Active Control? Contact : Website : Teaching
|
|
- Shawn Allen Sparks
- 3 years ago
- Views:
Transcription
1 Active Control? Contact : Website : Teaching
2 Active Control? Disturbances System Measurement Control Controler. Regulator.,,,
3 Aims of an Active Control Disturbances Reference + Error Controler control Actuators System Outputs Sensors Measure - Stabilisation : Inverted pendulum, Launcher, etc. Control and regulation : Temperature control of a room, robotics, etc. Disturbance rejection: Vibration isolation of a lithography table The 3 objectives are coupled 3
4 Analysis and controler synthesis Stability: Open loop gain Gain margin and phase margin Open Loop : Nyquist, Nichols or Bode diagrams. Closed Loop system poles (Pole Map). Perturbation rejection = following the reference : y 1 Sensitivity function : Maximize GH d 1 GH y GH Complementary Sensitivity function : r 1 GH Maximize GH Stability requierements limit achievable performances! 4
5 Bode Diagram : performance specification Gain variation v.s. frequency Phase variation v.s. frequency Open loop gain GH( j) GH( j) ( GH( j)) Unstable Fréquence 5
6 Nyquist Diagram: Stability analysis Complex plane : Plot of GH(jw) in the complex plane Critical point ( -1, 0) Gain = 1 et Phase =
7 Nichols Diagram: Stability analysis Plot of gain variation in decibel in function of the phase Critical point ( -180, 0db) Gain = 1 et Phase =
8 1. Disturbance rejection: y d 1 1 GH Controler effect Large effect if GH>>1 No effect if GH<<1 Unstability if GH=-1!!. Design trade-off : Dangerous zone! 8
9 3. 1st Bode integral: 4. Ideal design of Bode : Valid for slow variation of G GM -180 PM 9
10 Active control «classic» P.8.10 (a) The error specification of the radial positioning system of a CD is 0. microns. If the system is subjected to a random disturbance of 00 microns around 5 Hz, compute an estimation of the bandwidth of the control system in order to achieve appropriate disturbance rejection with a reasonable phase margin. 10
11 3. 1st Bode integral: 4. Ideal design of Bode : Valid for slow variation of G GM -180 PM 11
12 Solution : P.8.10 (a) The error specification of the radial positioning system of a CD is 0. microns. If the system is subjected to a random disturbance of 00 microns around 5 Hz, compute an estimation of the bandwidth of the control system in order to achieve appropriate disturbance rejection with a reasonable phase margin. d = 00 µm e max = 0. µm GH(5 Hz) = 1000 = 60 db 1. If the slope is -0dB/dec : Φ = -90 MP = 90 ω c = 5 Hz + 3 décades = 5 khz!. If we reduce the phase margin : Φ = -10 MP = 60 ωc = 5 Hz +.5 décades = 4.5kHz 1
13 Periodic disturbance P.8.10 (b) What if the disturbance is known to be periodic? Suppose that the disturbance is the superposition of a perfect sine at 5 Hz and its first harmonic at 50 Hz, and design the appropriate controller with very lightly damped poles (e.g. ξ=0.5%). Next, compute the disturbance rejection if there is a small error in the disturbance frequency. Do the same when the poles of the controller have more damping (e.g. ξ=1%). Same idea: But, we have more information about d and we will take it into consideration. 13
14 Phase (deg) Magnitude (db) Lightly damped poles at the disturbance freq. ~ G -1 (s) G(s) H(s) H( s) 1 s g1 g s 1 s 1 s s Bode Diagram Stable if the model of G(s) is accurate at ± 90 arround the disturbance frequency, Gain stabilization (i.e. the phase of G(s)H(s) does never exceed ±180 ) Frequency (Hz) 14
15 15 Controler synthesis : Open loop GH ) ( s s g s s g s H ) ( s s g s s g s s H Without derivative action With derivative action
16 Sensitivity function: S( s) y d 1 1 G( s) H( s) Without derivative action With derivative action 16
17 What If the disturbance frequency is not exactly 5 Hz? 0.93 if df=0.1% Info : Electrical network frequency (in Belgium ) variation is around 0.1% 17
18 18
19 Impossible to reduce G(s)H(s) of 60 db in only one decade (PM= -90!) One must reduce strongly G(s)H(s) around 1rad/s and 10rad/s, to get an «acceptable» slope at ω c. Possible? Yes, with high order filters. But difficult and not recommended! 19
20 Bode integral or «water bed effect» with: The decrease of S at some frequencies (i.e. disturbance rejection ) is always compensated by an increase of S at other frequencies. There is a direct relationship between the phase margin and the overshoot of the closed loop response, In general, a phase margin >60 is sufficient to avoid the peak of the closed loop response, 0
21 1
22 Solution : 1. amplification if 1+G <1. 1+G < 1 when G(jω) enters the circle with radius of 1 centered at (-1,0) 3. The slope exceeds -0dB/dec at high frequencies: So φ < -90 AND G(jω) 0 if ω >>> So G(jω) crosses the «Amplification circle» at high frequencies.
