Bibliography. Introduction to Signal Processing, Instrumentation, and Control Downloaded from

Size: px
Start display at page:

Download "Bibliography. Introduction to Signal Processing, Instrumentation, and Control Downloaded from"

Transcription

1 Bibliography Introduction to Signal Processing, Instrumentation, and Control Downloaded from Introductory dynamical systems Ogata, K. (2004). System dynamics, 4 th ed., Prentice Hall. Rowell, D. and D. N. Wormley (1997). System dynamics an introduction, Prentice Hall. Signals and systems Bracewell, R. N. (1986). The Fourier transform and its applications, 2 nd ed., McGraw-Hill. McGillem, C. D. and G. R. Cooper (1991). Continuous and discrete signal and system analysis, 3 rd ed., Oxford University Press. Oppenheim, A. V., and A. S. Willsky, with H. Nawab (1997). Signals and systems, 2 nd ed., Prentice Hall. Palamides, A. and A. Veloni (2011). Signals and systems laboratory with MATLAB, Taylor & Francis. Poularikas, A. D. and S. Seely (1994). Signals and systems, 2 nd ed., Krieger. Ziemer, R. E., W. H. Tranter and D. R. Fannin (1998). Signals and systems: continuous and discrete, 4 th ed., Prentice Hall. Instrumentation Blackburn, J. A. (2001). Modern instrumentation for scientists and engineers. Springer-Verlag. Nachtigal, C. L., ed. (1990). Instrumentation and control: fundamentals and applications. Wiley. Electronics Horowitz, P. and W. Hill (2015). The art of electronics, 3 rd ed., Cambridge University Press. Storey, N. (2009). Electronics a systems approach, 4 th ed., Prentice Hall. Vibrations Dimarogonas, A. and S. Haddad (1992). Vibration for engineers. Prentice Hall. Inman, D. (2013). Engineering vibration, 4 th ed., Prentice-Hall. Meirovitch, L. (1997). Principles and techniques of vibrations. Prentice Hall. Signal processing and digital filter design Ambardar, A. (1999). Analog and digital signal processing, 2nd ed., Brooks/Cole. Ambardar, A. (2006). Digital signal processing: a modern introduction, Cengage. Mitra, S. K. (2011). Digital signal processing: a computer-based approach, 4 th ed., McGraw-Hill. Oppenheim, A. V. and R. W. Schaffer (2009). Discrete-time signal processing, 3 rd ed., Prentice Hall. Proakis, J. G. and D. K. Manolakis (2006). Digital signal processing: principles, algorithms, and applications, 4 th ed., Prentice Hall. Rabiner, L R. and B. Gold (1975). Theory and application of digital signal processing. Prentice Hall. Window functions Prabhu K. M. M. (2013). Window functions and their applications in signal processing, CRC Press. Spectral estimation Kay, S. M. (1988). Modern spectral estimation, Prentice Hall. Analog filter design Williams, A. (2013). Analog filter and circuit design handbook, McGraw-Hill 747

2 748 Bibliography Introduction to Signal Processing, Instrumentation, and Control Downloaded from Control systems Åström, K. J. and R. M. Murray (2015). Feedback systems: an introduction for scientists and engineers, 2 nd ed., Princeton University Press, Franklin, G. F., J. D. Powell, and A. Emami-Naein (2014). Feedback control of dynamical systems, 7 th ed., Prentice Hall. Ogata, K. (2009). Modern control engineering, 5 th ed.. Prentice Hall. Dynamical systems with system integration Cochin, I. and W. Cadwallender (1997). Analysis and design of dynamical systems, 3 rd ed., Addison-Wesley, Kelly, S. G. (2007). Systems dynamics and response. Thomson. Lobontiu, N. (2010). System dynamics for engineering students: concepts and applications, Academic Press. Natarajan, V. (2012). Rejection of periodic disturbances in uncertain nonlinearly perturbed stable infinite dimensional systems, Ph.D. thesis, Department of Mechanical Science and Eng., Univ. of Illinois at Urbana-Champaign, 133p. Mathematical references Abramovitz, M. and I. A. Stegun (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, 10 th printing: Gradshtein, L. S., and I. M. Ryzhik (1980). Table of integrals, series, and products, Academic Press. Korn, G. A. and T. M. Korn (1964). Mathematical handbook. McGraw-Hill.

