Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!


 Cleopatra Kelley
 3 years ago
 Views:
Transcription
1 Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid  The German exam is the only valid version! All answers must be written on the regular exam sheets (which are in German).
2 Question (Modeling and Linearization) 8 Points The figure below illustrates a capacitor with variable distance between the plates. The lower plate of the capacitor is fixed. The upper plate of mass m is movable and connected to two springs and a damper. The springs are equal and their string stiffness is k. At the position y = y, the springs are in their zero force position. The damper force is proportional to the velocity of the plate. The damping coefficient is b. The upper plate is attracted by the lower plate with the force F EF = c U2 4 y 2, where U is the voltage across the capacitor. The position y is measured by an appropriate sensor. g U Efield m y a) (3 points) Determine the differential equations which describe the vertical motion of the upper plate. Select appropriate input, output and state variables. Give the system equations in the standard form, i.e., as a system of nonlinear firstorder differential equations of the form ż(t) = f(z(t),v(t)), w(t) = h(z(t),v(t)), z(t) R 2, v(t),w(t) R. b) (2 points) Determine the voltage U e which keeps the upper plate at equilibrium at the position y e = y /2. Note: y > m g/k. c) (3 points) Linearize the system equations at the position y e = y /2 (a normalization is omitted). Give the system equations in the standard form, i.e., in statespace representation {A,b,c,d}. / 2
3 Question 2 (Frequency domain, time domain) 8 Points The openloop transfer functions (loop gain) (L (s),l 2 (s),l 3 (s),l 4 (s)) of 4 control systems are given. Further the Nyquist plots (diagrams A, B, C und D) of these transfer functions, and the resulting step responses (step responses bis 4) of the corresponding closed loop systems are given. Assign the correct nyquist plot and the correct step response to each of the open loop transfer functions. Use the table provided below for your solution. You do not need to justify your answers. Credits: Per correct assignment: + credit Per incorrect assignment: credit Minimum amount of credits for the whole question: credits Transfer functions Table for solution L (s) = L 2 (s) = L 3 (s) = L 4 (s) = s 2 +s+ (3s) (s 2 +s+).5s+ s 2 +s+ 2s+ s 2 +s+ Nyquist plot (open loop) Step response (closed loop) Nyquist plot A Nyquist plot B Im Im Re Re 2 / 2
4 Nyquist plot C Nyquist plot D.5.5 Im Im Re Re step response step response amplitude [].6.4 amplitude [] time [s] 5 5 time [s] step response 3 step response amplitude [].6.4 amplitude [] time [s] 5 5 time [s] 3 / 2
5 Question 3 (Controller Design) Points The following plant is given P(s) = s (s + ) (s + 2) Your supervisor asks you and your colleague to design a controller for the given plant. You suggest to use a PID controller and to design its parameters with the Ziegler/Nichols method. a) (4 points) Determine the critical gain k p and the critical frequency ω. b) ( point) Now calculate according to the Ziegler/Nichols method the parameters k p, T i and T d of the following PID controller [ C PID (s) = k p + ] + s T d s T i Afterwards, your colleague computes with MATLAB the phase margin of the control system of your controller. This poor margin turns out to be Since your colleague wants to have more phase margin, he suggests to use instead of C PID (s) the following controller C 2 (s) = 2 s (2 s) c) (5 points) Since your supervisor wants to be sure that the phase margin is larger with C 2 (s), she asks you to compute the phase margin of the control system C 2 (s) P(s). 4 / 2
6 Question 4 (LaplaceTransformation) 9 Points The subtasks a) and b) can be solved independently. a) (4 points) Determine the timedomain output signal y(t) of the system P(s) P(s) = s + 2 (s s + ) (s + 3) for the following input signal u(t) u(t) = h(t). b) A linear timeinvariant SISO system is excited by u(t) = h(t). Its step response in the timedomain is y(t) = ( e t (cos(2 t) + 2 ) sin(2 t)) h(t). i) (3 points) Calculate the transfer function Σ(s) of the SISO system. ii) iii) ( point) Determine the poles of the system. ( point) Approximate the rise time t 9 as well as the overshoot ˆǫ of the step response by respecting only the relevant system dynamics. 5 / 2