23 «non-minimum phase» Systems Non-minimum phase = presence of zeros with positive real part These systems cannot be inverted! They are treated with «pass-all» filters : with: System almost identical to G(s) BUT minimum phase. 3
24 Characteristics of A(s) : 1. Magnitude = 1 («all pass»). Phase : ω/a 4
25 Solution : 3 a/5 5
26 Solution: 3 a 6
Boise State University Department of Electrical Engineering ECE461 Control Systems. Control System Design in the Frequency Domain
Boise State University Department of Electrical Engineering ECE6 Control Systems Control System Design in the Frequency Domain Situation: Consider the following block diagram of a type- servomechanism:
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
Stability of CL System
Stability of CL System Consider an open loop stable system that becomes unstable with large gain: At the point of instability, K( j) G( j) = 1 0dB K( j) G( j) K( j) G( j) K( j) G( j) =± 180 o 180 o Closed
Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
MAE 143B - Homework 9
MAE 43B - Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4
Engraving Machine Example
Engraving Machine Example MCE44 - Fall 8 Dr. Richter November 24, 28 Basic Design The X-axis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional
CDS 101/110a: Lecture 8-1 Frequency Domain Design
CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
Exercises for lectures 13 Design using frequency methods
Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31-3-17 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)
H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )
.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a
The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)
Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)
Asymptotic Bode Plot & Lead-Lag Compensator
Asymptotic Bode Plot & Lead-Lag Compensator. Introduction Consider a general transfer function Ang Man Shun 202-2-5 G(s = n k=0 a ks k m k=0 b ks k = A n k=0 (s z k m k=0 (s p k m > n When s =, transfer
MAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
Frequency Response Techniques
4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10
R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
Homework 7 - Solutions
Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
Frequency Response Analysis
Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions
Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
Table of Laplacetransform
Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun
ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]
ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative
ECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
MAE 143B - Homework 9
MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line
Robust Control 3 The Closed Loop
Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time
EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions
EE C28 / ME C34 Fall 24 HW 8 - Solutions HW 8 - Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
Control Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
FREQUENCY-RESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins
ECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
Topic # Feedback Control Systems
Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19
Collocated versus non-collocated control [H04Q7]
Collocated versus non-collocated control [H04Q7] Jan Swevers September 2008 0-0 Contents Some concepts of structural dynamics Collocated versus non-collocated control Summary This lecture is based on parts
EE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
CDS 101/110a: Lecture 10-1 Robust Performance
CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability
Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods
ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,
MEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
Classify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
8.1.6 Quadratic pole response: resonance
8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Second-order denominator, of the form 1+a 1 s + a s v 1 (s) + C R Two-pole low-pass filter example v (s) with
Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
Chapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
Grades will be determined by the correctness of your answers (explanations are not required).
6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers
Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year
Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
Dynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
Chapter 8: Converter Transfer Functions
Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.
