed Galois over F, that Gal(L/F ( ab) = C, and letting τ be agenerator of Gal(L/F ( ab)) and σ the generator of Gal(L/F ( a, t)), it can be checked that σ, τ together generate Gal(L/F ), and that σ, τ = D. The group Q has received extensive attention in the literature. The complete description of when a given biquadratic extension F ( a, b)off can be embedded in an extension with Galois group Q was first given by Witt(1936). We remark that there is a misprint in the description of the extensions realizing Q in Witt s paper: the summand 1 was left out of the expression under the square root. Some of the terminology in the statement of the following theorem will be unfamiliar. I will explain, as time allows, in class. Theorem 3.6. (Witt, 1936) Let F be afield with a, b F, independent mod F 2. The following conditions are equivalent. 1. There exists a Galois extension L of F, with Gal(L/F ) = Q, and such that F ( a, b) is the unique biquadratic intermediate field between F and L. 2. (a, b)(a, a)(b, b) =1 Br(F ). 3. The quadratic form ax bx ab x2 3 is equivalent to the quadratic form y 2 1 +y 2 2 +y 2 3 under a change of variables x i = p ij y j, with det(p ij )=1. 16

4 The extensions realizing Q are given by the fields ( ( ) ) 1 F r 1+p 11 a + p22 b + p33, ab with r F. The obstruction to the embedding of the biquadratic extension F ( a, b) in a degree 8 extension with quaternion Galois group is the class of (a, b)(ab, 1) = ( a, b)( 1, 1) Br 2 (F ). Inparticular, if F ( a) embeds in a Q-extension, then a is a sum of three squares in F. However, the converse is not true. We conclude with a couple of results concerning Galois closures of Galois p-extensions of Galois extensions. Proposition 3.7. Let p a prime, F a field. Let K/F be a p-extension (i.e. a Galois extension with Gal(K/F) a p-group). Let L be a p-extension of K. Then the Galois closure of L over F is a p-extension of F. Proof. Since L/K is separable and K/F is separable, it follows that L/F is separable. It is also finite, and so L = F (θ) for some θ L. Let f(x) be the minimal polynomial for θ over F, and let the roots be θ = θ 1,θ 2,...,θ n. Then if M is the Galois closure of L/F, we have M = F (θ 1,...,θ n ) = K(θ 1,...,θ n ). Since K/F is Galois, it must be that K F (θ i ) i. Wewill be done if we can show that each L i = F (θ i )isap-extension of K, for then taking successive composites and using Proposition 1.3, we see M = L 1 L 2 L k is Galois over K and is of degree a power of p over K, hence is a p-extension of F. Thus the key is to show that L i is Galois over K. Since each L i = L over F, the degree over K is necessarily a power of p. Let G = Gal(M/F), N = Gal(M/K), H i = Gal(M/L i ). Then H = H 1 N and N G, since L/K and K/F are Galois. We need to see that H i N. Inother words, we need to see that for all τ N,τH i τ 1 = H i. We know there exists σ G such that L i = σ(l), and thus H i = σhσ 1. Then τh i τ 1 = τσh(τσ) 1. Since N G, wehave Nσ = σn σ G, sothere exists τ N such that τσ = σ τ. Then τh i τ 1 = σ τh τ 1 σ 1 = σhσ 1 = H i, since H N. Thus H i N as desired. Perhaps a simpler proof that L i is Galois was provided in a student s solution: Let g(x) bethe minimal polynomial for θ over K. Then since L i = σ(l) for some σ G, the minimal polynomial for θ i = σ(θ) over K is σ(g(x)). 17

5 (Notice that σ(g) K[x] because K/F is Galois and hence σ(k) = K.) If θ = α 1,α 2,...,α r L are the roots of g(x), then σ(α 1 ),σ(α 2 ),...,σ(α r ) σ(l) =L i are the roots of σ(g). Then L i is the splitting field for σ(g) over K, just as L is the splitting field for g, and hence L i is Galois over K. Proposition 3.8. Let K/F be agalois extension,and let L = K( β) be a quadratic extension of K, where β K \ K 2. Then L/F is Galois if and only if βσ(β) K 2 σ Gal(K/F). Proof. Let f(x) = n i=1 a ix i be the minimal polynomial for β over F,son = [F (β) :F ]. Then β satisfies g(x) = a i x 2i, and by degree considerations this must be the minimal polynomial for β over F. The roots of f(x) are {σ(β) σ Gal(K/F)} and there are n distinct such roots. Then clearly {± σ(β) σ Gal(K/F)} gives the 2n distinct roots of g(x). We have L/F Galois if and only if L contains all the roots of g(x), i.e. if and only if K( σ(β)) = K( β) for all σ Gal(K/F). But this happens if and only if β σ(β) K, ifand only if βσ(β) K 2. 18

Math 121 Homework 6 Solutions

Math 121 Homework 6 Solutions Math 11 Homework 6 Solutions Problem 14. # 17. Let K/F be any finite extension and let α K. Let L be a Galois extension of F containing K and let H Gal(L/F ) be the subgroup corresponding to K. Define

More information

Homework 4 Algebra. Joshua Ruiter. February 21, 2018

Homework 4 Algebra. Joshua Ruiter. February 21, 2018 Homework 4 Algebra Joshua Ruiter February 21, 2018 Chapter V Proposition 0.1 (Exercise 20a). Let F L be a field extension and let x L be transcendental over F. Let K F be an intermediate field satisfying

More information

FIELD THEORY. Contents

FIELD THEORY. Contents FIELD THEORY MATH 552 Contents 1. Algebraic Extensions 1 1.1. Finite and Algebraic Extensions 1 1.2. Algebraic Closure 5 1.3. Splitting Fields 7 1.4. Separable Extensions 8 1.5. Inseparable Extensions

More information

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015 Galois Theory TCU Graduate Student Seminar George Gilbert October 201 The coefficients of a polynomial are symmetric functions of the roots {α i }: fx) = x n s 1 x n 1 + s 2 x n 2 + + 1) n s n, where s

More information

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition). Bryan Félix Abril 12, 2017 Section 14.2 Exercise 3. Determine the Galois group of (x 2 2)(x 2 3)(x 2 5). Determine all the subfields

More information

Page Points Possible Points. Total 200

Page Points Possible Points. Total 200 Instructions: 1. The point value of each exercise occurs adjacent to the problem. 2. No books or notes or calculators are allowed. Page Points Possible Points 2 20 3 20 4 18 5 18 6 24 7 18 8 24 9 20 10

More information

ALGEBRA QUALIFYING EXAM SPRING 2012

ALGEBRA QUALIFYING EXAM SPRING 2012 ALGEBRA QUALIFYING EXAM SPRING 2012 Work all of the problems. Justify the statements in your solutions by reference to specific results, as appropriate. Partial credit is awarded for partial solutions.

More information

Notes on Galois Theory

Notes on Galois Theory Notes on Galois Theory Math 431 04/28/2009 Radford We outline the foundations of Galois theory. Most proofs are well beyond the scope of the our course and are therefore omitted. The symbols and in the

More information

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G.

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G. 1. Galois Theory 1.1. A homomorphism of fields F F is simply a homomorphism of rings. Such a homomorphism is always injective, because its kernel is a proper ideal (it doesnt contain 1), which must therefore

More information

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points.

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points. 22M: 121 Final Exam This is 2 hour exam. Begin each question on a new sheet of paper. All notations are standard and the ones used in class. Please write clearly and provide all details of your work. Good

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

1 Spring 2002 Galois Theory

1 Spring 2002 Galois Theory 1 Spring 2002 Galois Theory Problem 1.1. Let F 7 be the field with 7 elements and let L be the splitting field of the polynomial X 171 1 = 0 over F 7. Determine the degree of L over F 7, explaining carefully

More information

Galois Theory and the Insolvability of the Quintic Equation

Galois Theory and the Insolvability of the Quintic Equation Galois Theory and the Insolvability of the Quintic Equation Daniel Franz 1. Introduction Polynomial equations and their solutions have long fascinated mathematicians. The solution to the general quadratic