7 Question 5 (Constraints) Points Figure shows a sketch of the system to be analyzed. A ferromagnetic solid sphere is positioned in the magnetic field of an electromagnet. The magnitude of this field can be adjusted very rapidly by an amplifier. Therefore, the force acting on the solid sphere is assumed to be proportional to the input u(t). u(t) y(t) Figure : Floating ferromagnetic solid sphere in a magnetic field. A controller C(s) (whose design is not a part of this question) has to keep the ferromagnetic sphere levitating in the magnetic field. The position y(t) of the sphere is measured by a photo cell. The measurement y(t) is corrupted by the electromagnetic radiation that is produced by the amplifier. The lowest frequency of the noise signal is 5 Hz 3 rad/s. Figure 2 shows the setup of the control system. r(t) C(s) u(t) P(s) y(t) n Figure 2: Control system with input and output signals. The dynamic behavior of the plant can be represented perfectly by the following state space model: [ ] [ ] d dt x(t) = x(t) + u(t) () 9 9 where x (t) = y(t) is the position and x 2 (t) is the velocity of the ferromagnetic solid sphere. a) ( point) Determine the transfer function P(s) of the plant with the input signal u(t) and the output signal y(t). b) (4 points) Sketch in the Bodediagram provided on next page the magnitude P(j ω) and phase plot P(j ω) of the plant transfer function. Tip: Determine the asymptotes for very low and very high frequencies. c) ( point) Indicate in the Bodediagram the frequency range where the noise signal n(t) is present. d) (4 points) Before starting with the design of the controller C(s), answer first the question, whether a controller exists that can full fill the requirements. What are your considerations? What is your answer? Justify your answer mathematically. 6 / 2
8 P(j ω) db ω rad/s P(j ω) ω rad/s Figure 3: BodeDiagram for representing the solution. 7 / 2
9 Question 6 (Nyquistplot, Nyquisttheorem) 8 Points For a plant P(s) the following Bode plot was measured. 4 Bode Diagram Magnitude [db] Phase [deg] Frequency [rad/s] Figure 4: Bode plot of the system a) (2 points) Draw the Nyquist plot of the plant P(s) qualitatively in the provided figure. Thereby, use the information that lim P(jω) = 4 j. ω b) (2 points) Identify the transfer function of the plant P(s) using the Bode plot. c) ( point) You want to control the plant using a Pcontroller C(s) = k p mit k p =. What are the gain and the phase margins of the resulting closed loop system. d) ( point) Use the Nyquist theorem in order to find the values of k p, for which the system is stable. e) (2 points) You want to improve the step response of the closed loop system. Therefore, you use a PDcontroller with the transfer function C(s) =.5 +.5s. What is the gain margin of the resulting closed loop system? 8 / 2
10 4 Nyquist Plot 3 2 Imaginary Axis Real Axis Figure 5: Nyquist plot of the plant P(s) 9 / 2
11 Question 7 (System Analyses, Block Diagram) 8 Points A statespace representation is given ẋ(t) = A x(t) + b u(t) y(t) = c x(t) + d u(t) with A = 2, b =, c = [ ], d = a) (2 points) In the sense of Lyapunov, is the system stable, asymptotically stable, or unstable? Justify your answer mathematically. b) ( point) Is the control system completely controllable? Justify your answer mathematically. c) ( point) Is the control system completely observable? Justify your answer mathematically. d) (2 points) The detailed flow chart of a different control system is given with the input signal u(t) and the output signal y(t) (Fig. 6). Derive the statespace matrices {A, b, c, d} for the given system! 3 y(t) 2 u(t) x (t) x 2 (t) x 3 (t) 5 4 Figure 6: Signal flow chart, u(t) = input signal, y(t) = output signal e) (2 points) The transfer function Σ(s) is given, describing the input/output behavior of another linear dynamic system Σ(s) = s2 + 3s + 2 s 3 + 4s 2 + s + 5 Determine the system matrices {A,b,c,d} of an accordant statespace representation. / 2
12 Question 8 (MultipleChoice) 8 Points Decide whether the following statements are true or false and check the corresponding check box with an X ( ). You are not required to justify your answers. All questions are equally weighted ( point). There will be a reduction of one point for a wrong answer. Unanswered questions will get points. The minimum sum for all questions is points. a) The differential equation δẋ = 9 δx+2 δu represents the linearization of the nonlinear system ẋ = 7 x 2 5 x + 3 u 2 around the equilibrium point {x e =,u e = 2}. b) A constant signal u(t) = at the input of a system with the transfer function Σ(s) = produces for t a constant output signal of 2. s 4 s 2 +3s+2 c) The following state space model {A, b, c, d} represents a realization for a system with the transfer function Σ(s) = s+3 A = [ 7 5 s 2 5s 7 : ], b = [ ], c = [ 3 ], D = [ ] d) An unstable system with the transfer function P(s) = 2 s(s 3) can be stabilized in a closed loop control system by a PDcontroller C(s) = k p + k d s with the parameters k p = 2 and k d =.5. e) A plant with the transfer function P(s) = s(s+5) (an integrator s and a firstorder element (LP) s+5 in series) is controlled by a Pcontroller (k p > ). There is a disturbance signal w at the input of the plant (see figure below). w r k p + + P s y The integrator of the plant will guarantee that a constant disturbance w(t) = h(t) will be completely rejected for r(t) = and t, i.e. lim t y(t) =. Be aware of this fact! / 2