1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
Systems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using
Exercise 1 (A Non-minimum Phase System)
Prof. Dr. E. Frazzoli 5-59- Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Non-minimum Phase System) To increase the rise time of the system, we
D(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral
Intro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system
Exercise 1 (A Non-minimum Phase System)
Prof. Dr. E. Frazzoli 5-59- Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Non-minimum Phase System) To decrease the rise time of the system,
Outline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
Lecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
Feedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals
Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
Richiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
Grades will be determined by the correctness of your answers (explanations are not required).
6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations
Distributed Real-Time Control Systems
Distributed Real-Time Control Systems Chapter 9 Discrete PID Control 1 Computer Control 2 Approximation of Continuous Time Controllers Design Strategy: Design a continuous time controller C c (s) and then
Control Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.
SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..
FEEDBACK AND STABILITY
FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x
Control Systems. EC / EE / IN. For
Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop
EC CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING
EC 2255 - CONTROL SYSTEM UNIT I- CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith
Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure
(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
Automatic Control A. A.A. 2016/2017 July 7, Corso di Laurea Magistrale in Ingegneria Meccanica. Prof. Luca Bascetta.
Corso di Laurea Magistrale in Ingegneria Meccanica Automatic Control A Prof. Luca Bascetta A.A. 2016/2017 July 7, 2017 Name: Surname: University ID number: Signature: This file consists of 8 pages (including
First-Order Low-Pass Filter
Filters, Cost Functions, and Controller Structures Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218! Dynamic systems as low-pass filters! Frequency response of dynamic systems!
PM diagram of the Transfer Function and its use in the Design of Controllers
PM diagram of the Transfer Function and its use in the Design of Controllers Santiago Garrido, Luis Moreno Abstract This paper presents the graphical chromatic representation of the phase and the magnitude
Answers to multiple choice questions
Answers to multiple choice questions Chapter 2 M2.1 (b) M2.2 (a) M2.3 (d) M2.4 (b) M2.5 (a) M2.6 (b) M2.7 (b) M2.8 (c) M2.9 (a) M2.10 (b) Chapter 3 M3.1 (b) M3.2 (d) M3.3 (d) M3.4 (d) M3.5 (c) M3.6 (c)
Kars Heinen. Frequency analysis of reset systems containing a Clegg integrator. An introduction to higher order sinusoidal input describing functions
Frequency analysis of reset systems containing a Clegg integrator An introduction to higher order sinusoidal input describing functions Delft Center for Systems and Control Frequency analysis of reset
Robust Control. 8th class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) 8th class Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room 1 8. Design Example 8.1 HiMAT: Control (Highly Maneuverable Aircraft
The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location.
Introduction to the Nyquist criterion The Nyquist criterion relates the stability of a closed system to the open-loop frequency response and open loop pole location. Mapping. If we take a complex number
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
The Frequency-response Design Method
Chapter 6 The Frequency-response Design Method Problems and Solutions for Section 6.. (a) Show that α 0 in Eq. (6.2) is given by α 0 = G(s) U 0ω = U 0 G( jω) s jω s= jω 2j and α 0 = G(s) U 0ω = U 0 G(jω)
Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e
Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented
Chapter Eleven. Frequency Domain Design Sensitivity Functions
Feedback Systems by Astrom and Murray, v2.11b http://www.cds.caltech.edu/~murray/fbswiki Chapter Eleven Frequency Domain Design Sensitivity improvements in one frequency range must be paid for with sensitivity
Chapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
1 Controller Optimization according to the Modulus Optimum
Controller Optimization according to the Modulus Optimum w G K (s) F 0 (s) x The goal of applying a control loop usually is to get the control value x equal to the reference value w. x(t) w(t) X(s) W (s)
x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!
1 Time-Delay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring
The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
Systems Engineering and Control
Cork Institute of Technology Bachelor of Engineering (Honours) in Mechanical Engineering - Award (NFQ Level 8) Autumn 2007 Systems Engineering and Control (Time: 3 Hours) Answer any FIVE Questions Examiners:
AMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)
1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of
Digital Control Systems
Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist
Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters
Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (
Mechanical Systems Part A: State-Space Systems Lecture AL12
AL: 436-433 Mechanical Systems Part A: State-Space Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & Emami-Naeini, Ch. 9. Requirements: accurate
IC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical