Abstract. The assumptions made for rank computation are as follows. (see Figure 1)

Size: px
Start display at page:

Download "Abstract. The assumptions made for rank computation are as follows. (see Figure 1)"

Transcription

1 A Novel Metrc for Interconnect Archtecture Performance Parthasarath Dasgupta, Andrew B. Kahng, and Swamy Muddu CSE Department, UCSD, La Jolla, CA ECE Department, UCSD, La Jolla, CA abk, Abstract We propose a new metrc for evaluaton of nterconnect archtectures. Ths metrc s computed by optmal assgnment of wres from a gven wre length dstrbuton (WLD) to a gven nterconnect archtecture (IA). Ths new metrc, the rank of an IA, s a sngle number that gves the number of connectons n the WLD that meet a specfc target delay when embedded n the IA. A dynamc programmng algorthm s presented to exactly compute the rank of an IA wth respect to a gven WLD wthn practcal runtmes. We use our new IA metrc to quanttatvely compare mpacts of geometrc parameters as well as process and materal technology advances. For example, we observe that 42% reducton n Mller couplng factor acheves the same rank mprovement as a 38% reducton n nter-layer delectrc permttvty for a 1M gate desgn n the 130nm technology. 1 Introducton Performance evaluaton of nterconnect archtectures (IA) s typcally made wth respect to delay, crosstalk nose, number of nterconnecton layers and congeston. These factors are often studed wth respect to global lnes whch are crtcal to meet performance requrements. However, such studes often fal to consder factors such as va blockage and repeater nserton n sem-global and local layers 1. Prevous IA qualty measures are also typcally ndependent of desgn parameters (e.g., Rent parameter or wre length dstrbuton) and do not permt quantfed comparson of dfferent types of IA mprovements (materals, dmensons, etc.) In ths paper, we propose a novel metrc for nterconnect archtecture performance whch returns a sngle number for gven IA and wre length dstrbuton (WLD). Our metrc s the rank of the IA wth respect to a WLD. The metrc s computed by optmal assgnment of connectons (and repeater from a fxed repeater resource) from the WLD to the IA wth the objectve of maxmzng the number of longest wres that meet ther clock frequency dependent target delays. The rest of the paper s organzed as follows. Secton 2 descrbes the prevous works on performance evaluaton and optmzaton of IA s. Secton 3 ntroduces the proposed metrc and Secton 4 gves a dynamc programmng (DP) algorthm for computaton of rank by optmal assgnment of wres. Secton 5 descrbes our expermental setup and results for rank-based comparson of varous IA mprovements. Secton 6 provdes conclusons and future research drectons. 2 Related Works Performance evaluaton of IA s has been extensvely studed n recent years. [6] presents a study of scalng nterconnect parameters Ths work was partally supported by Cadence Desgn Systems, Inc. and the MARCO Ggascale Slcon Research Center. Parthasarath Dasgupta s permanent address: Dept. of Management Informaton Systems, Indan Insttute of Management. Emal: partha@mcal.ac.n 1 Va blockage effect decreases the total wrng area avalable n a layer. Repeater nserton n global layers ncreases the va blockage n local layers. These two effects thus ncrease the number of layers requred for routng a desgn and must be taken nto account durng IA evaluaton. on delay and sgnal ntegrty. They perform delay and nose analyss of global lnes over dfferent technology nodes wth varyng crtcal lne lengths. Smlar studes n [10] and [2] study the effect of changng geometrc parameters and technology constrants on delay, crosstalk and sgnal ntegrty. However, these works do not consder local and sem-global lnes n performance measurement. [11] evaluates delay of global lnes and prescrbes desgn technques for mprovng delay. [5] also computes the delay of global lnes, but consders repeater nserton to mnmze total delay. In [1] and [13], geometrc parameters of nterconnect lnes n local, sem-global and global layers are optmzed to ncrease routng densty whle mnmzng area and delay. [13] gves an optmal top to bottom desgn methodology for mnmzng delay, number of wrng layers, and area. Repeaters are nserted to mnmze the delay of global lnes wthn a gven repeater area resource. In most of these recent studes, effects of va blockage and repeater nserton on desgn are not consdered when measurng performance. In [7] and [3], these factors are shown to strongly affect the number of layers needed to acheve a gven IA qualty. Repeater nserton s also shown to severely lmt the delay performance of an IA n [13]. We take these factors nto consderaton when defnng a new IA metrc. 3 A New Metrc for Interconnect Archtecture Evaluaton Ultmately, qualty of an IA should reflect how well the IA allows desgners to meet both performance requrements and manufacturng constrants. We seek a qualty metrc whch s smple, effcently computable, desgn-dependent, frequency-dependent and senstve to nterconnect geometrc parameters as well as materal propertes. Gven an nterconnect archtecture and a wre length dstrbuton 2, our new metrc determnes the qualty of the IA by optmal assgnment of wres from the WLD to the IA subject to the constrants that () longer wres are assgned to hgher layers and () longer wres are buffered frst to meet ther target delays. The qualty of an IA s determned by the rank of the frst wre assgnment that fals to meet ts target delay (Defnton 2). Defnton 1 The rank of a wre s ts ndex n the wre length dstrbuton (WLD), where the wres have been arranged n order of non-ncreasng lengths. Defnton 2 The rank of an nterconnect archtecture α, denoted by r(α), s a non-negatve nteger, and s gven by the ndex of the hghest-rank wre n the WLD that fals to meet ts target delay, wthn a specfed repeater area budget, subject to the condton that all the wres of the WLD can be assgned n the gven archtecture. Defnton 3 An nterconnect archtecture α has a rank r(α) =0f not all the wres n the gven WLD can be assgned to ts layer-pars even wthout meetng the delay requrements. The assumptons made for rank computaton are as follows. (see Fgure 1) 2 The WLD used n ths study s the stochastc wre length dstrbuton of [4].