13 f) A PIcontroller C(s) = k P (+ T i s ) is used to control an asymptotic stable system. For the adjusted controller parameters k p (gain of the proportional part) and T i (time constant of the integral part), the output signal of the control system shows a harmonic oscillation (control system is critically stable). By increasing the time constant T i of the integral part, the control system will become asymptotically stable. g) An asymptotically stable control system has at least a guaranteed gain margin of k < 2 if its sensitivity function fulfills the condition max S(jω) < 2. ω h) The open loop gain of a control system L(s) = C(s) P(s) has two unstable poles. The Nyquistplot L(jω) is shown below for ω von bis +. It can be cocluded that he closed loop control system is asymptotically stabel. 3 2 L(jω) Im Re 2 / 2
Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationExam. 135 minutes, 15 minutes reading time
Exam August 15, 2017 Control Systems I (151059100L) Prof Emilio Frazzoli Exam Exam Duration: 135 minutes, 15 minutes reading time Number of Problems: 44 Number of Points: 52 Permitted aids: Important:
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationClassify a transfer function to see which order or ramp it can follow and with which expected error.
Dr. J. Tani, Prof. Dr. E. Frazzoli 505900 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency ResponseDesign Method
.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. ... Response to
More informationEECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 8111 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationECE 388 Automatic Control
Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationLecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.
ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition
More informationECE 486 Control Systems
ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following
More informationExam in Systems Engineering/Process Control
Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 76 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total number
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09Dec13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationIntroduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
More informationPart II. Advanced PID Design Methods
Part II Advanced PID Design Methods 54 Controller transfer function C(s) = k p (1 + 1 T i s + T d s) (71) Many extensions known to the basic design methods introduced in RT I. Four advanced approaches
More informationExam. 135 minutes, 15 minutes reading time
Exam August 6, 208 Control Systems II (5059000) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationAutomatic Control A. A.A. 2016/2017 July 7, Corso di Laurea Magistrale in Ingegneria Meccanica. Prof. Luca Bascetta.
Corso di Laurea Magistrale in Ingegneria Meccanica Automatic Control A Prof. Luca Bascetta A.A. 2016/2017 July 7, 2017 Name: Surname: University ID number: Signature: This file consists of 8 pages (including
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationExam in Systems Engineering/Process Control
Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 2762 Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total
More informationDesign and Tuning of Fractionalorder PID Controllers for Timedelayed Processes
Design and Tuning of Fractionalorder PID Controllers for Timedelayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Nonminimum Phase System) To increase the rise time of the system, we
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationControl Systems. Root Locus & Pole Assignment. L. Lanari
Control Systems Root Locus & Pole Assignment L. Lanari Outline rootlocus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS  Root
More informationExercise 1 (A Nonminimum Phase System)
Prof. Dr. E. Frazzoli 559 Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Nonminimum Phase System) To decrease the rise time of the system,
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30Apr14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationMAE143 B  Linear Control  Spring 2017 Final, June 15th
Instructions: MAE143 B  Linear Control  Spring 017 Final, June 15th 1. This exam is open book. You may use whatever written materials of your choice, including your notes and the book.. You may use a
More informationExercises for lectures 13 Design using frequency methods
Exercises for lectures 13 Design using frequency methods Michael Šebek Automatic control 2016 31317 Setting of the closed loop bandwidth At the transition frequency in the open loop is (from definition)
More informationControl Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch Emilio Frazzoli
Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch. 23 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 29, 2017 E. Frazzoli
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationControl for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e
Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servooriented
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationEE 16B Final, December 13, Name: SID #:
EE 16B Final, December 13, 2016 Name: SID #: Important Instructions: Show your work. An answer without explanation is not acceptable and does not guarantee any credit. Only the front pages will be scanned
More informationECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 119 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages 9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationCDS 101/110a: Lecture 102 Control Systems Implementation