More information

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information

School of Mathematics and Statistics. MT5836 Galois Theory. Handout 0: Course Information MRQ 2017 School of Mathematics and Statistics MT5836 Galois Theory Handout 0: Course Information Lecturer: Martyn Quick, Room 326. Prerequisite: MT3505 (or MT4517) Rings & Fields Lectures: Tutorials: Mon

More information

arxiv: v1 [math.gr] 3 Feb 2019

arxiv: v1 [math.gr] 3 Feb 2019 Galois groups of symmetric sextic trinomials arxiv:1902.00965v1 [math.gr] Feb 2019 Alberto Cavallo Max Planck Institute for Mathematics, Bonn 5111, Germany cavallo@mpim-bonn.mpg.de Abstract We compute

More information

The Kummer Pairing. Alexander J. Barrios Purdue University. 12 September 2013

The Kummer Pairing. Alexander J. Barrios Purdue University. 12 September 2013 The Kummer Pairing Alexander J. Barrios Purdue University 12 September 2013 Preliminaries Theorem 1 (Artin. Let ψ 1, ψ 2,..., ψ n be distinct group homomorphisms from a group G into K, where K is a field.

More information

By Dr. P.M.H. Wilson, L A TEXed by Matt Daws, Michaelmas Galois Theory, IIB

By Dr. P.M.H. Wilson, L A TEXed by Matt Daws, Michaelmas Galois Theory, IIB By Dr. P.M.H. Wilson, L A TEXed by Matt Daws, Michaelmas 1999 Email: matt.daws@cantab.net Galois Theory, IIB ii 0.1 Introduction These notes are based upon the lectures given by Dr. P.M.H. Wilson in Michaelmas

More information

Fundamental Theorem of Galois Theory. The Theorem (Dummit & Foote Version):

Fundamental Theorem of Galois Theory. The Theorem (Dummit & Foote Version): Fundamental Theorem of Galois Theory Introduction: Previously we worked through an example illustrating many of the components of Galois Theory including the Fundamental Theorem. Here I will state and

More information

Field Theory Qual Review

Field Theory Qual Review Field Theory Qual Review Robert Won Prof. Rogalski 1 (Some) qual problems ˆ (Fall 2007, 5) Let F be a field of characteristic p and f F [x] a polynomial f(x) = i f ix i. Give necessary and sufficient conditions

More information

Galois Theory and Some Applications

Galois Theory and Some Applications Galois Theory and Some Applications Aparna Ramesh July 19, 2015 Introduction In this project, we study Galois theory and discuss some applications. The theory of equations and the ancient Greek problems

More information

Part II Galois Theory

Part II Galois Theory Part II Galois Theory Theorems Based on lectures by C. Birkar Notes taken by Dexter Chua Michaelmas 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism 1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

More information

ALGORITHMS FOR COMPUTING QUARTIC GALOIS GROUPS OVER FIELDS OF CHARACTERISTIC 0

ALGORITHMS FOR COMPUTING QUARTIC GALOIS GROUPS OVER FIELDS OF CHARACTERISTIC 0 ALGORITHMS FOR COMPUTING QUARTIC GALOIS GROUPS OVER FIELDS OF CHARACTERISTIC 0 CHAD AWTREY, JAMES BEUERLE, AND MICHAEL KEENAN Abstract. Let f(x) beanirreducibledegreefourpolynomialdefinedover afieldf and

More information

Ramification Theory. 3.1 Discriminant. Chapter 3

Ramification Theory. 3.1 Discriminant. Chapter 3 Chapter 3 Ramification Theory This chapter introduces ramification theory, which roughly speaking asks the following question: if one takes a prime (ideal) p in the ring of integers O K of a number field

More information

The following results are from the review sheet for the midterm.

