# (Continued on next page)

Size: px
Start display at page:

Transcription

1 (Continued on next page)

2 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic equation, whose roots are the poles of the closed-loop system, is 1 + P (s)c(s) = 0, equivalent to P (s)c(s) + P (s)c(s) = 0, where the underline and overline denote the denominator and numerator, respectively. The Nyquist criterion allows us to assess the stability properties of a system based on P (s)c(s) only. This method for design involves plotting the complex loci of P (s)c(s) for the range ω = [, ]. There is no explicit calculation of the closed-loop poles, and in this sense the design approach is quite different from the root-locus method (see Ogata) Mapping Theorem We impose a reasonable assumption from the outset: The number of poles in P (s)c(s) exceeds the number of zeros. It is a reasonable constraint because otherwise the loop transfer function could pass signals with infinitely high frequency. In the case of a PID controller (two zeros) and a second-order zero-less plant, this constraint can be easily met by adding a high-frequency rolloff to the compensator, the equivalent of low-pass filtering the error signal. Let F (s) = 1 + P (s)c(s). The heart of the Nyquist analysis is the mapping theorem, which answers the following question: How do paths in the s-plane map into paths in the F -plane? We limit ourselves to closed, clockwise(cw) paths in the s-plane, and the remarkable result of the mapping theorem is Every zero of F (s) enclosed in the s-plane generates exactly one CW encirclement of the origin in the F (s)-plane. Conversely, every pole of F (s) enclosed in the s-plane generates exactly one CCW encirclement of the origin in the F (s)-plane. Since CW and CCW encirclements of the origin may cancel, the relation is often written Z P = CW. The trick now is to make the trajectory in the s-plane enclose all unstable poles, i.e., the path encloses the entire right-half plane, moving up the imaginary axis, and then proceeding to the right at an arbitrarily large radius, back to the negative imaginary axis. Since the zeros of F (s) are in fact the poles of the closed-loop transfer function, e.g., S(s), stability requires that there are no zeros of F (s) in the right-half s-plane. This leads to a slightly shorter form of the above relation: P = CCW. (200) In words, stability requires that the number of unstable poles in F (s) is equal to the number of CCW encirclements of the origin, as s sweeps around the entire right-half s-plane Nyquist Criterion The Nyquist criterion now follows from one translation. Namely, encirclements of the origin by F (s) are equivalent to encirclements of the point ( 1 + 0j) by F (s) 1, or P (s)c(s).

3 88 18 CONTROL SYSTEMS LOOPSHAPING Then the stability criterion can be cast in terms of the unstable poles of P (s)c(s), instead of those of F (s): P = CCW closed-loop stability (201) This is in fact the complete Nyquist criterion for stability. It is a necessary and sufficient condition that the number of unstable poles in the loop transfer function P (s)c(s) must be matched by an equal number of CCW encirclements of the critical point ( 1 + 0j). There are several details to keep in mind when making Nyquist plots: If neither the plant nor the controller have unstable modes, then the loci of P (s)c(s) must not encircle the critical point at all. Because the path taken in the s-plane includes negative frequencies (i.e., the negative imaginary axis), the loci of P (s)c(s) occur as complex conjugates the plot is symmetric about the real axis. The requirement that the number of poles in P (s)c(s) exceeds the number of zeros means that at high frequencies, P (s)c(s) always decays such that the loci go to the origin. For the multivariable (MIMO) case, the procedure of looking at individual Nyquist plots for each element of a transfer matrix is unreliable and outdated. Referring to the multivariable definition of S(s), we should count the encirclements for the function [det(i + P (s)c(s)) 1] instead of P (s)c(s). The use of gain and phase margin in design is similar to the SISO case Robustness on the Nyquist Plot The question of robustness in the presence of modelling errors is central to control system design. There are two natural measures of robustness for the Nyquist plot, each having a very clear graphical representation. The loci need to stay away from the critical point; how close the loci come to it can be expressed in terms of magnitude and angle. When the angle of P (s)c(s) is 180, the magnitude P (s)c(s) should not be near one. When the magnitude P (s)c(s) = 1, its angle should not be 180. These notions lead to definition of the gain margin k g and phase margin ρ for a design. As the figure shows, the definition of k g is different for stable and unstable P (s)c(s). Rules of thumb are as follows. For a stable plant, k g 2 and ρ 30 ; for an unstable plant, k g 0.5 and ρ 30.