2 The gven IA s characterzed by layer-pars. All wres n a layer-par have dentcal values of wdth and thckness. The spacng between any two adjacent wres n a gven layer-par and the heght of the nter-layer delectrc (ILD) between any two consecutve layer-pars are constants. All wres n the archtecture are L -shaped. Each segment of an L -shaped wre s routed n one layer of a layer-par. Va area for the L, and of the ends of the L segments, s computed as a part of the wre. Longer wres are routed on upper layer-pars and shorter wres are routed on lower layer-pars. The maxmum area avalable for repeaters s specfed as a percentage of total de area 3. All gates are placed evenly n the entre de. Repeaters used n all wres of a gven layer-par are of unform sze. Repeaters are nserted startng from the longer wres and proceedng to the shorter wres. Then, the problem of computng the rank of an IA can be well-defned as follows: Input: (see Table 1 for notaton) Interconnect archtecture α wth fxed number of layer-pars and fxed values of wdth, spacng, heght, and thckness per layer. WLD w contanng n wres. Avalable repeater area A R. Upper bounds d on the maxmum permssble delay of wre, 1 n n the WLD w. Objectve: Assgn wres from the gven WLD to the layer-pars of the gven archtecture α, and nsert repeaters, such that r α s maxmum. Layer par j Repeaters Layer par j+1 Fgure 1: Longer wres are assgned to hgher layer-pars. Shorter wres are assgned to lower layer-pars. Repeaters are nserted n longer wres frst to meet the target delay requrements. 4 Rank Computaton usng Dynamc Programmng To compute the rank of the IA, a maxmum number of wres should be assgned to ts layer-pars, satsfyng delay requrements. To acheve ths, we requre an optmal combnaton of wres assgned to layer-pars, repeaters nserted n the wres, and vas. Such an optmal combnaton s not guaranteed by greedy top-down assgnment of wres to layer-pars wth repeater nserton. Fgure 2 shows a counter example wth all four wres to be assgned havng equal 3 In the current verson of our mplementaton, we do not reconcle mpled drver and recever szng wth total gate area budget. However, the DP algorthm can be extended to address ths. Notaton α η ν τ j a A d A R A w j A v j A u j b B j c o c j C L c p d D f c j l l max m M n p q r r o r j s j S j s opt j v a w W j z r Descrpton Archtecture wth m layer-pars, fxed wdth, spacng, and thckness Repeater count n wre Number of vas contrbuted by a wre n α Delay of wre segment between two consecutve repeaters n layer-par j Swtchng constant of repeater De area Maxmum repeater area Total wrng area n layer-par j Total area allocated n layer-par j for vas from wres assgned to layer-pars 1 j 1. Total area allocated n layer-par j for vas from repeaters used n layer-pars 1 j 1. Swtchng constant of repeater Avalable area for wre assgnment n layer-par j Input capactance of mnmum-szed nverter Capactance per unt length of wre on layer-par j Load capactance Parastc capactance of transstor n drver Target delay of wre n WLD Delay of wre Target clock frequency Index of wre n WLD Index of a wre n WLD that meets target delay Index of layer-pars n IA Length of wre Maxmum wre length Number of layer-pars n IA α Array storng feasblty of wre assgnment Number of wres n WLD Varable representng wre ndex Varable representng layer-par ndex Varable representng repeater area Output resstance of mnmum-szed nverter Resstance per unt length of wre on layer-par j Repeater sze correspondng to layer-par j Spacng between adjacent wres n layer-par j Optmal repeater sze n layer-par j Area of a va (obtaned from process parameters) Wre length dstrbuton Wdth of wre n layer-par j Number of repeaters used for area r Table 1: Table of notatons. length. RC delay of the upper layer-par s much larger than that of the bottom layer-par. Greedy wre assgnment assgns two wres to the upper layer-par and repeaters to meet target delay, but ths exhausts the repeater budget of eght repeaters. Wres assgned to the lower layer-par thus fal to meet target delay. The optmal soluton has rank 4 whle the greedy soluton has rank 2. (a) (b) Wres n layer par j meet target delay Wres n layer par j+1 fal to meet target delay Wre n layer par j meets target delay. Wres n layer par j+1 meet target delay. Fgure 2: Suboptmalty of greed. (a) shows the greedy wre assgnment to two consecutve layer-pars achevng rank = 2. (b) shows the optmal wre assgnment achevng rank = 4. Exhaustve search over all possble layer-assgnments and repeater confguratons s mpractcal. We now gve a dynamc programmng (DP) algorthm that performs optmal rank computaton n reasonable tme. The DP runs n m stages, where m = total number of layer-pars n the archtecture. The problem of rank computaton s consdered as a collecton 2

3 of subproblems, where each subproblem s characterzed by the four parameters () number of wres to be assgned, () number of layer-pars used for assgnng the wres, () repeater area used to satsfy the delay constrants, and (v) number of wres assgned that meet delay constrants. Let, j, r and respectvely denote the elements of the 4-tuple n the order. A four-dmensonal boolean array M of cells s defned wth dmensons correspondng to, j, r and. If wres can be assgned to j layer-pars, such that wres meet ther target delay usng at most r repeater area and the remanng n wres can be assgned to m j layer-pars (gnorng delay requrements), then the value of M j r s 1. If the assgnment s nfeasble, then M j r s 0. The DP populates the cells of M accordng to the recurrence relaton gven by Equaton (1), where 1,, 1, 2 n,1 j m, 1 r, r 1, r 2 A R, and z r1 and z r2 are the number of repeaters correspondng to repeater areas r 1 and r 2 respectvely. The defntons of the terms 1, 2, 3 n Equaton (1) are as follows. M[1, j, r 1, 1 ] correspond to prevously computed entres of M. M (1, j 1, z r 1, r r 1, r 2, 2, ) ndcates whether t s possble to assgn wres 1 1,, 1 2 meetng delay requrements to the j 1 st layer-par usng at most r r 1 repeater area, gven that 1 wres have already been assgned to layerpars 1,, j usng r 1 repeater area, and also that wres ft nto layer-par j 1, gnorng the delay constrants. r 2 r r 1 denotes the actual repeater area used for assgnng 2 wres to j 1 st layer-par. z r1 s used to compute the va area used n j 1 st layer-par due to r 1 repeater area used n layer-pars 1 j. M (.) s 1 f the assgnment s feasble, and 0 otherwse. M (n,, m, j +1,z r1 z r2 ) ndcates whether t s possble to assgn (n - ) wres to the (remanng) last (m -(j + 1)) layer-pars gnorng the delay requrements, gven that r 1 r 2 repeater area has been used n wres n layer-pars 1 j +1. z r1 z r2 s the repeater count correspondng to r 1 r 2 repeater area used n layer-pars 1 j 1. M (.) s 1 f the assgnment s feasble, and 0 otherwse. For rank computaton, we need to fnd the maxmum value of for whch M j A R s 1 for 1 n and j 1 m. Algorthm 1: Rank computaton Input: number of wres n, number of layer-pars m, maxmum repeater area A R Output: Rank of archtecture r α 1. Intalze M(n, A R ) 2. update M(n, m, A R ) // ths s the key step n rank computaton 3. for j = m to 1 4. for = n to 1 5. for = to 1 6. f M[, j, A R, ] == 1 then 7. return( ) 8. return(0) Fgure 3: Algorthm for computaton of IA rank. The DP algorthm starts wre assgnment from the topmost layer-par and proceeds to the lower layer-pars. Longer wres are assgned to the hgher layer-pars and shorter wres to the lower layer-pars. In each teraton of the DP (Steps 8 10 n Fgure 5), we compute a bnary value that ndcates the feasblty of wre assgnment to a sequence of layer-pars. Startng wth Algorthm 2: Intalze M Input: number of wres n, maxmum repeater area A R Output: Intalzed Boolean Array M 1. for =1ton 2. for r =1toA R 3. f M r r 2 == 1 and M n m 2 z r2 == 1 then M 1 r =1 4. else M j r =0 Fgure 4: Intalzaton of data structure M. Algorthm 3: DP (update M) Input: number of wres n, number of layer-pars m, maxmum repeater area A R Output: Boolean array M 1. for =2ton 2. for j =1tom for =1to 4. for r =1toA R 5. M[, j 1,r, ]=0 6. for 1 =1to 7. for r 1 =1tor 8. p = M 1 j r 1 1 M 1 j 1 z r1 r r 1 r 2 1 M n m j 1 z r1 z r2 9. M! j 1! r! M! j 1! r! $ p 10. f M! j 1! r! == 1 then goto step 4 Fgure 5: Procedure for updatng boolean array M. the longest wre and the topmost layer-par, we compute the feasblty of assgnng n wres to m layer-pars usng at most A R repeater area. Wre assgnment wth repeater nserton n a specfc layer-par s performed by a functon M (.). Wre assgnment to a sequence of layer-pars wthout consderng delay requrements s performed by M (.). The algorthm starts wth an ntal set of values of the boolean array M j r, for 1 n, j 1, and r =1toA R, set by the functon & ' ( (, ( -. 0 n Step 1 of Fgure 4. At the frst teraton, the value of M j 1 r s computed for r 1 and for j = 1. Subsequent teratons wll compute the new values of M j 1 r from the pre-computed values of M[ ], and the values returned by M (.) and M (.). The tme complextes of the procedures gven above are as follows. M (.) has a worst-case complexty of O n A R. M (.) has a worst-case complexty of O n. The functon. 3 0 has a worst-case complexty of O m 4 n 4 4 A 3 R. Overall, the worst-case tme complexty of our algorthm for rank computaton (Fgure 3) s O m 4 n 4 4 A 3 R. 4.1 Delay Computaton and Repeater Inserton Target delay for wre n the WLD s defned as d l 5 l max 4 15 f c where d represents the normalzed (wth respect to length) delay of the wre, l s the length of wre, and l max s the maxmum wre length n WLD. Longer wres have a larger value of d and hence have more strngent delay requrements than shorter wres. The actual delay D of a wre depends on the layer-par to whch t s assgned. Repeater nserton s performed accordng to the followng rules. Longer wres are buffered before shorter wres. Incremental nserton of repeaters s performed untl target delay s met or repeaters cannot be placed at approprate ntervals for a wre. 3

4 1 M j 1 r M j r 1 1 M 1 j 1 z r 1 r r 1 r 2 2 M n m j 1 z r1 z r2 r 1 r 2 r 1 2 (1) Repeaters nserted n all wres of a layer-par are of unform sze. The optmal repeater sze s opt j s determned usng constants r j and c j of a layer-par. Thus, the number of repeater types s equal to the number of layer-pars. The number and sze of repeaters nserted n a wre depends upon the layer-par 4 to whch the wre s assgned (as well as the wre length and delay constrants). The delay of wre assgned to layer-par j s computed from the model of nterconnect gven n [15]. Specfcally, delay of a wre segment of length l between any two consecutve repeaters s gven by [15]: τ j br tr C L c p b c j R tr r j C L l a r j c j l 2 (2) where R tr s transstor equvalent resstance, a and b are constants 5 that depend on the swtchng model of the repeater, and C L and c p are load and parastc capactances respectvely. Also, r j and c j are determned completely by the wre wdth, spacng and thckness of a layer-par. Repeater sze s j s expressed as a multple of the mnmum nverter sze. The sze of the repeater requred to mnmze total wre delay s a functon of wre parameters and s determned by R tr r o5 s j and C L s j 4 c o, where r o s the output resstance and c o s the nput capactance of a mnmum-szed nverter. On layer-par j, the total delay of a wre of length l wth η repeaters, each of sze s j, s gven by the followng equaton [15]: D η τ j η br o c o c p b c j r o s j r j c o s j l η r j c j a l 2 η 2 r br o c o c p η b o c j r j c o s j l r j c j a l 2 (3) s j η 2 To make D d, we nsert η repeaters each of sze s j n wre. A closed form soluton for η and s j cannot be obtaned by solvng D d. Instead, we () determne optmum repeater sze s j for layer-par j to mnmze delay [14] and () nsert repeaters 6 of sze s j ncrementally n a wre untl D d. Optmum repeater sze requred to mnmze total delay D s obtaned by settng D s 0 j and s gven by s opt c j j r o (4) c o r j To compute wre area avalable for routng n a layer-par, wre count and the number of repeaters nserted n the wres are requred. We compute the number of repeaters correspondng to a repeater area as the rato of repeater area to the repeater sze. r 1 z r1 (5) s j In Subsectons 4.2 and 4.3, we descrbe the evaluaton of M (.) and M (.). In these procedures, Equaton (5) s used to obtan the number of vas to be allocated n a gven layer-par for repeaters already nserted n hgher layer-pars. 4.2 Wre Assgnment to Layer-Par Wth Delay Requrements We now explan key aspects of the procedure ( ( ' for computng M (.) n the Equaton (1) recurrence. Ths procedure returns a boolean value ndcatng the feasblty of assgnment of wres to a layer-par consderng delay requrements. 4 Resstance per unt length, capactance per unt length, and ground capactance depend on parameters of the layer-par. a and b 0 7 for wre delay computaton [15]. 6 In ths work we assume unform sze repeaters n all wres of a layer-par. Algorthm 4: Wre assgnment (wth delay requrements) wre assgn Input: number of wres 1 above layer-par j, current layer-par j, number of repeaters z r1 used for wres n layer-pars 1!! j 1, repeater area r 3 avalable for assgnment n layer-par j, number of wres 2 requred to meet target delay n layer-par j, total number of wres to be assgned up to current layer-par, de area A d, repeater sze s opt j, WLD w, target delay d of wres. Output: Boolean value M 1! j! z r 1! r 3! r 2! 2!, r 2 = repeater area actually used n current layer-par j 1. B j = A d - A v j 1 - A u j 1 // A v j 1, A u j 1 are computed from 1 and z r 1 respectvely 2. p = whle p wre area = l p! W j S j 5. f (wre area B j ) then goto step (6) else return(0) 6. assgn wre p to layer-par j 7. B j B j - wre area 8. whle (D p d p AND repeater area# r 3 ) 9. compute D p 10. repeater area = repeater area + s opt j 11. f (repeater area == r 3 ) then return(0) 12. p p f wres return(1) 2 1,, cannot be assgned then return(0) Fgure 6: Algorthm for assgnment of wres to sngle layer-par consderng delay requrements. It assumes that 1 wres are assgned to layer-pars 1 j 1 meetng delay requrements usng z r1 number of repeaters. 1 2 wres are to be assgned to the current layer-par ( j) of whch 2 wres should meet the target delay wthn an avalable repeater area r 3. Intally, the avalable area (B j ) for assgnment of wres n layer-par j s computed from de area A d, va area ( A v j 1 ) used by wres n layer-pars 1 j 1, and va area (A u j 1 ) used by repeaters nserted n wres on the layerpars 1 j 1. Wres are assgned ncrementally n the current layer-par untl ether no more area s avalable for assgnment of wres, or the number of wres assgned s equal to the specfed count. The procedure returns 0 f the former condton s satsfed. For each wre assgned, ts actual delay D s computed, and s compared wth ts target delay d. If D $ d, then repeaters of sze s opt j are nserted ncrementally untl D d or repeater area used s not less than the avalable area r 3. The procedure returns 0 f the avalable area for repeaters s used up before the delay n the wre reaches the desred bound. If the procedure s able to successfully assgn 2 wres wthn the avalable repeater area, t next attempts to assgn the remanng 1 2 wres to the current layer-par gnorng delay constrants. If the assgnment s unsuccessful, t returns 0. If all the above assgnments can be done successfully, the procedure returns 1. 4

5 Algorthm 5: Greedy assgnment (greedy assgn) Input: total number of wres n, ndex of last wre assgned so far, number of layer-pars m j 1, number of repeaters z r1 z r2 used for repeater area (r 1 r 2 ) for wres n layer-pars 1!! j 1, de area A d. Output: Boolean value M n!! m! j 1! z r1 z r2!!!!!! 1. for q m to j 2//q s the layer-par ndex 2. compute B q = A d z r1 z r2 ν v a 3. q m // start wth bottommost layer-par 4. p n // start wth smallest wre 5. whle(q j 1 ) 6. f(p ) then return(1) 7. A w q = l p W q S q 8. A v q =0 9. whle(a w q A v q B q ) 10. assgn wre p to layer-par q 11. compute A w q A w q l p W q S q 12. compute A v q p ν v a 13. p p f(p ) then return(1) 15. q q return(0) Fgure 7: Greedy algorthm for assgnment of wres to layer-pars wthout consderng delay bounds. ( ' 4.3 Wre Assgnment to Layer-Pars Wthout Delay Requrements The procedure computes the feasblty of assgnng n wres to m j 1 layer-pars wthout consderng delay requrements. Wre assgnment s performed to layer-pars greedly n a bottom-up manner untl all the layer-pars are full. Salent aspects are as follows. Repeaters assgned to wres n layer-pars 1 j are routed usng vas passng through all the layer-pars below. Wre assgnments n all the layer-pars j 2 m take nto account area occuped by repeater vas. Ths s computed n Steps 9 and 10 of procedure ( '. The area remanng n layer-par j for wre assgnment s A d A u j (after removng area correspondng to repeater vas). Wres are assgned bottom-up startng from layer-par m, and from wre n. Incremental assgnment s performed to one layer-par at a tme untl A w j A v j A d A u j. If the avalable area n a layer-par s zero, then wre assgnment starts from the next hgher layer-par. ( ' The procedure returns 1 f all n wres can be assgned wthn the avalable m j 1 layer-pars. It returns 0 otherwse. Lemma 1 s optmal. Proof. The procedure has the followng characterstcs: () wres are assgned n ascendng order of ther lengths, startng from the shorter wres at the bottom layers; () t uses strctly more wres n the lower layers; () t has strctly more wrng resource n the hgher layers and (v) t has less wrng demand n the upper layers. Thus, at any stage, f there s some extra space n any lower layer-par, then some wres can always be moved from a hgher layer-par to the lower layer-par to get an mproved soluton. Ths procedure thus attempts to pack wres n the layerpars strctly n a bottom-up manner, and uses optmum number of layer-pars. 5 Performance Studes We study the varaton n rank for dfferent IA s and WLD s. Archtectures chosen for study are based on TSMC parameters for the 180nm, 130nm and 90nm technology nodes (gven n Table 3) [12]. WLDs are generated for 1M, 4M and 10M gate desgns usng the method of [4] and Rent parameter p = 0.6. Varaton of rank s studed wth varyng ILD permttvty, Mller couplng factor, target clock frequency, and maxmum repeater area. To reduce runtme, we perform coarsenng of the WLD for large nstances. 5.1 Coarsenng of the WLD The tme complextes of our proposed algorthms are very large. For the large gate counts used n our studes, nave mplementaton of the basc algorthm requres exorbtant runtme. We reduce nstance complexty by formng bunches of connectons gven by the WLD, such that each bunch s a collecton of wres of unform sze, and assgnment of the connectons to the layer-pars s done n bunches of several wres nstead of the smple method of one wre at a tme. The rank of the archtecture s determned by the actual number of wres present n the maxmum set of bunches that can be feasbly assgned to the layer-pars. Hence, error n rank computaton due to bunchng can be at most the sze of the maxmum bunch formed from the gven WLD. The relaton between maxmum number of bunches, bunch sze and the number of wres s gven by max number o f bunches number o f wres5 bunch sze. In our bunchng procedure, all the wres of a bunch are of unform length. For nstance, for a set of 100 wres of dentcal sze, f the bunch sze s specfed as 40, we generate three bunches, of szes 40, 40 and 20 respectvely. Delay consderatons for a bunch can be easly obtaned from those of a sngle wre n the bunch. However, our proposed bunchng scheme may not be approprate for an nput WLD wth very few wres of dentcal sze Expermental Results and Implcatons Delectrc constant, Mller couplng factor, target clock frequency and maxmum repeater area are vared to study the effect of these parameters on rank. A baselne desgn s chosen and each of the above parameters s vared one at a tme to observe varaton n rank. We performed experments wth baselne desgns of 4M gates n the 90nm, 1M gates n the 130nm, and 1M gates n the 180nm technology nodes. For space reasons, here we report experments wth a sngle baselne desgn of 1M gates n the 130nm technology node. The baselne parameters are gven n Table 2. Parameter Baselne value k 3.9 Mller couplng factor 2 Repeater area fracton 0.4 Sem-global layer-pars 2 Global layer-pars 1 Target clock frequency 500MHz Table 2: Baselne parameters for the 180nm, 130nm and 90nm technology node desgns. WLDs are generated for the 1M and 4M gate desgn based on the stochastc WLD model of [4] wth Rent parameter p = 0.6. Intally, de area s computed based on the gate ptch (g), number of gates (N) asde Area due to gates g 2 N. Maxmum repeater allocaton (A r ) s specfed as a fracton of the de area and s added 7 For further reducton of runtme, we also use a dfferent, and orthogonal, nstance sze reducton from the bunchng technque. In ths bnnng technque, we replace a group of wres wth a sngle wre whose length s the mean of all wre lengths n the group. Thus, for example, f we have a set of wres of lengths 5996, 5997, 5998, 5999, and 6000 of counts 3, 2, 2, 1 and 1 respectvely, then the bnnng procedure wll reduce ths set to a sngle wre length of 5998 wth a count of 9. Ths reduces the sze of the dstrbuton by factor of 5. Bnnng can also be used on bunched wres. Whle ths separate coarsenng technque s also avalable, we dd not use t because practcal runtmes were achevable usng only bunchng. (However, snce our present results may be partly compromsed by the effects of large bunch sze, our ongong expermentaton s ncorporatng a reduced bunch sze n conjuncton wth bnnng.) It s mportant to note that bunchng and bnnng do not change the tme complexty of our DP algorthm. 5

6 1 1 to the actual de area. Then, the actual de area used s gven by Equaton (6). A r Max repeater f racton 4 A d (6) A d A r De Area due to gates The gate ptch for computng the actual wre lengths n the WLD s then obtaned by dstrbutng gates evenly n the actual de area A d. A clock frequency of 1.7GHz s chosen for 130nm (maxmum MPU clock frequency based on ITRS 2001 [8]). The bunch sze used s The technology parameters chosen for the study of varaton of rank are gven n Table 3. For de area computaton, gate ptch s taken as Tech Node (based on emprcal data from ITRS [8]). The varaton of rank wth delectrc constant, Mller couplng factor, target clock frequency, and repeater area s gven n Table 4. Parameter 180nm 130nm 90nm M 1 mnmum wdth 0 230µm 0 160µm 0 120µm M 1 mnmum spacng 0 230µm 0 180µm 0 12µm M 1 thckness 0 483µm 0 336µm 0 26µm Mx mnmum wdth 0 280µm 0 200µm 0 14µm Mx mnmum spacng 0 280µm 0 210µm 0 14µm Mx thckness 0 588µm 0 340µm 0 30µm Mt mnmum wdth 0 440µm 0 440µm 0 42µm Mt mnmum spacng 0 460µm 0 460µm 0 42µm Mt thckness 0 960µm 1 020µm 0 88µm V 1 mnmum wdth 0 260µm 0 190µm 0 13µm V x mnmum wdth 0 260µm 0 260µm 0 13µm V t mnmum wdth 0 360µm 0 360µm 0 36µm Table 3: Technology parameters used for study of varaton of rank for the 130nm technology node. Parameters for the 180nm and 90nm technology nodes are also gven. For 180nm, x = 2, 3, 4, 5 and t = 6. For 130nm, x=2,3,4,5,6andt=7.for90nm, x=2, 3, 4, 5, 6, 7 and t = 8. K M C R e e e e e e e e e e e e e Table 4: Varaton of rank for the 130nm, 1M gate desgn. The second sub-column n each column corresponds to normalzed rank. Legend: K ILD permttvty; M Mller couplng factor; C target clock frequency; R maxmum repeater fracton of de area. We observe that reducton n delectrc constant enables reducton n couplng capactance and delay. For the 130nm technology node (Table 4), reducton of 38% n k produces the same ncrease n rank as 42.5% change n Mller couplng factor 8. For ease of comparson, we normalzed rank wth respect to the total number of wres n the WLD. Smulatons were performed on a dual-processor Intel Xeon system wth 2GB of memory, runnng Lnux OS. No rank computaton has runtme greater than 200s n our mplementaton. 6 Conclusons and Future Drectons In ths paper, we have proposed a new metrc for evaluaton of qualty of nterconnect archtectures. A dynamc programmng method 8 In our experments, we consdered the mnmum value of Mller couplng factor to be 1.0. Ths can be acheved by double-sded sheldng of lnes. for rank computaton s presented. The varaton of rank wth K, M, C and R (see Table 3 for notaton) for dfferent geometrc parameters and technology nodes s studed. Results show, n general, an mprovement of rank wth decreasng values of K, M, C, and ncreasng values of R. Comparson of trends n varaton of rank for the 130nm technology node for a 1M gate desgn ndcate that reductons n M can have almost the same performance mpact as reducton n K. The varaton of rank wth several geometrc and technology parameters show the need to co-optmze across several materal, process, and desgn characterstcs to acheve hghrank embeddngs of future WLDs n future nterconnect archtectures. In other words, t s not possble to enable future MPU-class desgns by materal mprovements alone. In our study, the delay requrement of wres n the WLD s assumed to be lnear n wre length. Ths requrement becomes unreasonable snce the actual delay of the connectons n the IA s proportonal to the square of length. Thus, we are currently studyng alternatve models for per-connecton delay requrement. We are also pursung drect optmzaton of nterconnect archtectures accordng to our proposed metrc, wth the goal of evaluatng ITRS and foundry BEOL archtectures. References [1] M. B. Anand, M. Kukumu and H. Shbta, Multobjectve Optmzaton of VLSI Interconnect Parameters, IEEE Trans. on CAD of Integrated Crcuts and Systems, 17(12), 1998, pp [2] M. T. Bohr, Interconnect Scalng - The Real Lmter to Hgh Performance ULSI, IEDM Tech Dg., 1995, pp [3] Q. Chen, J. A. Davs, J. D. Mendl and P. Zarkesh-Ha, A Compact Physcal va Blockage Model, IEEE Trans. on VLSI Systems, 8(6), 2000, pp [4] J. A. Davs, V. K. De and J. D. Mendl, A Stochastc Wre-length Dstrbuton for Ggascale Integraton (GSI) - Part 1: Dervaton and Valdaton, IEEE Trans. on Electron Devces, 45(3), 1998, pp [5] M. Edahro, Y. Hayash and S. Takahash, Interconnect Desgn Strategy: Structures, Repeaters and Materals wth Strategc System Performance Analyss (S 2 PAL) Model, IEEE Trans. on Electron Devces, 48(2), 2001, pp [6] C. Hu, S. -Y. Oh, O. S. Nakagawa and D. Sylvester, Interconnect Scalng: Sgnal Integrty and Performance n Future Hgh-Speed CMOS Desgns, Symposum on VLSI Technology: Dgest of Techncal Papers, 1998, pp [7] A. B. Kahng, S. Mantk, D. Stroobandt, Toward Accurate Models of Achevable Routng, IEEE Trans. on CAD of Crcuts and Systems, 20(5), 2001, pp [8] The Internatonal Technology Roadmap for Semconductors, 2001 edton, Internatonal Sematech, Austn, Texas, December [9] A. B. Kahng, D. Stroobandt, Wrng layer assgnment wth consstent stage delays, Proc. Intl. Workshop SLIP, 2000, pp [10] K. Rahmat, O. S. Nagakawa, S. -Y. Oh and J. Moll, A Scalng Scheme for nterconnect n deep submcron. HP techncal lterature, ULSI Laboratory, Hewlett-Packard Co., Palo Alto, CA [11] S. Odanaka and K. Yamashta, Interconnect Scalng Scenaro Usng a Chp Level Interconnect Model, IEEE Trans. on Electron Devces, 47(1), 2000, pp [12] Tawan Semconductor Manufacturng Company Ltd. [13] R. Venkatesan, J. A. Davs, K. A. Bowman, and J. D. Mendl, Optmal n ter Multlevel Interconnect Archtecture for Ggascale Integraton (GSI), IEEE Trans. on VLSI Systems, 9(6), 2001, pp [14] H. B. Bakoglu, Crcuts, Interconnectons, and Packagng for VLSI, Addson-Wesley, [15] R. H. J. M. Otten and R. K. Brayton, Plannng for Performance, Proc. of DAC, 1998, pp

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs Interconnect Optmzaton for Deep-Submcron and Gga-Hertz ICs Le He http://cadlab.cs.ucla.edu/~hele UCLA Computer Scence Department Los Angeles, CA 90095 Outlne Background and overvew LR-based STIS optmzaton

More information

Coarse-Grain MTCMOS Sleep

Coarse-Grain MTCMOS Sleep Coarse-Gran MTCMOS Sleep Transstor Szng Usng Delay Budgetng Ehsan Pakbazna and Massoud Pedram Unversty of Southern Calforna Dept. of Electrcal Engneerng DATE-08 Munch, Germany Leakage n CMOS Technology

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances

Annexes. EC.1. Cycle-base move illustration. EC.2. Problem Instances ec Annexes Ths Annex frst llustrates a cycle-based move n the dynamc-block generaton tabu search. It then dsplays the characterstcs of the nstance sets, followed by detaled results of the parametercalbraton

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Statistical Circuit Optimization Considering Device and Interconnect Process Variations

Statistical Circuit Optimization Considering Device and Interconnect Process Variations Statstcal Crcut Optmzaton Consderng Devce and Interconnect Process Varatons I-Jye Ln, Tsu-Yee Lng, and Yao-Wen Chang The Electronc Desgn Automaton Laboratory Department of Electrcal Engneerng Natonal Tawan

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM Internatonal Conference on Ceramcs, Bkaner, Inda Internatonal Journal of Modern Physcs: Conference Seres Vol. 22 (2013) 757 761 World Scentfc Publshng Company DOI: 10.1142/S2010194513010982 FUZZY GOAL

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Simultaneous Device and Interconnect Optimization

Simultaneous Device and Interconnect Optimization Smultaneous Devce and Interconnect Optmaton Smultaneous devce and wre sng Smultaneous buffer nserton and wre sng Smultaneous topology constructon, buffer nserton and wre sng WBA tree (student presentaton)

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques Effectve Power Optmzaton combnng Placement, Szng, and Mult-Vt technques Tao Luo, Davd Newmark*, and Davd Z Pan Department of Electrcal and Computer Engneerng, Unversty of Texas at Austn *Advanced Mcro

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

An Admission Control Algorithm in Cloud Computing Systems

An Admission Control Algorithm in Cloud Computing Systems An Admsson Control Algorthm n Cloud Computng Systems Authors: Frank Yeong-Sung Ln Department of Informaton Management Natonal Tawan Unversty Tape, Tawan, R.O.C. ysln@m.ntu.edu.tw Yngje Lan Management Scence

More information

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning Asa and South Pacfc Desgn Automaton Conference 2008 Varablty-Drven Module Selecton wth Jont Desgn Tme Optmzaton and Post-Slcon Tunng Feng Wang, Xaoxa Wu, Yuan Xe The Pennsylvana State Unversty Department

More information

A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS

A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS Shervn Haamn A FAST HEURISTIC FOR TASKS ASSIGNMENT IN MANYCORE SYSTEMS WITH VOLTAGE-FREQUENCY ISLANDS INTRODUCTION Increasng computatons n applcatons has led to faster processng. o Use more cores n a chp

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort Estmatng Delas Would be nce to have a back of the envelope method for szng gates for speed Logcal Effort ook b Sutherland, Sproull, Harrs Chapter s on our web page Gate Dela Model Frst, normalze a model

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

CHAPTER 17 Amortized Analysis

CHAPTER 17 Amortized Analysis CHAPTER 7 Amortzed Analyss In an amortzed analyss, the tme requred to perform a sequence of data structure operatons s averaged over all the operatons performed. It can be used to show that the average

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan Wnter 2008 CS567 Stochastc Lnear/Integer Programmng Guest Lecturer: Xu, Huan Class 2: More Modelng Examples 1 Capacty Expanson Capacty expanson models optmal choces of the tmng and levels of nvestments

More information

find (x): given element x, return the canonical element of the set containing x;

find (x): given element x, return the canonical element of the set containing x; COS 43 Sprng, 009 Dsjont Set Unon Problem: Mantan a collecton of dsjont sets. Two operatons: fnd the set contanng a gven element; unte two sets nto one (destructvely). Approach: Canoncal element method:

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

Pricing and Resource Allocation Game Theoretic Models

Pricing and Resource Allocation Game Theoretic Models Prcng and Resource Allocaton Game Theoretc Models Zhy Huang Changbn Lu Q Zhang Computer and Informaton Scence December 8, 2009 Z. Huang, C. Lu, and Q. Zhang (CIS) Game Theoretc Models December 8, 2009

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION 1 2 MULTIPLIERLESS FILTER DESIGN Realzaton of flters wthout full-fledged multplers Some sldes based on support materal by W. Wolf for hs book Modern VLSI Desgn, 3 rd edton. Partly based on followng papers:

More information

Reliable Power Delivery for 3D ICs

Reliable Power Delivery for 3D ICs Relable Power Delvery for 3D ICs Pngqang Zhou Je Gu Pulkt Jan Chrs H. Km Sachn S. Sapatnekar Unversty of Mnnesota Power Supply Integrty n 3D Puttng the power n s as mportant as gettng the heat out Hgher

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Optimum Design of Steel Frames Considering Uncertainty of Parameters

Optimum Design of Steel Frames Considering Uncertainty of Parameters 9 th World Congress on Structural and Multdscplnary Optmzaton June 13-17, 211, Shzuoka, Japan Optmum Desgn of Steel Frames Consderng ncertanty of Parameters Masahko Katsura 1, Makoto Ohsak 2 1 Hroshma

More information

Improved Worst-Case Response-Time Calculations by Upper-Bound Conditions

Improved Worst-Case Response-Time Calculations by Upper-Bound Conditions Improved Worst-Case Response-Tme Calculatons by Upper-Bound Condtons Vctor Pollex, Steffen Kollmann, Karsten Albers and Frank Slomka Ulm Unversty Insttute of Embedded Systems/Real-Tme Systems {frstname.lastname}@un-ulm.de

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

A linear imaging system with white additive Gaussian noise on the observed data is modeled as follows:

A linear imaging system with white additive Gaussian noise on the observed data is modeled as follows: Supplementary Note Mathematcal bacground A lnear magng system wth whte addtve Gaussan nose on the observed data s modeled as follows: X = R ϕ V + G, () where X R are the expermental, two-dmensonal proecton

More information

Embedded Systems. 4. Aperiodic and Periodic Tasks

Embedded Systems. 4. Aperiodic and Periodic Tasks Embedded Systems 4. Aperodc and Perodc Tasks Lothar Thele 4-1 Contents of Course 1. Embedded Systems Introducton 2. Software Introducton 7. System Components 10. Models 3. Real-Tme Models 4. Perodc/Aperodc

More information

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem

Speeding up Computation of Scalar Multiplication in Elliptic Curve Cryptosystem H.K. Pathak et. al. / (IJCSE) Internatonal Journal on Computer Scence and Engneerng Speedng up Computaton of Scalar Multplcaton n Ellptc Curve Cryptosystem H. K. Pathak Manju Sangh S.o.S n Computer scence

More information

AN EFFICIENT TECHNIQUE FOR DEVICE AND INTERCONNECT OPTIMIZATION IN DEEP SUBMICRON DESIGNS. Jason Cong Lei He

AN EFFICIENT TECHNIQUE FOR DEVICE AND INTERCONNECT OPTIMIZATION IN DEEP SUBMICRON DESIGNS. Jason Cong Lei He AN EFFICIENT TECHNIQUE FOR DEVICE AND INTERCONNECT OPTIMIZATION IN DEEP SUBMICRON DESIGNS Jason Cong Le He Department of Computer Scence Unversty of Calforna, Los Angeles, CA 90095 cong@cs.ucla.edu, hele@cs.ucla.edu

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms CSE 53 Lecture 4 Dynamc Programmng Junzhou Huang, Ph.D. Department of Computer Scence and Engneerng CSE53 Desgn and Analyss of Algorthms The General Dynamc Programmng Technque

More information

Leakage and Dynamic Glitch Power Minimization Using Integer Linear Programming for V th Assignment and Path Balancing

Leakage and Dynamic Glitch Power Minimization Using Integer Linear Programming for V th Assignment and Path Balancing Leakage and Dynamc Gltch Power Mnmzaton Usng Integer Lnear Programmng for V th Assgnment and Path Balancng Yuanln Lu and Vshwan D. Agrawal Auburn Unversty, Department of ECE, Auburn, AL 36849, USA luyuanl@auburn.edu,

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Basic Statistical Analysis and Yield Calculations

Basic Statistical Analysis and Yield Calculations October 17, 007 Basc Statstcal Analyss and Yeld Calculatons Dr. José Ernesto Rayas Sánchez 1 Outlne Sources of desgn-performance uncertanty Desgn and development processes Desgn for manufacturablty A general

More information

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium?

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium? APPLIED WELFARE ECONOMICS AND POLICY ANALYSIS Welfare Propertes of General Equlbrum What can be sad about optmalty propertes of resource allocaton mpled by general equlbrum? Any crteron used to compare

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Logic effort and gate sizing

Logic effort and gate sizing EEN454 Dgtal Integrated rcut Desgn Logc effort and gate szng EEN 454 Introducton hp desgners face a bewlderng arra of choces What s the best crcut topolog for a functon? How man stages of logc gve least

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information