CDS 101/110a: Lecture 102 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory  Classical control 
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationMTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan
MTNS 06, Kyoto (July, 2006) Shinji Hara The University of Tokyo, Japan Outline Motivation & Background: H2 Tracking Performance Limits: new paradigm Explicit analytical solutions with examples H2 Regulation
More informationKars Heinen. Frequency analysis of reset systems containing a Clegg integrator. An introduction to higher order sinusoidal input describing functions
Frequency analysis of reset systems containing a Clegg integrator An introduction to higher order sinusoidal input describing functions Delft Center for Systems and Control Frequency analysis of reset
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationr +  FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of handwritten notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationEECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16
EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use
More informationME 132, Fall 2015, Quiz # 2
ME 132, Fall 2015, Quiz # 2 # 1 # 2 # 3 # 4 # 5 # 6 Total NAME 14 10 8 6 14 8 60 Rules: 1. 2 sheets of notes allowed, 8.5 11 inches. Both sides can be used. 2. Calculator is allowed. Keep it in plain view
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationECE 350 Signals and Systems Spring 2011 Final Exam  Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.
ECE 35 Spring  Final Exam 9 May ECE 35 Signals and Systems Spring Final Exam  Solutions Three 8 ½ x sheets of notes, and a calculator are allowed during the exam Write all answers neatly and show your
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationControl Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationCDS 101/110a: Lecture 101 Robust Performance
CDS 11/11a: Lecture 11 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationMAE 143B  Homework 9
MAE 43B  Homework 9 7.2 2 2 3.8.6.4.2.2 9 8 2 2 3 a) G(s) = (s+)(s+).4.6.8.2.2.4.6.8. Polar plot; red for negative ; no encirclements of, a.s. under unit feedback... 2 2 3. 4 9 2 2 3 h) G(s) = s+ s(s+)..2.4.6.8.2.4
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root
More informationControl Systems I. Lecture 9: The Nyquist condition
Control Systems I Lecture 9: The Nyquist condition adings: Guzzella, Chapter 9.4 6 Åstrom and Murray, Chapter 9.1 4 www.cds.caltech.edu/~murray/amwiki/index.php/first_edition Emilio Frazzoli Institute
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationD G 2 H + + D 2
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationProblem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013
EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding
More informationPositioning Servo Design Example
Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pickandplace robot to move the link of a robot between two positions. Usually
More informationCHAPTER 7 FRACTIONAL ORDER SYSTEMS WITH FRACTIONAL ORDER CONTROLLERS
9 CHAPTER 7 FRACTIONAL ORDER SYSTEMS WITH FRACTIONAL ORDER CONTROLLERS 7. FRACTIONAL ORDER SYSTEMS Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationThis homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.
6.003 Homework #14 This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. Problems 1. Neural signals The following figure illustrates
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More information16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R +  E G c (s) G(s) C Figure 1: The standard block diagram
More informationProblem Value Score Total 100/105
RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first
More informationMAE 143B  Homework 7
MAE 143B  Homework 7 6.7 Multiplying the first ODE by m u and subtracting the product of the second ODE with m s, we get m s m u (ẍ s ẍ i ) + m u b s (ẋ s ẋ u ) + m u k s (x s x u ) + m s b s (ẋ s ẋ u
More informationProblem Set 4 Solution 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability
More informationTuning PI controllers in nonlinear uncertain closedloop systems with interval analysis
Tuning PI controllers in nonlinear uncertain closedloop systems with interval analysis J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier U2IS, ENSTA ParisTech SYNCOP April 11, 2015 Closedloop
More informationState Regulator. Advanced Control. design of controllers using pole placement and LQ design rules
Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
More informationFATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY
FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai  625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION
More informationStep Response Analysis. Frequency Response, Relation Between Model Descriptions
Step Response Analysis. Frequency Response, Relation Between Model Descriptions Automatic Control, Basic Course, Lecture 3 November 9, 27 Lund University, Department of Automatic Control Content. Step
More information