4 18.3 Design for Nominal Performance 89 1/k g Im(s) P(s)C(s) Im(s) Re(s) γ Re(s) γ P(s)C(s) 1/k g Stable P(s)C(s) Unstable P(s)C(s) 18.3 Design for Nominal Performance Performance requirements of a feedback controller, using the nominal plant model, can be cast in terms of the Nyquist plot. We restrict the discussion to the scalar case in the following sections. Since the sensitivity function maps reference input r(s) to tracking error e(s), we know that S(s) should be small at low frequencies. For example, if one-percent tracking is to be maintained for all frequencies below ω = η, then S(s) < 0.01, ω < η. This can be formalized by writing W 1 (s)s(s) < 1, (202) where W 1 (s) is a stable weighting function of frequency. To force S(s) to be small at low ω, W 1 (s) should be large in the same range. The requirement W 1 (s)s(s) < 1 is equivalent to W 1 (s) < 1 + P (s)c(s), and this latter condition can be interpreted as: The loci of P (s)c(s) must stay outside the disk of radius W 1 (s), which is to be centered on the critical point ( 1+0j). The disk is to be quite large, possibly infinitely large, at the lower frequencies Design for Robustness It is a ubiquitous observation that models of plants degrade with increasing frequency. For example, the DC gain and slow, lightly-damped modes or zeros are easy to observe, but higher-frequency components in the response may be hard to capture or even excite repeatably. Higher-frequency behavior may have more nonlinear properties as well. The effects of modeling uncertainty can be considered to enter the nominal feedback system as a disturbance at the plant output, d y. One of the most useful descriptions of model uncertainty is the multiplicative uncertainty: P (s) = (1 + (s)w 2 (s))p (s). (203)

5 90 18 CONTROL SYSTEMS LOOPSHAPING Here, P (s) represents the nominal plant model used in the design of the control loop, and P (s) is the actual, perturbed plant. The perturbation is of the multiplicative type, (s)w 2 (s)p (s), where (s) is an unknown but stable function of frequency for which (s) 1. The weighting function W 2 (s) scales (s) with frequency; W 2 (s) should be growing with increasing frequency, since the uncertainty grows. However, W 2 (s) should not grow any faster than necessary, since it will turn out to be at the cost of nominal performance. In the scalar case, the weight can be estimated as follows: since P /P 1 = W 2, it will suffice to let P /P 1 < W 2. Example: Let P = k/(s 1), where k is in the range 2 5. We need to create a nominal model P = k 0 /(s 1), with the smallest possible value of W 2, which will not vary with frequency in this case. Two equations can be written using the above estimate, for the two extreme values of k, yielding k 0 = 7/2, and W 2 = 3/7. For constructing the Nyquist plot, we observe that P (s)c(s) = (1 + (s)w 2 (s))p (s)c(s). The path of the perturbed plant could be anywhere on a disk of radius W 2 (s)p (s)c(s), centered on the nominal loci P (s)c(s). The robustness condition is that this disk should not intersect the critical point. This can be written as 1 + P C > W 2 P C 1 > W 2 P C 1 + P C 1 > W 2 T, (204) where T is the complementary sensitivity function. The last inequality is thus a condition for robust stability in the presence of multiplicative uncertainty parametrized with W Robust Performance The condition for good performance with plant uncertainty is a combination of the above two conditions. Graphically, the disk at the critical point, with radius W 1, should not intersect the disk of radius W 2 P C, centered on the nominal locus P C. This is met if W 1 S + W 2 T < 1. (205) The robust performance requirement is related to the magnitude P C at different frequencies, as follows: 1. At low frequency, W 1 S W 1 /P C, since P C is large. This leads directly to the performance condition P C > W 1 in this range. 2. At high frequency, W 2 T W 2 P C, since P C is small. We must therefore have P C < 1/ W 2, for robustness.