The following results are from the review sheet for the midterm. A. Miller M542 Galois Theory Spring 2000 For the material on Galois theory we will be assuming that the fields all have characteristic zero. When we get to solvability by radicals we will assume that all

More information

GALOIS THEORY AT WORK: CONCRETE EXAMPLES

GALOIS THEORY AT WORK: CONCRETE EXAMPLES GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are

More information

Chapter V. Solvability by Radicals

Chapter V. Solvability by Radicals Matematisk Institut Mat 3AL 5.1 Chapter V. Solvability by Radicals One of the oldest problems in algebra was to find roots of an equation. Already in the antiquity solutions of quadratic equations were

More information

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should

More information

THE GALOIS CORRESPONDENCE

THE GALOIS CORRESPONDENCE THE GALOIS CORRESPONDENCE KEITH CONRAD 1. Introduction Let L/K be a field extension. A K-automorphism of L is a field automorphism σ : L L which fixes the elements of K: σ(c) = c for all c K. The set of

More information

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 3. Examples I did some examples and explained the theory at the same time. 3.1. roots of unity. Let L = Q(ζ) where ζ = e 2πi/5 is a primitive 5th root of

More information

Solutions for Problem Set 6

Solutions for Problem Set 6 Solutions for Problem Set 6 A: Find all subfields of Q(ζ 8 ). SOLUTION. All subfields of K must automatically contain Q. Thus, this problem concerns the intermediate fields for the extension K/Q. In a

More information

3 Galois Theory. 3.1 Definitions and Examples

3 Galois Theory. 3.1 Definitions and Examples 3 Galois Theory 3.1 Definitions and Examples This section of notes roughly follows Section 14.1 in Dummit and Foote. Let F be a field and let f (x) 2 F[x]. In the previous chapter, we proved that there

More information

Identify F inside K and K. Then, by the claim, we have an embedding σ : K K such that σ F = id F. Since σ(k)/f and K/F are isomorphic extensions, the

Identify F inside K and K. Then, by the claim, we have an embedding σ : K K such that σ F = id F. Since σ(k)/f and K/F are isomorphic extensions, the 11. splitting field, Algebraic closure 11.1. Definition. Let f(x) F [x]. Say that f(x) splits in F [x] if it can be decomposed into linear factors in F [x]. An extension K/F is called a splitting field

More information

Extensions of Discrete Valuation Fields

Extensions of Discrete Valuation Fields CHAPTER 2 Extensions of Discrete Valuation Fields This chapter studies discrete valuation fields in relation to each other. The first section introduces the class of Henselian fields which are quite similar

More information

disc f R 3 (X) in K[X] G f in K irreducible S 4 = in K irreducible A 4 in K reducible D 4 or Z/4Z = in K reducible V Table 1

disc f R 3 (X) in K[X] G f in K irreducible S 4 = in K irreducible A 4 in K reducible D 4 or Z/4Z = in K reducible V Table 1 GALOIS GROUPS OF CUBICS AND QUARTICS IN ALL CHARACTERISTICS KEITH CONRAD 1. Introduction Treatments of Galois groups of cubic and quartic polynomials usually avoid fields of characteristic 2. Here we will

More information

RUDIMENTARY GALOIS THEORY

RUDIMENTARY GALOIS THEORY RUDIMENTARY GALOIS THEORY JACK LIANG Abstract. This paper introduces basic Galois Theory, primarily over fields with characteristic 0, beginning with polynomials and fields and ultimately relating the

More information

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d Math 201C Homework Edward Burkard 5.1. Field Extensions. 5. Fields and Galois Theory Exercise 5.1.7. If v is algebraic over K(u) for some u F and v is transcendental over K, then u is algebraic over K(v).

More information

Galois Theory. This material is review from Linear Algebra but we include it for completeness.

Galois Theory. This material is review from Linear Algebra but we include it for completeness. Galois Theory Galois Theory has its origins in the study of polynomial equations and their solutions. What is has revealed is a deep connection between the theory of fields and that of groups. We first

More information

M345P11 Galois Theory

M345P11 Galois Theory M345P11 Galois Theory Lectured by Prof Alessio Corti, notes taken by Wanlong Zheng Comments or corrections should be sent to wz3415@ic.ac.uk. Last updated: April 20, 2018 Contents 1 Introduction 2 1.1

More information

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) KEITH CONRAD We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over

More information

Notes on Field Extensions

Notes on Field Extensions Notes on Field Extensions Ryan C. Reich 16 June 2006 1 Definitions Throughout, F K is a finite field extension. We fix once and for all an algebraic closure M for both and an embedding of F in M. When

