Chapter 7 Rules of Differentiation & Taylor Series

Size: px
Start display at page:

Download "Chapter 7 Rules of Differentiation & Taylor Series"

Transcription

1 RS - Ch 7 - Ruls o Dirtiatio Chaptr 7 Ruls o Dirtiatio & Taylor Sris Isaa Nwto a Gottri Libiz 7. Rviw: Drivativ a Drivativ Ruls Rviw: Diitio o rivativ. y ' lim lim Applyig this iitio, w rviw th 9 ruls o irtiatio. First, th ostat rul: y Th rivativ o a ostat utio is zro or all valus o. y y k k y ' lim I k th k lim k k lim

2 RS - Ch 7 - Ruls o Dirtiatio 7. A Rviw o th 9 Ruls o Dirtiatio 5a 5b k g g g g g Costat a prout Costat, Costat Powr Sum - ir Prout utio prout, utio rul ruls & powr ruls 7. A Rviw o th 9 Ruls o Dirtiatio 6 7-8:Lt : Lt 9 g z g g,..., y, y g g g y y y whr y is a stritly mootoi utio o y g z y y.. g z y y, a Uivariat Chai rul Multivariat Chai rul y Quotit rul Ivrs- utio rul

3 RS - Ch 7 - Ruls o Dirtiatio Powr-Futio Rul lim... lim... lim lim lim ' Eampl: Lt Total Rvu R b: R = 5 Q Q => RQ = MR =5 Q. As Q irass R irass as log as Q> Epotial-Futio Rul h h h h κ h κ h h ' lim Thus, lim.th, Lt uiqu positiv umbr or whih lim : Diitio o lim lim lim t t t t t y Eampl Growth : Epotial

4 RS - Ch 7 - Ruls o Dirtiatio 7.. Epotial-Futio Rul: Jok A mathmatiia wt isa a bliv that h was th irtiatio oprator. His ris ha him pla i a mtal hospital util h got bttr. All ay h woul go arou rightig th othr patits by starig at thm a sayig "I irtiat you!" O ay h mt a w patit; a tru to orm h star at him a sai "I irtiat you!", but or o, his vitim's prssio i't hag. Surpris, th mathmatiia ollt all his rgy, star irly at th w patit a sai louly "I irtiat you!", but still th othr ma ha o ratio. Fially, i rustratio, th mathmatiia sram out "I DIFFERENTIATE YOU!" Th w patit almly look up a sai, "You a irtiat m all you lik: I'm." 7.. Sum or ir rul Th rivativ g g o a sum or ir o sum or ir o th rivativs o two utios is th th two utios Eampl : C Q C Q Q C Q Q Q Q Q Q 8Q Q 75 Q Q Q 75 8

5 RS - Ch 7 - Ruls o Dirtiatio 7.. Prout rul g g g Th rivativ o th prout o two utios is qual to th so utio tims th rivativ o th irst plus th irst utio tims th rivativ o th so. Eampl: Margial Rvu R PQ R Q Chk : Q Q R Q P 5 -Q P P Q 5 Q 5 Q Q Q R 5 -QQ 5 Q R Q 5 Q Quotit rul 6 g g g g Eampl : TC CQ AC CQQ C Q Q i Q Q Q C Q C Q Q C Q, th Q Total ost Avrag ost C Q Q Q C Q Q AC MC Avrag Cost Margial Cost MC AC 5

6 RS - Ch 7 - Ruls o Dirtiatio 7.. Chai rul This is a as o two or mor irtiabl utios, i whih ah has a istit ipt variabl, whr z y, i.., z is a utio o variabl y a y 7 g, i.., y is a utio o variabl z z y y y yg Q y L Eampl: R Q rvu& R R Q L Q L g MR MPP L MRP L y g z Q gl g.that is, output 7.. Chai rul: Appliatio - Log rul Chai Rul : z z y y yg y y y g Cosir h = l = Th, h =. Lt s apply Chai rul to h h ' l l l l l 6