6 18.6 Implications of Bode s Integral Implications of Bode s Integral The loop transfer function P C cannot roll off too rapidly in the crossover region. The simple reason is that a steep slope induces a large phase loss, which in turn degrades the phase margin. To see this requires a short foray into Bode s integral. For a transfer function H(s), the crucial relation is 1 d angle(h(jω 0 )) = (ln H(jω)) ln(coth( λ /2))dλ, (206) β dλ where λ = ln(ω/ω 0 ). The integral is hence taken over the log of a frequency normalized with ω 0. It is not hard to see how the integral controls the angle: the function ln(coth( λ /2)) is nonzero only near λ = 0, implying that the angle depends only on the local slope d(ln H )/dλ. Thus, if the slope is large, the angle is large. Example: Suppose H(s) = ω n 0 /s n, i.e., it is a simple function with n poles at the origin, and no zeros; ω 0 is a fixed constant. It follows that H = ω n 0 /ω n, and ln H = nln(ω/ω 0 ), so that d(ln H )/dλ = n. Then we have just n nβ angle(h) = ln(coth( λ /2))dλ =. (207) β 2 This integral is trivial to look up or compute. Each pole at the origin clearly induces 90 of phase loss. In the general case, each pole not at the origin induces 90 of phase loss for frequencies above the pole. Each zero at the origin adds 90 phase lead, while zeros not at the origin at 90 of phase lead for frequencies above the zero. In the immediate neighborhood of these poles and zeros, the phase may vary significantly with frequency. The Nyquist loci are clearly susceptible to these variations is phase, and the phase margin can be easily lost if the slope of P C at crossover (where the magnitude is unity) is too steep. The slope can safely be first-order ( 20dB/decade, equivalent to a single pole), and may be second-order ( 40dB/decade) if an adequate phase angle can be maintained near crossover The Recipe for Loopshaping In the above analysis, we have extensively described what the open loop transfer function P C should look like, to meet robustness and performance specifications. We have said very little about how to get the compensator C, the critical component. For clarity, let the designed loop transfer function be renamed, L = P C. We will use concepts from optimal linear control for the MIMO case, but in the scalar case, it suffices to just pick C = L/P. (208) This extraordinarily simple step involves a plant inversion. The overall idea is to first shape L as a stable transfer function meeting the requirements of stability and robustness, and then divide through by the plant.

7 92 19 LINEAR QUADRATIC REGULATOR When the plant is stable and has stable zeros (minimum-phase), the division can be made directly. One caveat for the well-behaved plant is that lightly-damped poles or zeros should not be cancelled verbatim by the compensator, because the closed-loop response will be sensitive to any slight change in the resonant frequency. The usual procedure is to widen the notch or pole in the compensator, through a higher damping ratio. Non-minimum phase or unstable behavior in the plant can usually be handled by performing the loopshaping for the closest stable model, and then explicitly considering the effects of adding the unstable parts. In the case of unstable zeros, we find that they impose an unavoidable frequency limit for the crossover. In general, the troublesome zeros must be faster than the closed-loop frequency response. In the case of unstable poles, the converse is true: The feedback system must be faster than the corresponding frequency of the unstable mode. When a control system involves multiple inputs and outputs, the ideas from scalar loopshaping can be adapted using the singular value. We list below some basic properties of the singular value decomposition, which is analogous to an eigenvector, or modal, analysis. Useful properties and relations for the singular value are found in the section MATH FACTS. The condition for MIMO robust performance can be written in many ways, including a direct extension of our scalar condition θ(w 1 S) + θ(w 2 T ) < 1. (209) The open-loop transfer matrix L should be shaped accordingly. In the following sections, we use the properties of optimal state estimation and control to perform the plant inversion for MIMO systems.

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute

### MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer

### Intro to Frequency Domain Design

Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions

### Robust Control 3 The Closed Loop

Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time

### Design Methods for Control Systems

Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

### Analysis of SISO Control Loops

Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

### Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system

### Homework 7 - Solutions

Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

### Robust Performance Example #1

Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

### Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

### Control Systems. Frequency Method Nyquist Analysis.

Frequency Method Nyquist Analysis chibum@seoultech.ac.kr Outline Polar plots Nyquist plots Factors of polar plots PolarNyquist Plots Polar plot: he locus of the magnitude of ω vs. the phase of ω on polar

### Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

### Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

### Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Stability

### STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control

### ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

### DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)

### Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

Spectral Properties of Linear- Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of single-input/singleoutput (SISO) systems! Characterizations

### Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

### FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a

### Robust fixed-order H Controller Design for Spectral Models by Convex Optimization

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization Alireza Karimi, Gorka Galdos and Roland Longchamp Abstract A new approach for robust fixed-order H controller design by

### Uncertainty and Robustness for SISO Systems

Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical

### Automatic Control (TSRT15): Lecture 7

Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward

### CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

### ECE 486 Control Systems

ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

### Control Systems I. Lecture 9: The Nyquist condition

Control Systems I Lecture 9: The Nyquist condition Readings: Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Jacopo Tani Institute for Dynamic Systems and Control

### Iterative Controller Tuning Using Bode s Integrals

Iterative Controller Tuning Using Bode s Integrals A. Karimi, D. Garcia and R. Longchamp Laboratoire d automatique, École Polytechnique Fédérale de Lausanne (EPFL), 05 Lausanne, Switzerland. email: alireza.karimi@epfl.ch

### MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

### CDS 101/110a: Lecture 10-1 Robust Performance

CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

### CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

### r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

### ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

### Frequency Response Techniques

4th Edition T E N Frequency Response Techniques SOLUTION TO CASE STUDY CHALLENGE Antenna Control: Stability Design and Transient Performance First find the forward transfer function, G(s). Pot: K 1 = 10

### Unit 11 - Week 7: Quantitative feedback theory (Part 1/2)

X reviewer3@nptel.iitm.ac.in Courses» Control System Design Announcements Course Ask a Question Progress Mentor FAQ Unit 11 - Week 7: Quantitative feedback theory (Part 1/2) Course outline How to access

### Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

### IC6501 CONTROL SYSTEMS

DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

### Stability Margin Based Design of Multivariable Controllers

Stability Margin Based Design of Multivariable Controllers Iván D. Díaz-Rodríguez Sangjin Han Shankar P. Bhattacharyya Dept. of Electrical and Computer Engineering Texas A&M University College Station,

### Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

### Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become

Closed-loop system enerally MIMO case Two-degrees-of-freedom (2 DOF) control structure (2 DOF structure) 2 The closed loop equations become solving for z gives where is the closed loop transfer function

### ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

### Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming

Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming Gorka Galdos, Alireza Karimi and Roland Longchamp Abstract A quadratic programming approach is proposed to tune fixed-order

### Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

### Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

### Stability of Feedback Control Systems: Absolute and Relative

Stability of Feedback Control Systems: Absolute and Relative Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University Stability: Absolute and Relative

### STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

ECE4510/5510: Feedback Control Systems. 5 1 STABILITY ANALYSIS 5.1: Bounded-input bounded-output (BIBO) stability Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated

### OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

### (b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

### Let the plant and controller be described as:-

Summary of Fundamental Limitations in Feedback Design (LTI SISO Systems) From Chapter 6 of A FIRST GRADUATE COURSE IN FEEDBACK CONTROL By J. S. Freudenberg (Winter 2008) Prepared by: Hammad Munawar (Institute

### Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of

### Chapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust

### Robust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization

Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3

### Richiami di Controlli Automatici

Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

### Analysis of Discrete-Time Systems

TU Berlin Discrete-Time Control Systems TU Berlin Discrete-Time Control Systems 2 Stability Definitions We define stability first with respect to changes in the initial conditions Analysis of Discrete-Time

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the

### Lecture 1: Feedback Control Loop

Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using

### Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

### Outline. Classical Control. Lecture 1

Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

### Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

### 1 Closed Loop Systems

Harvard University Division of Engineering and Applied Sciences ES 45 - Physiological Systems Analysis Fall 2009 Closed Loop Systems and Stability Closed Loop Systems Many natural and man-made systems

### ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

### Root Locus Methods. The root locus procedure

Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain

### Model Uncertainty and Robust Stability for Multivariable Systems

Model Uncertainty and Robust Stability for Multivariable Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Representing model uncertainty.

### Robust Control. 2nd class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room

Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5-303B) 2nd class Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8,

### Classify a transfer function to see which order or ramp it can follow and with which expected error.

Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

### Tradeoffs and Limits of Performance

Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop

### Active Control? Contact : Website : Teaching

Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances

### Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.1-3, Emilio Frazzoli

Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Guzzella 9.1-3, 13.3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 3, 2017 E. Frazzoli (ETH)

### The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

Lecture 7. Loop analysis of feedback systems (2). Loop shaping 2. Performance limitations The loop shaping paradigm. Estimate performance and robustness of the feedback system from the loop transfer L(jω)

### Compensator Design to Improve Transient Performance Using Root Locus

1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

### Nonlinear Control. Nonlinear Control Lecture # 18 Stability of Feedback Systems

Nonlinear Control Lecture # 18 Stability of Feedback Systems Absolute Stability + r = 0 u y G(s) ψ( ) Definition 7.1 The system is absolutely stable if the origin is globally uniformly asymptotically stable

### VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

### Module 3F2: Systems and Control EXAMPLES PAPER 2 ROOT-LOCUS. Solutions

Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOT-LOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the root-locus

### K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify

### Didier HENRION henrion

POLYNOMIAL METHODS FOR ROBUST CONTROL PART I.1 ROBUST STABILITY ANALYSIS: SINGLE PARAMETER UNCERTAINTY Didier HENRION www.laas.fr/ henrion henrion@laas.fr Pont Neuf over river Garonne in Toulouse June

### Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability

### 1 (20 pts) Nyquist Exercise

EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

### CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.

### ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

### Stability and Robustness 1

Lecture 2 Stability and Robustness This lecture discusses the role of stability in feedback design. The emphasis is notonyes/notestsforstability,butratheronhowtomeasurethedistanceto instability. The small

### 1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

### Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

### Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This

### Topic # Feedback Control

Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability

### Nyquist Stability Criteria

Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Introduction to

### FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control Lecture 6: Robust stability and performance in MIMO systems [Ch.8] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 6: Robust Stability and Performance () FEL3210

### Compensation 8. f4 that separate these regions of stability and instability. The characteristic S 0 L U T I 0 N S

S 0 L U T I 0 N S Compensation 8 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. As suggested in Lecture 8, to perform a Nyquist analysis, we

### Structured Uncertainty and Robust Performance

Structured Uncertainty and Robust Performance ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Structured uncertainty: motivating example. Structured

### Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

### Root Locus Design Example #4

Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

### Linear State Feedback Controller Design

Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

### Table of Laplacetransform

Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

### Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

### Chapter Eleven. Frequency Domain Design Sensitivity Functions

Feedback Systems by Astrom and Murray, v2.11b http://www.cds.caltech.edu/~murray/fbswiki Chapter Eleven Frequency Domain Design Sensitivity improvements in one frequency range must be paid for with sensitivity