More information

Solutions for Field Theory Problem Set 5

Solutions for Field Theory Problem Set 5 Solutions for Field Theory Problem Set 5 A. Let β = 2 + 2 2 2 i. Let K = Q(β). Find all subfields of K. Justify your answer carefully. SOLUTION. All subfields of K must automatically contain Q. Thus, this

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

MAT 535 Problem Set 5 Solutions

MAT 535 Problem Set 5 Solutions Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 MAT 535 Problem Set 5 Solutions Selected Problems (1) Exercise 9, p 617 Determine the Galois group of the splitting field E over F = Q of the polynomial f(x)

More information

GALOIS THEORY AT WORK

GALOIS THEORY AT WORK GALOIS THEORY AT WORK KEITH CONRAD 1. Examples Example 1.1. The field extension Q(, 3)/Q is Galois of degree 4, so its Galois group has order 4. The elements of the Galois group are determined by their

More information

Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Finite Fields. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 25 Finite Fields Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay September 25, 2014 2 / 25 Fields Definition A set F together

More information

Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions. Timothy All Michael Belfanti

Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions. Timothy All Michael Belfanti Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions Timothy All Michael Belfanti July 22, 2013 Contents Spring 2012 1 1. Let G be a finite group and H a non-normal subgroup

More information

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 RAVI VAKIL Hi Dragos The class is in 381-T, 1:15 2:30. This is the very end of Galois theory; you ll also start commutative ring theory. Tell them: midterm

More information

M3P11/M4P11/M5P11. Galois Theory

M3P11/M4P11/M5P11. Galois Theory BSc and MSci EXAMINATIONS (MATHEMATICS) May-June 2014 This paper is also taken for the relevant examination for the Associateship of the Royal College of Science. M3P11/M4P11/M5P11 Galois Theory Date:

More information

Notes on graduate algebra. Robert Harron

Notes on graduate algebra. Robert Harron Notes on graduate algebra Robert Harron Department of Mathematics, Keller Hall, University of Hawai i at Mānoa, Honolulu, HI 96822, USA E-mail address: rharron@math.hawaii.edu Abstract. Graduate algebra

More information

Math 121 Homework 5 Solutions

Math 121 Homework 5 Solutions Math 2 Homework Solutions Problem 2, Section 4.. Let τ : C C be the complex conjugation, defined by τa + bi = a bi. Prove that τ is an automorphism of C. First Solution. Every element of C may be written

More information

Class Field Theory. Travis Dirle. December 4, 2016

Class Field Theory. Travis Dirle. December 4, 2016 Class Field Theory 2 Class Field Theory Travis Dirle December 4, 2016 2 Contents 1 Global Class Field Theory 1 1.1 Ray Class Groups......................... 1 1.2 The Idèlic Theory.........................

More information

Practice Algebra Qualifying Exam Solutions

Practice Algebra Qualifying Exam Solutions Practice Algebra Qualifying Exam Solutions 1. Let A be an n n matrix with complex coefficients. Define tr A to be the sum of the diagonal elements. Show that tr A is invariant under conjugation, i.e.,

More information

Solutions of exercise sheet 2

Solutions of exercise sheet 2 D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 2 1. Let k be a field with char(k) 2. 1. Let a, b k be such that a is a square in k(β), where β is an element algebraic over k

More information

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields. [Parts from Chapter 16. Also applications of FTGT] Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

More information

GALOIS THEORY BRIAN OSSERMAN

GALOIS THEORY BRIAN OSSERMAN GALOIS THEORY BRIAN OSSERMAN Galois theory relates the theory of field extensions to the theory of groups. It provides a powerful tool for studying field extensions, and consequently, solutions to polynomial

More information

QUALIFYING EXAM IN ALGEBRA August 2011

QUALIFYING EXAM IN ALGEBRA August 2011 QUALIFYING EXAM IN ALGEBRA August 2011 1. There are 18 problems on the exam. Work and turn in 10 problems, in the following categories. I. Linear Algebra 1 problem II. Group Theory 3 problems III. Ring

More information

Graduate Preliminary Examination

Graduate Preliminary Examination Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

More information

Practice problems for first midterm, Spring 98

Practice problems for first midterm, Spring 98 Practice problems for first midterm, Spring 98 midterm to be held Wednesday, February 25, 1998, in class Dave Bayer, Modern Algebra All rings are assumed to be commutative with identity, as in our text.