3 Index Introduction to Signal Processing, Instrumentation, and Control Downloaded from accelerometer, 693 actuator saturation, 616 aliasing, 207 almost periodic, 103 amplitude, 109 analog angular frequency, 102 analog frequency, 102 autocorrelation continuous time, 474 discrete time, 476 bandlimit, 213 bandlimiting, 304 bandwidth, 372 basic control action PI (Proportional + Integral), 570 self-operated, 568 two-position (on-off), 569 basis vectors, 269 BIBO stable, 661 BIBO unstable, 661 bidirectional, 172 bilinear transformation, 445 black box identification, 250 blocking zero, 151 bode plot, 156 break frequency, 371 breakout, 4 brushless DC motor, 696 buffer, 173 butterworth filter polynomial factorization, 414 unity DC gain filter form, 414 casting speed, 3 causal system, 659 causality anti-causal, 47 causal, 47 non-causal, 47 Chain rule, 651 classic filter transfer functions, 413 close-loop transfer function input-output, 558 commensurable, 103 Common mode gain, 188 Common mode rejection ratio (CMMR), 189 common mode voltage, 186, 189 complex conjugate, 217 compression, 55 continuous casting, 1 continuous time system, 654 control method of testbed, 11 controller, 553 conversion analog-to-digital, 213 convolution, 477, 676 continuous time, 360 discrete time, 361 corner frequency, 160 correlation, 477 coupling, 172 AC coupling, 176 cross-correlation continuous time, 474 discrete time, 476 cross-coupling, 172 CT ideal filter magnitude response, 366 CT PSD approximation, 501 CT real filter, 369 CT sinusoidal signal, 101 cycle, 102 cyclic calculation, 487 DC motor, 696 decimation,

4 750 Index decoupling, 173 delta-function definition, 67 shifting property, 67 symmetry property, 69 time-scaling property, 69 derivative gain, 570 derivative time, 570 detecting sinusoids in CT noisy data using DFT (FFT), 500 deterministic system, 662 digital frequency, 205 digital frequency bounds, 210 digital period, 205 digital PSD, or DT PSD, 499 discrete (exponential) Fourier series coefficients, 229 Discrete Fourier Series, 345 Discrete Fourier Series (DFS), 279 discrete Fourier series representation, 229 discrete Fourier transform, 303 Discrete Fourier Transform, 345 discrete frequency response spectra, 114 discrete PSD, 494 discrete real spectra, 111 discrete spectra, 226 discrete time Fourier transform (DTFT), 348 discrete time system, 654 discrete time system response, 362 disturbance, 140 disturbance rejection, 556 dot, 269 doublet, 148 DT periodic autocorrelation, 500 DT real filter, 375 dynamic system, 655 eigenfunction, 219 eigenvalue, 219 encoder, 691 energy (spectral) density, 371 energy signal, 78 energy spectral density, 471 ergodicity assumption, 47 error actual output error, 564 Euler s Identity, 649 Euler-Bernoulli Beam Model, 697 exact system, 662 exponential form, 216 exponential Fourier series, 273 exponential Fourier series coefficients, 228 exponential Fourier series representation, 227 exponential signal, 669 extensometer, 690 Fast Fourier Transform (FFT), 310, 312 feedback path, 556 filters band-pass filter, 427 band-stop filter, 428 high-pass filter, 427 Final value theorem, 682 Final Value Theorem, 565, 573 finite impulse response (FIR), 149 finite impulse response (FIR) filter, 296 FIR approach, 344 folding, 211 folding frequency, 212 folding of signals, 59 forward path, 556 Fourier analysis, 248 Fourier reconstruction, 254 Fourier Series, 345 Fourier series coefficie, 273 Fourier Series coefficients, 666 Fourier Series for a periodic signal, 665 Fourier Transform, 345 Fourier Transform (FT), 675 frequency, 102 frequency response, 114, 341 function support compact support, 51 noncompact support, 51 fundamental frequency, 109 fundamental period, 102, 109 fuzzy system, 662 Gibbs phenomenon, 81 grey box identification, 250 half-plane closed half-plane, 151 open half-plane, 151 half-wave rectified sine, 668 Hamilton s principle, 698 hardware testbed, 9 harmonic frequency, 110 harmonic number, 110 harmonics, 110 Hooke s law, 699 hydraulics, 696 ideal sampling, 70

