CDS 101/110a: Lecture 10-1 Robust Performance
|
|
- Vivien Lang
- 3 years ago
- Views:
Transcription
1 CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty Review the main principles and tools for the course Reading: Åström and Murray, Feedback Systems, Ch 12 Advanced: Lewis, Chapter 9 CDS 21: DFT, Chapters 4-6
2 Control = Sensing + Computation + Actuation Actuate Gas Pedal Compute Control Action Goals: Stability, Performance, Robustness Nyquist Diagram Sense Vehicle Speed Stability: bounded inputs produce bounded outputs Need to check all input/output pairs (Gang of Four/Six) Necessary and sufficient condition: check for nonzero solutions around feedback loop Performance: desirable system response Step response: rise time, settling time, overshoot, etc Frequency response: tracking signals over given range Robustness: stability/ performance in presence of uncertainties Need to check stability for set of disturbances & system models CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 2
3 Modeling Uncertainty Noise and disturbances Model the amount of noise by its signal strength in different frequency bands Can model signal strength by peak amplitude, average energy, and other norms Typical example: Dryden gust models (filtered white noise) Parametric uncertainty Unknown parameters or parameters that vary from plant to plant Typically specified as tolerances on the basic parameters that describe system Unmodeled dynamics High frequency dynamics (modes, etc) can be excited by control loops Use bounded operators to account for effects of unmodeled modes: Pµ(s) Δ CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 3
4 Unmodeled Dynamics Model unknown dynamics through bounded transfer function Simplest case: additive uncertainty P (s) =P (s)+ (s), (s) <W 2 (s) Δ(s) is unknown, but bounded in magnitude Magnitude bound can depend on frequency; typically have a good model at low frequency Different types of uncertainty can be used depending on where uncertainty enters Multiplicative: good for unknown gain or actuator dynamics Feedback: good for leakage effects (eg, in electrical circuits) Gain Phase [deg] !1 1!2!9! Frequency [rad/s] Additive: P + Multiplicative: P (1 + δ) Feedback: P/(1 + fb P ) CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 4
5 Stability in the Presence of Uncertainty Characterize stability in terms of stability margin sm Stability margin = distance on Nyquist plot to -1 point Stability margin = 1/Ms (Ms = maximum sensitivity) M s = max S(iω) = max 1 1+L, s m = min ( 1) L = min 1+L =1/M s For robustness analysis, stability margin is more useful than classical gain and phase margins Robust stability: verify no new net encirclements occur Assume that nominal system is stable New loop transfer function: L =(P + )C = L + C No net encirclements as long as C < 1+L Can rewrite as bound on allowable perturbation δ = < 1+PC = P or < 1 C T P T If condition is satisfied, then sm will never cross to zero => no new net encirclements CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 5
6 Example: Cruise Control Question: how accurate does our model have to be Start with very simple model (25 m/s, 4th gear) 1.38 P (s) = C(s) = s s Ignores details of engine dynamics, sensor delays, etc Model unknown dynamics as additive or multiplicative uncertainty (can convert bounds from one to the other) System will remain stable as long as < 1+PC = P C T δ = P < 1 T CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS Remarks Conditions show why we can use simple models for designs Models must be accurate near critical point (eg, crossover) 6
7 Robust Performance Using Sensitivity Functions Performance conditions What happens to performance in the presence of uncertainty? Start by looking at the sensitivity of transfer functions to process model G yd = P 1+PC = PS dg yd dp = 1 (1 + PC) 2 = SP P (1 + PC) = S G yd P Δ Other measures dg yr G yr = S dp P. G yd + yd P + 1+(P + )C P 1+PC + 1+PC = G yd + S dg yd G yd = S dp P. dg un G un = T dp P. Sensitivity functions actually come from this analysis CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 7
8 Example: Operational Amplifier Basic amplifier with unmodeled (high frequency) dynamics Start with low frequency model: G(s) G(s)+R 2 /R G(s) = b s + a, α = R 2 R 1 G v2 v 1 = R 2 R 1 Typical parameters b a 1 Robust stability: see how much uncertainty we can handle δ = < 1 αb T = P T s + a + αb Robust performance: effect on tracking, disturbance rej dg yr G yr = S dp P dg yd G yd = T dp P S = Note: disturbance enters in different location s + a s + a + αb Magnitude (db) S 1 5 Frequency (rad/sec) 1/T T CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 8
9 Alternative Formulation for Robust Performance Δ W 2 d z disturbance signal output signal d P z Δ W 1 W 2 uncertainty block performance weight K W 2 uncertainty weight Goal: guaranteed performance in presence of uncertainty u 2 = u(t) 2 dt z 2 γ d 2 for all 1 H = max ω H(iω) Compare energy in disturbances to energy in outputs Use frequency weights to change performance/uncertainty descriptions Can I get X level of performance even with Y level of uncertainty? CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 9
10 Design for Robust Performance (ala DFT) Basic idea: interpret conditions on Nyquist Performance: keep sensitivity function small W 1 S < 1 = W 1 < 1+L W1 serves as performance weighting function Stability: avoid additional encirclements W 2 δ < 1 = W 2 L < 1+L, δ < 1 T W2 serves as uncertainty weighting function Individual conditions provide robust stability and (nominal) performance Design loop shape to satisfy robust stability and performance conditions Nominal performance: Theorem: robust performance if circles W don t intersect on Nyquest plot: 1 < 1+L for all ω Robust stability: W 1 + W 2 L < 1+L for all ω W 2 L < 1+L for all Holds for multiplicative uncertainty + Missing: robust performance... weighted sensitivity (cf DFT) CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 1