More information

MT5836 Galois Theory MRQ

MT5836 Galois Theory MRQ MT5836 Galois Theory MRQ May 3, 2017 Contents Introduction 3 Structure of the lecture course............................... 4 Recommended texts..................................... 4 1 Rings, Fields and

More information

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13 Extension fields II Sergei Silvestrov Spring term 2011, Lecture 13 Abstract Contents of the lecture. Algebraic extensions. Finite fields. Automorphisms of fields. The isomorphism extension theorem. Splitting

More information

22. Galois theory. G = Gal(L/k) = Aut(L/k) [L : K] = H. Gal(K/k) G/H

22. Galois theory. G = Gal(L/k) = Aut(L/k) [L : K] = H. Gal(K/k) G/H 22. Galois theory 22.1 Field extensions, imbeddings, automorphisms 22.2 Separable field extensions 22.3 Primitive elements 22.4 Normal field extensions 22.5 The main theorem 22.6 Conjugates, trace, norm

More information

Algebra Qualifying Exam Solutions. Thomas Goller

Algebra Qualifying Exam Solutions. Thomas Goller Algebra Qualifying Exam Solutions Thomas Goller September 4, 2 Contents Spring 2 2 2 Fall 2 8 3 Spring 2 3 4 Fall 29 7 5 Spring 29 2 6 Fall 28 25 Chapter Spring 2. The claim as stated is false. The identity

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

Algebra Ph.D. Entrance Exam Fall 2009 September 3, 2009

Algebra Ph.D. Entrance Exam Fall 2009 September 3, 2009 Algebra Ph.D. Entrance Exam Fall 2009 September 3, 2009 Directions: Solve 10 of the following problems. Mark which of the problems are to be graded. Without clear indication which problems are to be graded

More information

SOME SPECIAL VALUES OF COSINE

SOME SPECIAL VALUES OF COSINE SOME SPECIAL VALUES OF COSINE JAKE LEVINSON. Introduction We all learn a few specific values of cos(x) (and sin(x)) in high school such as those in the following table: x 0 6 π 4 π π π π cos(x) sin(x)

More information

Math 603, Spring 2003, HW 6, due 4/21/2003

Math 603, Spring 2003, HW 6, due 4/21/2003 Math 603, Spring 2003, HW 6, due 4/21/2003 Part A AI) If k is a field and f k[t ], suppose f has degree n and has n distinct roots α 1,..., α n in some extension of k. Write Ω = k(α 1,..., α n ) for the

More information

Math 6320 Lecture Notes

Math 6320 Lecture Notes Math 6320 Lecture Notes Lectures by Prof. David Zywina, Notes by Vivian Kuperberg Disclaimer: Professor David Zywina is responsible for the lectures behind these notes, but has nothing to do with the writing

More information

Fields. Victoria Noquez. March 19, 2009

Fields. Victoria Noquez. March 19, 2009 Fields Victoria Noquez March 19, 2009 5.1 Basics Definition 1. A field K is a commutative non-zero ring (0 1) such that any x K, x 0, has a unique inverse x 1 such that xx 1 = x 1 x = 1. Definition 2.

More information

Additive structure of multiplicative subgroups of fields and Galois theory

Additive structure of multiplicative subgroups of fields and Galois theory Additive structure of multiplicative subgroups of fields and Galois theory Louis Mahé, Ján Mináč *, and Tara L. Smith Abstract. One of the fundamental questions in current field theory, related to Grothendieck

More information

Homework #5 Solutions

Homework #5 Solutions Homework #5 Solutions p 83, #16. In order to find a chain a 1 a 2 a n of subgroups of Z 240 with n as large as possible, we start at the top with a n = 1 so that a n = Z 240. In general, given a i we will

More information

Solutions for Field Theory Problem Set 1

Solutions for Field Theory Problem Set 1 Solutions for Field Theory Problem Set 1 FROM THE TEXT: Page 355, 2a. ThefieldisK = Q( 3, 6). NotethatK containsqand 3and 6 3 1 = 2. Thus, K contains the field Q( 2, 3). In fact, those two fields are the

More information

Keywords and phrases: Fundamental theorem of algebra, constructible

Keywords and phrases: Fundamental theorem of algebra, constructible Lecture 16 : Applications and Illustrations of the FTGT Objectives (1) Fundamental theorem of algebra via FTGT. (2) Gauss criterion for constructible regular polygons. (3) Symmetric rational functions.

More information

but no smaller power is equal to one. polynomial is defined to be

but no smaller power is equal to one. polynomial is defined to be 13. Radical and Cyclic Extensions The main purpose of this section is to look at the Galois groups of x n a. The first case to consider is a = 1. Definition 13.1. Let K be a field. An element ω K is said

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Name: Solutions Final Exam

Name: Solutions Final Exam Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. 1. [10 Points] For

More information

Course 311: Abstract Algebra Academic year

Course 311: Abstract Algebra Academic year Course 311: Abstract Algebra Academic year 2007-08 D. R. Wilkins Copyright c David R. Wilkins 1997 2007 Contents 3 Introduction to Galois Theory 41 3.1 Field Extensions and the Tower Law..............

More information

Quasi-reducible Polynomials

Quasi-reducible Polynomials Quasi-reducible Polynomials Jacques Willekens 06-Dec-2008 Abstract In this article, we investigate polynomials that are irreducible over Q, but are reducible modulo any prime number. 1 Introduction Let

More information

LECTURE 10, MONDAY MARCH 15, 2004

LECTURE 10, MONDAY MARCH 15, 2004 LECTURE 10, MONDAY MARCH 15, 2004 FRANZ LEMMERMEYER 1. Minimal Polynomials Let α and β be algebraic numbers, and let f and g denote their minimal polynomials. Consider the resultant R(X) of the polynomials

More information

DETAILED ANSWERS TO STARRED EXERCISES

DETAILED ANSWERS TO STARRED EXERCISES DETAILED ANSWERS TO STARRED EXERCISES 1. Series 1 We fix an integer n > 1 and consider the symmetric group S n := Sym({1,..., n}). For a polynomial p(x 1,..., X n ) C[X 1,..., X n ] in n variables and

More information

SOLVING SOLVABLE QUINTICS. D. S. Dummit

SOLVING SOLVABLE QUINTICS. D. S. Dummit D. S. Dummit Abstract. Let f(x) = x 5 + px 3 + qx + rx + s be an irreducible polynomial of degree 5 with rational coefficients. An explicit resolvent sextic is constructed which has a rational root if

More information

Galois Theory, summary

Galois Theory, summary Galois Theory, summary Chapter 11 11.1. UFD, definition. Any two elements have gcd 11.2 PID. Every PID is a UFD. There are UFD s which are not PID s (example F [x, y]). 11.3 ED. Every ED is a PID (and

More information

ANALYSIS OF SMALL GROUPS

ANALYSIS OF SMALL GROUPS ANALYSIS OF SMALL GROUPS 1. Big Enough Subgroups are Normal Proposition 1.1. Let G be a finite group, and let q be the smallest prime divisor of G. Let N G be a subgroup of index q. Then N is a normal

More information

Math 261 Exercise sheet 5

Math 261 Exercise sheet 5 Math 261 Exercise sheet 5 http://staff.aub.edu.lb/~nm116/teaching/2018/math261/index.html Version: October 24, 2018 Answers are due for Wednesday 24 October, 11AM. The use of calculators is allowed. Exercise

More information

Insolvability of the Quintic (Fraleigh Section 56 Last one in the book!)

Insolvability of the Quintic (Fraleigh Section 56 Last one in the book!) Insolvability of the Quintic (Fraleigh Section 56 Last one in the book!) [I m sticking to Freleigh on this one except that this will be a combination of part of the section and part of the exercises because

More information

Galois theory (Part II)( ) Example Sheet 1

Galois theory (Part II)( ) Example Sheet 1 Galois theory (Part II)(2015 2016) Example Sheet 1 c.birkar@dpmms.cam.ac.uk (1) Find the minimal polynomial of 2 + 3 over Q. (2) Let K L be a finite field extension such that [L : K] is prime. Show that