5 image separation, 260 impulse response, 69 impulse train, 666 infinite impulse response (IIR), 148 infinite impulse response (IIR) filter, 296 Initial value theorem, 682 inner, 269 integrablity absolutely integrable, 51 square-integrable, 51 integral gain, 570 integral time, 570 Integration by parts, 650 internal model principle, 597 internal model principle (IMP) controller, 597 interpolation Linear interpolation, 56 zero interpolation, 56 ztep interpolation, 56 inverse Fourier transform, 492 inverse Fourier Transform, 676 k th real harmonic, 110 lack of commutativity, 169 Laplace transform, 681 leakage output voltage, 188 linear system, 658 linear time invariant (LTI) system, 131 Linear Variable Differential Transformer (LVDT), 688 load cell, 694 loading, 170 low-pass filtering, 177 magnetic sensor, 689 magnetostriction, 203 magnitude, 216 magnitude (spectral) density, 370, 371 magnitude and phase form, 274 mass-spring-two-dampers (MS2D), 133 maximum overshoot, 573 measurement noise, 140 mold oscillation system, 3 moving average (MA) filter, 150 multiresolution, 21 multiscale. See multiresolution negative strip time, 3 noncausal system, 659 nonlinear system, 658 norm, 269 normal mode gain, 187 normal mode signal, 187 Index 751 notch filter, 429 Nyquist rate, 213 Nyquist-Shannon-Kotelnikov sampling theorem, 213 orthogonal, 271 orthonormal, 272 orthonormal basis, 272 oscillation marks, 4 output error, 555 oversampling, 256 parametric system models linear constant coefficient ODE, 338 Parseval s relationship, 282 Parseval s Theorem, 282, 677 partial fraction expansion, 683 passive component, 166 performance measure, 555 period, 46, 102 periodic autocorrelation, 485 periodic convolution, 365 periodic correlation, 484 periodic crosscorrelation, 485 periodic extension, 80 periodicity nonperiodic, 46 periodic, 46 ph sensor, 694 phase, 216 phase lag, 108 phase lead, 108 phase shift, 108 photoelectric sensor, 689 plant, 553 pneumatics, 696 pointwise, 291 polar form, 216, 274 poles, 439 pole-zero map, 150 position tracking, 555 potentiometer (Pot), 185 power signal, 78 power spectral density (PSD), 480 prewarping, 447 principal range, 211 projection, 270 scalar projection, 270 vector projection, 271 proportional gain, 569 proximity sensor, 688 Psycho-acoustic revolution, 295

6 752 Index quadratic mean. See signal RMS randomness stochastic, 47 randomness deterministic signal, 46 real sampling, 71 region of convergence, 681 regularity regular signals, 48 singular signals, 49 resonance frequency and peak beam system., 163 MS2D system, 162 MSD system, 161 second order system with 2 zeroes at the origin, 162 response shaping, 563 robust, 24 robustness, 556 RST structure, 603 RTD (resistance temperature detector), 688 sampling sampling frequency. See sampling rate sampling interval, 204 sampling rate, 204 sampling time interval, 44 sawtooth signal, 666 scalar product, 269 scale composition multiscale (multiresolution), 46 single-scale (single-resolution), 46 scaling factor direct scaling factor, 55 inverse scaling factor, 55 sensor, 553 settling time, 573 shifting of signals, 53 signal energy, 76 signal power, 76 signal processing, 43 signal root mean square (RMS), 76 signal speed, 290 sine-sweep, 343 sinusoid magnitude, 109 phase, 108 sums of sinusoids, 103 Size preservation of CT signals, 62 Software testbed Beam model, 13 Hydraulic servo model, 14 Numerical model, 16 spectral leakage, 306 spectral window, 292 Stability Criterion, 440 state variable, 135 state-variable realization, 429 static system, 655 stationary non-stationary signal, 47 stationary signal, 47 steady state error, 585 stepper motor, 696 sticker, 4 stochastic system, 662 strain Gauge, 185 strand, 3 stretching, 56 summability absolutely summable, 51 square-summable, 51 superposition, 658 symmetry odd signal, 45 symmetry even signal, 45 system definition, 653 system identification using cross-correlation, 513 using noise excitation, 512 using PSD, 509 tachometer generator, 693 techno-social revolution, 295 template, 208 time invariant system, 656 time varying system, 656 time-scaling of signals, 54 Timoshenko Beam Model, 703 triangular pulse train, 667 trigonometric form, 275 Trigonometric Identities, 649 Tustin s rule, 443 two-sided Fourier Transform, 361 type of signal analog signal, 43 continuous-time (CT ) signal, 43 digital signal, 45 discrete time (DT) signal, 44