7 RS - Ch 7 - Ruls o Dirtiatio 7.. Chai rul a its rlatio to total irtial Fi z, whr z y a y g, z Algorithm : Substitut th total irtial o y ito that o z a ivi through by z y y y y y assumig z z z y. y z y y y 7.. Ivrs utio rul Lt y= b a irtiabl stritly mootoi utio. y y y Not: A mootoi utio is o i whih a giv valu o yils a uiqu valu o y, a giv a valu o y will yil a uiqu valu o a o-to-o mappig. Ths typs o utios hav a i ivrs. Eampl : Q P Q s Q s b P b P b P P PQ -b - s Q b b b Q s [ Q s whr P] b 7

8 RS - Ch 7 - Ruls o Dirtiatio 7.. Ivrs-utio rul This proprty o o-to-o mappig is uiqu to th lass o utios kow as mootoi utios: Rall th iitio o a utio utio: o y or ah mootoi utio: o or ah y ivrs utio i > > mootoially irasig Q s = b + b P supply utio whr b > P = -b b + b Q s ivrs supply utio i > < mootoially rasig Q = a -a P ma utio whr a > P = a a -a Q ivrs ma utio 5 7. So a Highr Drivativs Drivativ o a rivativ Giv y = Th irst rivativ ' or y is itsl a utio o, it shoul b irtiabl with rspt to, provi that it is otiuous a smooth. Th rsult o this irtiatio is kow as th so rivativ o th utio a is ot as '' or y. Th so rivativ a b irtiat with rspt to agai to prou a thir rivativ: ''' a so o to or y This pross a b otiu to prou a -th rivativ. 6 8

9 RS - Ch 7 - Ruls o Dirtiatio 7. Eampl: st. a r rivativs Graphially: Q Q Q R Q Q Q Q R Q Q primitiv utio st rivativ rivativ r rivativ MR Q Q Q MR 7 7. Eampl: Highr Orr Drivativs 5 6 y ' 6 " primitiv utio st rivativ rivativ r rivativ th rivativ 5th rivativ 8 9

10 RS - Ch 7 - Ruls o Dirtiatio 7. Itrprtatio o th so rivativ ' masurs th rat o hag o a utio.g., whthr th slop is irasig or rasig '' masurs th rat o hag i th rat o hag o a utio.g., whthr th slop is irasig or rasig at a irasig or rasig rat how th urv ts to b itsl Utility utios ar irasig i osumptio '>. But thy ir by th rat o hag i '>; that is, thy ir o ''. '' >, irasig '> '' =, ostat '> '' <, rasig '> usual assumptio 9 7. Strit oavity a ovity Stritly oav: i w pik ay pair o poits M a N o its urv a joit thm by a straight li, th li sgmt MN must li tirly blow th urv, pt at poits MN. A stritly oav urv a vr otai a liar sgmt aywhr i it os it s just oav, ot stritly oav. Tst: i " is gativ or all, th stritly oav. Stritly ovity: i w pik ay pair o poits M a N o its urv a joit thm by a straight li, th li sgmt MN must li tirly abov th urv, pt at poits MN. A stritly ov urv a vr otai a liar sgmt aywhr i it os it s just ov, ot stritly ov. Tst: i " is positiv or all, th stritly ov.

11 RS - Ch 7 - Ruls o Dirtiatio Figur 7.6 Coav a Cov Futios 7. Coavity a Covity: & I " < or all, th stritly oav. a global maima I " > or all, th stritly ov. a global miima Coav utios hav valuabl proprtis: ritial poits ar global maima, & th wight sum o oav utios is also oav. A popular hoi to srib a avrag utility a proutio utios. Eampl: AP = Arrow-Pratt risk avrsio masur = -U wu w Lt Uw = β lw β > U w = βw > U w = -β w - < AP = w As w walth irass, risk avrsio rass.

12 RS - Ch 7 - Ruls o Dirtiatio Figur 7.5 Logarithmi Utility Futio Figur 7.7 Utility Futios or Risk- Avrs a Risk-Lovig Iiviuals

13 RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris Diitio: Sris, Partial Sums a Covrg Lt {a } b a iiit squ.. Th ormal prssio Σ a is all a iiit sris.. For N =,,,... th prssio S = Σ a is all th N-th partial sum o th sris.. I lim S ists a is iit, th sris is sai to ovrg.. I lim S os ot ist or is iiit, th sris is sai to ivrg. Eampl: Σ = a iiit sris Th r, a th partial sums ar, rsptivly:.875, a.975. Th -th partial sum or this sris is i as S = Divi S by a subtrat it rom th origial o, w gt: S - S = - + S = Th, lim S = th iiit sris ovrgs to 7.5 Sris: Covrg A sris may otai positiv a gativ trms, may o thm may al out wh a togthr. H, thr ar irt mos o ovrg: o mo or sris with positiv trms, a aothr mo or sris whos trms may b gativ a positiv. Diitio: Absolut a Coitioal Covrg A sris Σ a ovrgs absolutly i th sum o th absolut valus Σ a ovrgs. A sris ovrgs oitioally, i it ovrgs, but ot absolutly. Eampl: Σ - = => o absolut ovrg Coitioal ovrg? Cosir th squ o partial sums: S = = - i is o, a S = = i is v. 6 Th, S = - i is o a i is v. Th sris is ivrgt.

14 RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Rarragmt Coitioally ovrgt squs ar rathr iiult to work with. Svral opratios o ot work or suh sris. For ampl, th ommutativ law. Si a + b = b + a or ay two ral umbrs a a b, positiv or gativ, o woul pt also that hagig th orr o summatio i a sris shoul hav littl t o th outom Thorm: Covrg a Rarragmt A sris Σ a b a absolutly ovrgt sris. Th ay rarragmt o trms i that sris rsults i a w sris that is also absolutly ovrgt to th sam limit. Lt Σ a b a oitioally ovrgt sris. Th, or ay ral umbr thr is a rarragmt o th sris suh that th w rsultig sris will ovrg to Sris: Absolut Covrgt Sris Absolutly ovrgt sris bhav just as pt. Thorm: Algbra o Absolut Covrgt Sris Lt Σ a a Σ b b two absolutly ovrgt sris. Th:. Th sum o th two sris is agai absolutly ovrgt. Its limit is th sum o th limit o th two sris.. Th ir o th two sris is agai absolutly ovrgt. Its limit is th ir o th limit o th two sris.. Th prout o th two sris is agai absolutly ovrgt. Its limit is th prout o th limit o th two sris Cauhy Prout. 8

15 RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Covrg Tsts Thr ar may tsts or ovrg or ivrg o sris. Hr ar th most popular i oomis. Divrg Tst I th sris Σ a ovrgs, th {a } ovrgs to. Equivaltly: I {a } os ot ovrg to, th th sris Σ a a ot ovrg. Limit Compariso Tst Suppos Σ a a Σ b ar two iiit sris. Suppos also that r = lim a b ists a < r <. Th Σ a ovrgs absolutly i Σ b ovrgs absolutly Sris: Covrg Tsts p Sris Tst Th sris Σ p is all a p Sris. i p > th p-sris ovrgs i p th p-sris ivrgs. Altratig Sris Tst A sris o th orm Σ - b, with b is all altratig sris. I {b } is rasig a ovrgs to, th th sum ovrgs. Gomtri Sris Tst Lt a R. Th sris Σ a is all gomtri sris. Th, i a < th gomtri sris ovrgs i a th gomtri sris ivrgs. 5

16 RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Powr Sris Diitio: Powr Sris A utio sris o th orm Σ a - = a + a - + a is all a powr sris tr at. That is, a powr sris is a iiit sris o utios whr ah trm osists o a oiit a a a powr -. Eampls: - Σ = + = Σ = - = Σ = - = Popular ampl i Fia DDM isout ivi mol: 7.5 Sris: Powr Sris Proprtis: - Th powr sris ovrgs at its tr, i.. or = - Thr ists a r suh that th sris ovrgs absolutly a uiormly or all - p, whr p<r, a ivrgs or all - > r. r is all th raius o ovrg or th powr sris a is giv by: r = lim sup a a + Not: It is possibl or r to b zro --i.., th powr sris ovrgs oly or = -- or to b -i.., th sris ovrgs or all. Eampl: Σ = - r = lim sup a a + = lim sup + + = lim sup +* = Sris ovrgs absolutly a uiormly o ay subitrval o - <. 6

17 RS - Ch 7 - Ruls o Dirtiatio 7.5 Sris: Powr Sris Polyomials ar rlativly simpl utios: thy a b a, subtrat, a multipli but ot ivi, a, agai, w gt a polyomial. Dirtiatio a itgratio ar partiularly simpl a yil agai polyomials. W kow a lot about polyomials.g. thy a hav at most zros a w l prtty omortabl with thm. Powr sris shar may o ths proprtis. Si w a a, subtrat, a multiply absolutly ovrgt sris, w a a, subtrat, a multiply thik Cauhy prout powr sris, as log as thy hav ovrlappig rgios o ovrg. Dirtiatig a itgratig works as pt. Importat rsult: Powr sris ar iiitly ot lim sup irtiabl. 7.6 Taylor Sris Th Taylor sris is a rprstatio o a iiitly irtiabl utio as a iiit sum o trms alulat rom th valus o its rivativs at a sigl poit,. It may b rgar as th limit o th Taylor polyomials. Brook Taylor 685 7, Egla Diitio: Taylor Sris Suppos is a iiitly ot irtiabl utio o a st D a D. Th, th sris T, = Σ [!] - is all th ormal Taylor sris o tr at, or arou,. I =, th sris is also all MaLauri Sris. 7

18 RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Rmarks - A Taylor sris is assoiat with a giv utio. A powr sris otais i priipl arbitrary oiits a. Thror, vry Taylor sris is a powr sris but ot vry powr sris is a Taylor sris. - T, ovrgs trivially or =, but it may or may ot ovrg aywhr ls. I othr wors, th r o T, is ot ssarily gratr tha zro -Ev i T, ovrgs, it may or may ot ovrg to Eampl: A Taylor Sris that os ot ovrg to its utio = p- i = i = Th utio is iiitly ot irtiabl, with =. T g, arou = has raius o ovrg iiity. T g, arou = os ot ovrg to th origial utio T g, = or all Malauri Sris: Powr Sris Drivatio a a a a a a... a a a a 6a... a 6a... a a 6a a a a! a Evaluatig ah utio at, simpliyi g & solvig or th oii t!! a! a...! a! a! a primitiv utio rivativ a a! a! a! Substituti g th valu o th oii ts ito th primitiv utio st r th rivativ rivativ rivativ!!! 6 8

19 RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Taylor s Thorm Suppos C + [a, b] -i.., is +-tims otiuously irtiabl o [a, b]. Th, or [a,b] w hav:! whrr!! p p p R I partiular, th T, or a iiitly ot irtiabl utio ovrgs to i th rmair R + ovrgs to as.!! W a show that a utio rally has a Taylor sris by hkig to that th rmair gos to zro. Lagrag ou a asir prssio: p R! 7 or som p btw a. 7.6 Taylor Sris: Taylor s Thorm Impliatios: - A utio that is +-tims otiuously irtiabl a b approimat by a polyomial o gr. -I is a utio that is +-tims otiuously irtiabl a + = or all th is ssarily a polyomial o gr. - I a utio has a Taylor sris tr at th th sris ovrgs i th largst itrval -r, +r whr is irtiabl. I prati, a utio is approimat by its Taylor sris usig a small, say =:!!! p with R! Th rror & th approimatio ps o th urvatur o. 8 9

20 RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Taylor s Thorm - Eampl Taylor sris pasio o a quarati polyomial arou =. =5+ + = = 8 = + = = = = = = = = Taylor s sris ormula:!! For,! & First-orr Taylor sris: = R = + + R with R = [!]- =- p R!! Taylor Sris: Taylor s Thorm - Eampl Lt s hk th approimatio rror R =- : = R = = 8 = 8 =.. = 8.. = 8.. =.. = 8.8. = 8.8. For : R 8! 8! 5 R prt it R R R Not: Polyomial a b approimat with grat auray.