More information

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

More information

Automorphisms and bases

Automorphisms and bases Chapter 5 Automorphisms and bases 10 Automorphisms In this chapter, we will once again adopt the viewpoint that a finite extension F = F q m of a finite field K = F q is a vector space of dimension m over

More information

7 Orders in Dedekind domains, primes in Galois extensions

7 Orders in Dedekind domains, primes in Galois extensions 18.785 Number theory I Lecture #7 Fall 2015 10/01/2015 7 Orders in Dedekind domains, primes in Galois extensions 7.1 Orders in Dedekind domains Let S/R be an extension of rings. The conductor c of R (in

More information

Part II Galois Theory

Part II Galois Theory Part II Galois Theory Definitions Based on lectures by C. Birkar Notes taken by Dexter Chua Michaelmas 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

5 Algebraicially closed fields and The Fundamental Theorem of Algebra

5 Algebraicially closed fields and The Fundamental Theorem of Algebra 5 Algebraicially closed fields and The Fundamental Theorem of Algebra In this chapter all fields will be of characteristic zero. Definition. A field K is algebraically closed if every polynomial in K[x],

More information

(January 14, 2009) q n 1 q d 1. D = q n = q + d

(January 14, 2009) q n 1 q d 1. D = q n = q + d (January 14, 2009) [10.1] Prove that a finite division ring D (a not-necessarily commutative ring with 1 in which any non-zero element has a multiplicative inverse) is commutative. (This is due to Wedderburn.)

More information

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K.

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K. The third exam will be on Monday, April 9, 013. The syllabus for Exam III is sections 1 3 of Chapter 10. Some of the main examples and facts from this material are listed below. If F is an extension field

More information

Finite fields: some applications Michel Waldschmidt 1

Finite fields: some applications Michel Waldschmidt 1 Ho Chi Minh University of Science HCMUS Update: 16/09/2013 Finite fields: some applications Michel Waldschmidt 1 Exercises We fix an algebraic closure F p of the prime field F p of characteristic p. When

More information

9. Finite fields. 1. Uniqueness

9. Finite fields. 1. Uniqueness 9. Finite fields 9.1 Uniqueness 9.2 Frobenius automorphisms 9.3 Counting irreducibles 1. Uniqueness Among other things, the following result justifies speaking of the field with p n elements (for prime

More information

3.0 INTRODUCTION 3.1 OBJECTIVES 3.2 SOLUTION OF QUADRATIC EQUATIONS. Structure

3.0 INTRODUCTION 3.1 OBJECTIVES 3.2 SOLUTION OF QUADRATIC EQUATIONS. Structure UNIT 3 EQUATIONS Equations Structure 3.0 Introduction 3.1 Objectives 3.2 Solution of Quadratic Equations 3.3 Quadratic Formula 3.4 Cubic and Bioquadratic Equations 3.5 Answers to Check Your Progress 3.6

More information

p-adic fields Chapter 7

p-adic fields Chapter 7 Chapter 7 p-adic fields In this chapter, we study completions of number fields, and their ramification (in particular in the Galois case). We then look at extensions of the p-adic numbers Q p and classify

More information

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013 Coding Theory and Applications Solved Exercises and Problems of Cyclic Codes Enes Pasalic University of Primorska Koper, 2013 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a collection of solved

More information

Algebra Questions. May 13, Groups 1. 2 Classification of Finite Groups 4. 3 Fields and Galois Theory 5. 4 Normal Forms 9

Algebra Questions. May 13, Groups 1. 2 Classification of Finite Groups 4. 3 Fields and Galois Theory 5. 4 Normal Forms 9 Algebra Questions May 13, 2013 Contents 1 Groups 1 2 Classification of Finite Groups 4 3 Fields and Galois Theory 5 4 Normal Forms 9 5 Matrices and Linear Algebra 10 6 Rings 11 7 Modules 13 8 Representation

More information

CONSTRUCTIBLE NUMBERS AND GALOIS THEORY

CONSTRUCTIBLE NUMBERS AND GALOIS THEORY CONSTRUCTIBLE NUMBERS AND GALOIS THEORY SVANTE JANSON Abstract. We correct some errors in Grillet [2], Section V.9. 1. Introduction The purpose of this note is to correct some errors in Grillet [2], Section

More information