7 Index 753 quantized signal, 44 sampled signal, 44 undersampling, 256 unidirectional, 172 unit circle, 217 vector space, 269 Vertical sinusoidal oscillation, 3 warping effect, 446 white noise, 490 windowing, 292 spectral windowing, 294 time-domain windowing, 294 wraparound, 488 zeros, 439 Ziegler-Nichols PID tuning rules, 614 Z-transform, 437

Theory and Problems of Signals and Systems

Theory and Problems of Signals and Systems SCHAUM'S OUTLINES OF Theory and Problems of Signals and Systems HWEI P. HSU is Professor of Electrical Engineering at Fairleigh Dickinson University. He received his B.S. from National Taiwan University

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

Signals and Systems Laboratory with MATLAB

Signals and Systems Laboratory with MATLAB Signals and Systems Laboratory with MATLAB Alex Palamides Anastasia Veloni @ CRC Press Taylor &. Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa

More information

Continuous and Discrete Time Signals and Systems

Continuous and Discrete Time Signals and Systems Continuous and Discrete Time Signals and Systems Mrinal Mandal University of Alberta, Edmonton, Canada and Amir Asif York University, Toronto, Canada CAMBRIDGE UNIVERSITY PRESS Contents Preface Parti Introduction

More information

APPENDIX A. The Fourier integral theorem

APPENDIX A. The Fourier integral theorem APPENDIX A The Fourier integral theorem In equation (1.7) of Section 1.3 we gave a description of a signal defined on an infinite range in the form of a double integral, with no explanation as to how that

More information

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

More information

Biomedical Signal Processing and Signal Modeling

Biomedical Signal Processing and Signal Modeling Biomedical Signal Processing and Signal Modeling Eugene N. Bruce University of Kentucky A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto

More information

DISCRETE-TIME SIGNAL PROCESSING

DISCRETE-TIME SIGNAL PROCESSING THIRD EDITION DISCRETE-TIME SIGNAL PROCESSING ALAN V. OPPENHEIM MASSACHUSETTS INSTITUTE OF TECHNOLOGY RONALD W. SCHÄFER HEWLETT-PACKARD LABORATORIES Upper Saddle River Boston Columbus San Francisco New

More information

INSTRUMENTAL ENGINEERING

INSTRUMENTAL ENGINEERING INSTRUMENTAL ENGINEERING Subject Code: IN Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

SIGNALS AND SYSTEMS I. RAVI KUMAR

SIGNALS AND SYSTEMS I. RAVI KUMAR Signals and Systems SIGNALS AND SYSTEMS I. RAVI KUMAR Head Department of Electronics and Communication Engineering Sree Visvesvaraya Institute of Technology and Science Mahabubnagar, Andhra Pradesh New

More information

Feedback Control of Dynamic Systems

Feedback Control of Dynamic Systems THIRD EDITION Feedback Control of Dynamic Systems Gene F. Franklin Stanford University J. David Powell Stanford University Abbas Emami-Naeini Integrated Systems, Inc. TT Addison-Wesley Publishing Company

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach Dynamic Systems Modeling and Analysis Hung V. Vu California State University, Long Beach Ramin S. Esfandiari California State University, Long Beach THE McGRAW-HILL COMPANIES, INC. New York St. Louis San

More information

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL Miroslav D. Lutovac The University of Belgrade Belgrade, Yugoslavia Dejan V. Tosic The University of Belgrade Belgrade, Yugoslavia Brian

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

Department of Electrical and Telecommunications Engineering Technology TEL (718) FAX: (718) Courses Description:

Department of Electrical and Telecommunications Engineering Technology TEL (718) FAX: (718) Courses Description: NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York 300 Jay Street Brooklyn, NY 11201-2983 Department of Electrical and Telecommunications Engineering Technology TEL (718) 260-5300 - FAX:

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

Analysis and Synthesis of Single-Input Single-Output Control Systems

Analysis and Synthesis of Single-Input Single-Output Control Systems Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

Hilbert Transforms in Signal Processing

Hilbert Transforms in Signal Processing Hilbert Transforms in Signal Processing Stefan L. Hahn Artech House Boston London Contents Preface xiii Introduction 1 Chapter 1 Theory of the One-Dimensional Hilbert Transformation 3 1.1 The Concepts

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS

SYLLABUS. osmania university CHAPTER - 1 : TRANSIENT RESPONSE CHAPTER - 2 : LAPLACE TRANSFORM OF SIGNALS i SYLLABUS osmania university UNIT - I CHAPTER - 1 : TRANSIENT RESPONSE Initial Conditions in Zero-Input Response of RC, RL and RLC Networks, Definitions of Unit Impulse, Unit Step and Ramp Functions,

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING Subject Code: EE Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section B Section C Section D Section E Section F Section G Section H

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Ch.11 The Discrete-Time Fourier Transform (DTFT)

Ch.11 The Discrete-Time Fourier Transform (DTFT) EE2S11 Signals and Systems, part 2 Ch.11 The Discrete-Time Fourier Transform (DTFT Contents definition of the DTFT relation to the -transform, region of convergence, stability frequency plots convolution

More information

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL.