11 Tools for Analyzing and Synthesizing Controllers Robust Multi-Variable Control Theory Generalizes gain/phase margin to MIMO systems Uses operator theory to handle uncertainty, performance Uses state space theory to performance computations (LMIs) Analysis Tools H gains for multi-input, multi-output systems µ analysis software - Allow structured uncertainty descriptions (fairly general) - Computes upper and lower bounds on performance - Wide usage in aerospace industry SOSTOOLS: Nonlinear extensions Synthesis Tools LQR/LQG + H loop shaping ; modern tools for control engineers µ synthesis software; tends to generate high order controllers Model reduction software for reducing order of plants, controllers Δ P K CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 11
12 Example: Robust Cruise Control 4 Bode Diagram 2 Magnitude (db) Frequency (rad/sec) Phase (deg) Magnitude (db) P P Bode Diagram L L C C Magnitude (db) Theorem Performance: Robust Stability: Bode Diagram Frequency (rad/sec) Frequency (rad/sec) CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 12
13 Course Summary: Two Main Principles of Control Design of Dynamics through Feedback Feedback allows the dynamics of a system to be modified Key idea: interconnection gives closed loop that modifies natural behavior Tools: eigenvalue assignment, loop shaping Robustness to Uncertainty through Feedback Feedback allows high performance in the presence of uncertainty Key idea: accurate sensing to compare actual to desired, correction through computation and actuation Tools: stability margins, sensitivity functions Δ CDS 11/11, 3 Nov 8 Richard M. Murray, Caltech CDS 13
CDS 101/110a: Lecture 8-1 Frequency Domain Design
CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
CDS 101/110a: Lecture 10-2 Control Systems Implementation
CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -
Outline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
Control System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
Example 12.1 Cruise control
Feedback Systems by Astrom and Murray, v2.11b http://www.cds.caltech.edu/~murray/fbswiki Chapter Twelve Robust Performance However, by building an amplifier whose gain is deliberately made, say 40 decibels
Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control. CDS 101/110 Course Sequence
CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control Richard M. Murray 28 September 2015 Goals: Give an overview of CDS 101/110: course structure & administration Define feedback systems and learn
Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral
Uncertainty and Robustness for SISO Systems
Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback
Classify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER
114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers
CDS 101/110: Lecture 3.1 Linear Systems
CDS /: Lecture 3. Linear Systems Goals for Today: Revist and motivate linear time-invariant system models: Summarize properties, examples, and tools Convolution equation describing solution in response
Analysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
An Introduction for Scientists and Engineers SECOND EDITION
Feedback Systems An Introduction for Scientists and Engineers SECOND EDITION Karl Johan Åström Richard M. Murray Version v3.0h (18 Nov 2016) This is the electronic edition of Feedback Systems and is available
Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
Control Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
FEL3210 Multivariable Feedback Control
FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
CDS 101/110: Lecture 3.1 Linear Systems
CDS /: Lecture 3. Linear Systems Goals for Today: Describe and motivate linear system models: Summarize properties, examples, and tools Joel Burdick (substituting for Richard Murray) jwb@robotics.caltech.edu,
Design Methods for Control Systems
Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9
Stability of CL System
Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed
ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
CDS 101: Lecture 4.1 Linear Systems
CDS : Lecture 4. Linear Systems Richard M. Murray 8 October 4 Goals: Describe linear system models: properties, eamples, and tools Characterize stability and performance of linear systems in terms of eigenvalues
An Introduction for Scientists and Engineers SECOND EDITION
Feedback Systems An Introduction for Scientists and Engineers SECOND EDITION Karl Johan Åström Richard M. Murray Version v3.0i (2018-11-17) This is the electronic edition of Feedback Systems and is available
Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
Control Theory: Design and Analysis of Feedback Systems
Control Theory: Design and Analysis of Feedback Systems Richard M. Murray 21 April 2008 Goals: Provide an introduction to key concepts and tools from control theory Illustrate the use of feedback for design
CDS 101: Lecture 2.1 System Modeling
CDS 101: Lecture 2.1 System Modeling Richard M. Murray 4 October 2004 Goals: Define what a model is and its use in answering questions about a system Introduce the concepts of state, dynamics, inputs and
Stability and Robustness 1
Lecture 2 Stability and Robustness This lecture discusses the role of stability in feedback design. The emphasis is notonyes/notestsforstability,butratheronhowtomeasurethedistanceto instability. The small
Intro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
MAE 143B - Homework 9
MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4
Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
Introduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System
Chapter Eleven. Frequency Domain Design Sensitivity Functions
Feedback Systems by Astrom and Murray, v2.11b http://www.cds.caltech.edu/~murray/fbswiki Chapter Eleven Frequency Domain Design Sensitivity improvements in one frequency range must be paid for with sensitivity
Active Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
Lecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!
1 Time-Delay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring
Robust Control 3 The Closed Loop
Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time
Topic # Feedback Control Systems
Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19
Control Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
Digital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
CONTROL OF DIGITAL SYSTEMS
AUTOMATIC CONTROL AND SYSTEM THEORY CONTROL OF DIGITAL SYSTEMS Gianluca Palli Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna Email: gianluca.palli@unibo.it
Robust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization
Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3
Tradeoffs and Limits of Performance
Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop
A brief introduction to robust H control
A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European
DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
Robust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
Iterative Controller Tuning Using Bode s Integrals
Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch
(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
EECE Adaptive Control
EECE 574 - Adaptive Control Overview Guy Dumont Department of Electrical and Computer Engineering University of British Columbia Lectures: Thursday 09h00-12h00 Location: PPC 101 Guy Dumont (UBC) EECE 574
ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such
Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -
6.241 Dynamic Systems and Control
6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli
Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -
Robust Control. 8th class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) 8th class Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room 1 8. Design Example 8.1 HiMAT: Control (Highly Maneuverable Aircraft
Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1
Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System
Dr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs
and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs Nasser Mohamad Zadeh Electrical Engineering Department Tarbiat Modares University Tehran, Iran mohamadzadeh@ieee.org Ramin Amirifar Electrical
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
4 Arithmetic of Feedback Loops
ME 132, Spring 2005, UC Berkeley, A. Packard 18 4 Arithmetic of Feedback Loops Many important guiding principles of feedback control systems can be derived from the arithmetic relations, along with their
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
MAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes
Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk
Richiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.
Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General
Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional Closed-Loop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. Closed-Loop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
Lecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
D(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan
MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan Outline Motivation & Background: H2 Tracking Performance Limits: new paradigm Explicit analytical solutions with examples H2 Regulation
9. Two-Degrees-of-Freedom Design
9. Two-Degrees-of-Freedom Design In some feedback schemes we have additional degrees-offreedom outside the feedback path. For example, feed forwarding known disturbance signals or reference signals. In
Introducing Negative Feedback with an Integrator as the Central Element
Introducing Negative Feedback with an Integrator as the Central Element 2012 International Symposium on Circuits and Systems Seoul, Korea Nagendra Krishnapura Department of Electrical Engineering Indian
Controls Problems for Qualifying Exam - Spring 2014
Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response
.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........
Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming
Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming Gorka Galdos, Alireza Karimi and Roland Longchamp Abstract A quadratic programming approach is proposed to tune fixed-order
Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor
Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Quadratic Gaussian The state space
A Comparative Study on Automatic Flight Control for small UAV
Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 18 Paper No. 13 DOI: 1.11159/cdsr18.13 A Comparative Study on Automatic
ECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year
Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system
FREQUENCY-RESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins
An Overview on Robust Control
Advanced Control An Overview on Robust Control P C Scope Keywords Prerequisites allow the student to assess the potential of different methods in robust control without entering deep into theory. Sensitize
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,
CDS 110: Lecture 2-2 Modeling Using Differential Equations
CDS 110: Lecture 2-2 Modeling Using Differential Equations Richard M. Murray and Hideo Mabuchi 4 October 2006 Goals: Provide a more detailed description of the use of ODEs for modeling Provide examples
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -
Control System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #15 Friday, February 6, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca (3) Cohen-Coon Reaction Curve Method
CDS 101: Lecture 2.1 System Modeling. Lecture 1.1: Introduction Review from to last Feedback week and Control
CDS 101: Lecture 2.1 System Modeling Richard M. Murray 7 October 2002 Goals: Describe what a model is and what types of questions it can be used to answer Introduce the concepts of state, dynamic, and
MIMO analysis: loop-at-a-time
MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:
Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design
AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
Analysis and Synthesis of Single-Input Single-Output Control Systems
Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems
CDS 101: Lecture 5-1 Reachability and State Space Feedback
CDS 11: Lecture 5-1 Reachability and State Space Feedback Richard M. Murray 23 October 26 Goals: Define reachability of a control system Give tests for reachability of linear systems and apply to examples