Adaptive Filtering. Squares. Alexander D. Poularikas. Fundamentals of. Least Mean. with MATLABR. University of Alabama, Huntsville, AL. Adaptive Filtering Fundamentals of Least Mean Squares with MATLABR Alexander D. Poularikas University of Alabama, Huntsville, AL CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is

More information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB Simon Fraser University School of Engineering Science ENSC 380-3 Linear Systems Spring 2000 This course covers the modeling and analysis of continuous and discrete signals and systems using linear techniques.

More information

Digital Power System Protection

Digital Power System Protection Digital Power System Protection S.R. Bhide Associate Professor of Electrical Engineering Visvesvaraya National Institute of Technology Nagpur Delhi 110092 2014 Digital power system protection S.R. Bhide

More information

EENG580 Game 2: Verbal Representation of Course Content

EENG580 Game 2: Verbal Representation of Course Content Intro to DSP Game 2 Verbal Representation of Course Content EENG580 Game 2: Verbal Representation of Course Content Activity summary Overview: Word game similar to Taboo, Catch Phrase, Unspeakable, Battle

More information

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) Week 1: 8/26, 8/28 Week 2: 9/2, 9/4

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857)  Week 1: 8/26, 8/28 Week 2: 9/2, 9/4 IMGS 616-20141 p.1 Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) 3 July 2014 (TENTATIVE and subject to change) Note that I expect to be in Europe twice during the term: in Paris the week

More information

Modeling and Control Overview

Modeling and Control Overview Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3

Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3 Course Name: Digital Signal Processing Course Code: EE 605A Credit: 3 Prerequisites: Sl. No. Subject Description Level of Study 01 Mathematics Fourier Transform, Laplace Transform 1 st Sem, 2 nd Sem 02

More information

UNIT 1. SIGNALS AND SYSTEM

UNIT 1. SIGNALS AND SYSTEM Page no: 1 UNIT 1. SIGNALS AND SYSTEM INTRODUCTION A SIGNAL is defined as any physical quantity that changes with time, distance, speed, position, pressure, temperature or some other quantity. A SIGNAL

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Lecture Schedule: Week Date Lecture Title

Lecture Schedule: Week Date Lecture Title http://elec34.org Sampling and CONVOLUTION 24 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 2-Mar Introduction 3-Mar

More information

Subject: BT6008 Process Measurement and Control. The General Control System

Subject: BT6008 Process Measurement and Control. The General Control System WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: Biotechnology Session: 005-006 Subject: BT6008 Process Measurement and Control Semester:

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012

The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012 The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Final May 4, 2012 Time: 3 hours. Close book, closed notes. No calculators. Part I: ANSWER ALL PARTS. WRITE

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EE-N)/SEM-6/EC-611/ DIGITAL SIGNAL PROCESSING. Time Allotted : 3 Hours Full Marks : 70

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EE-N)/SEM-6/EC-611/ DIGITAL SIGNAL PROCESSING. Time Allotted : 3 Hours Full Marks : 70 Name : Roll No. :.... Invigilator s Signature :.. CS/B.Tech (EE-N)/SEM-6/EC-611/2011 2011 DIGITAL SIGNAL PROCESSING Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks.

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

IT DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A

IT DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IT6502 - DIGITAL SIGNAL PROCESSING (2013 regulation) UNIT-1 SIGNALS AND SYSTEMS PART-A 1. What is a continuous and discrete time signal? Continuous

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

VU Signal and Image Processing

VU Signal and Image Processing 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/18s/

More information

Optimal Polynomial Control for Discrete-Time Systems

Optimal Polynomial Control for Discrete-Time Systems 1 Optimal Polynomial Control for Discrete-Time Systems Prof Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning this paper should

More information

Signals and Systems

Signals and Systems 204181 Signals and Systems Examination Scheme: Teaching Scheme: Theory Online : 50 Marks Lectures: 4 Hrs/ Week Theory Paper : 50 Marks Tutorial : 1 Hr/Week Term work: 25 Course Objectives and Outcomes:

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

Material presented here is from the course 6.003, Signals & Systems offered by MIT faculty member, Prof. Alan Willsky, Copyright c 2003.

Material presented here is from the course 6.003, Signals & Systems offered by MIT faculty member, Prof. Alan Willsky, Copyright c 2003. EE-295 Image Processing, Spring 2008 Lecture 1 Material presented here is from the course 6.003, Signals & Systems offered by MIT faculty member, Prof. Alan Willsky, Copyright c 2003. This material is

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September The Data Converter Interface Analog Media and Transducers Signal Conditioning Signal Conditioning

More information

EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING

EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING EC 2255 - CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types

More information

IC6501 CONTROL SYSTEMS

IC6501 CONTROL SYSTEMS DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Discrete-time Controllers

Discrete-time Controllers Schweizerische Gesellschaft für Automatik Association Suisse pour l Automatique Associazione Svizzera di Controllo Automatico Swiss Society for Automatic Control Advanced Control Discrete-time Controllers

More information

Digital Control Engineering Analysis and Design

Digital Control Engineering Analysis and Design Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is

More information

DIGITAL SIGNAL PROCESSING UNIT 1 SIGNALS AND SYSTEMS 1. What is a continuous and discrete time signal? Continuous time signal: A signal x(t) is said to be continuous if it is defined for all time t. Continuous

More information

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence.

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence. SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING UNIT I DFT & Fast Fourier

More information

Time and Spatial Series and Transforms

Time and Spatial Series and Transforms Time and Spatial Series and Transforms Z- and Fourier transforms Gibbs' phenomenon Transforms and linear algebra Wavelet transforms Reading: Sheriff and Geldart, Chapter 15 Z-Transform Consider a digitized

More information

BIOSIGNAL PROCESSING. Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University

BIOSIGNAL PROCESSING. Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University BIOSIGNAL PROCESSING Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University INTRODUCTION Biosignals (biological signals) : space, time, or space-time records

More information

Digital Signal Processing Module 1 Analysis of Discrete time Linear Time - Invariant Systems

Digital Signal Processing Module 1 Analysis of Discrete time Linear Time - Invariant Systems Digital Signal Processing Module 1 Analysis of Discrete time Linear Time - Invariant Systems Objective: 1. To understand the representation of Discrete time signals 2. To analyze the causality and stability

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared

More information

Discrete-time Fourier Series (DTFS)

Discrete-time Fourier Series (DTFS) Discrete-time Fourier Series (DTFS) Arun K. Tangirala (IIT Madras) Applied Time-Series Analysis 59 Opening remarks The Fourier series representation for discrete-time signals has some similarities with

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform

More information

Iterative Controller Tuning Using Bode s Integrals

Iterative Controller Tuning Using Bode s Integrals Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin

ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM. Dr. Lim Chee Chin ENT 315 Medical Signal Processing CHAPTER 2 DISCRETE FOURIER TRANSFORM Dr. Lim Chee Chin Outline Introduction Discrete Fourier Series Properties of Discrete Fourier Series Time domain aliasing due to frequency

More information

06EC44-Signals and System Chapter EC44 Signals and Systems (Chapter 4 )

06EC44-Signals and System Chapter EC44 Signals and Systems (Chapter 4 ) 06EC44 Signals and Systems (Chapter 4 ) Aurthored By: Prof. krupa Rasane Asst.Prof E&C Dept. KLE Society s College of Engineering and Technology Belgaum CONTENT Fourier Series Representation 1.1.1 Introduction

More information

SYLLABI FOR THE WRITTEN TEST

SYLLABI FOR THE WRITTEN TEST G u w ahat i, A ssa m, I ND IA PI N - - 781039 PHONE: 91-361- 2582550 FAX: 91-361- 2582542 D epa rt m en t o f E l ec tr on i c s & E l ec tri ca l Eng i nee ri n g IIT GUWAHATI SYLLABI FOR THE WRITTEN

More information

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by Code No: RR320402 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2006 DIGITAL SIGNAL PROCESSING ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. Control Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Analog vs. digital systems Continuous- and Discretetime Dynamic Models Frequency Response Transfer Functions

More information

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing Radar Systems Engineering Lecture Review of Signals, Systems and Digital Signal Processing Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course Review Signals, Systems & DSP // Block Diagram of

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information