21 RS - Ch 7 - Ruls o Dirtiatio 7.6 Malauri Sris o Lt s o a Taylor sris arou =: primitiv utio st rivativ ' rivativ '' r rivativ ''' th rivativ Substitutig th valu o th oiits ito th primitiv utio!!!!! 7.6 Malauri Sris o os Lt s o a Taylor sris arou =: os primitivutio si os si os st r th rivativ rivativ rivativ rivativ os ' si '' os ''' si os Substitutig th valuo th oiits ito th primitivutio os!!! Now, lt s hk i th rmair R + gos to as : p os p R!!! a th last trm is a ovrgig sris to, as.

22 RS - Ch 7 - Ruls o Dirtiatio 7.6 Malauri Sris o si & Eulr s ormula Similarly, w a a Taylor sris or si: si! 5 7 5! 7!! Now, lt s go bak to th Taylor sris o. Lt s look at i : i i! i! i! os isi! 5 i i i i i!!! 5! 5! i i 5! This last rsult is all Eulr s ormula. It will r-appar wh solvig irtial quatios with ompl roots. 7.6 Malauri Sris o log + log! primitivutio st r th rivativ rivativ rivativ rivativ Evaluatigah utio at, simpliyig & solvig or th oiit log &!... Substitutig th valu o th oiits ito th primitivutio!!!! i i! i i

23 RS - Ch 7 - Ruls o Dirtiatio 7.6 Malauri Sris o log + log A st orr sris pasio: log+ = + O. Notatio: O : R is bou by A as or som A <. Blow, w plot log+ & its liar approimatio. Wh is small say, <., typial o aual itrst rats or mothly stok rturs, th liar approimatio works vry wll Taylor sris: Approimatios Taylor sris work vry wll or polyomials; th potial utio a th si a osi utios. Thy ar all ampls o tir utios i.., quals its Taylor sris vrywhr. Taylor sris o ot always work wll. For ampl, or th logarithm utio, th Taylor sris o ot ovrg i is ar rom. Log approimatio arou : 6

24 RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Nwto Raphso Mtho Th Nwto Raphso NR mtho is a prour to itrativly i roots o utios, or a solutio to a systm o quatios, whr =. Vry popular i umrial optimizatio, whr =. To i th roots o a utio. W start with: W riv a itrativ pross to i th roots o a utio. ' ' ' ' y y k k k k k k k 7 k Xk+ Xk X B C A 7.6 Taylor Sris: NR Mtho 8 W a us th NR mtho to miimiz a utio. Rall that '* = at a miimum or maimum, thus statioary poits a b ou by applyig NR mtho to th rivativ. Th itratio boms: W '' k ; othrwis th itratios ar ui. Usually, w a a stp-siz, λ k, i th upatig stp o : k+ = k λ k ' k '' k. '' ' k k k k

25 RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: NR Quarati Approimatio Wh us or miimizatio, th NR mtho approimats by its quarati approimatio ar k. Epa loally usig a -orr Taylor sris: +δ = + ' δ + ½ '' δ + oδ +δ= +' δ+½ '' δ Fithδ whih miimizs this loal quarati approimatio: δ = ' '' Upat: k+ = k - ' ''. 7.6 Taylor Sris: Th Dlta Mtho Th lta mtho is us to obtai th asymptoti istributio o a o-liar utio o a raom variabl usually, a stimator. It uss a st-orr Taylor sris pasio a Slutsky s thorm. Lt b a RV, with plim =θ a Var =σ <. W kow th asymptoti istributio o : ½ - θσ N, But w wat to kow th asymptoti istributio o g. W assum g is otiuously irtiabl, ipt o. Stps: Taylor sris approimatio arou θ : g = gθ + gθ - θ + highr orr trms W will assum th highr orr trms vaish as grows. 5 5

26 RS - Ch 7 - Ruls o Dirtiatio 7.6 Taylor Sris: Th Dlta Mtho Us Slutsky thorm: plim g = gθ plim g = g θ Th, as grows, g gθ + gθ - θ ½ [g - gθ] gθ [ ½ - θ]. ½ [g - gθ]σ gθ [ ½ - θσ]. I g. os ot bhav baly, th asymptoti istributio o g - gθ is giv by that o [ ½ - θσ], whih is a staar ormal. Th, ½ [g - gθ] N, [gθ] σ. Atr som work ivrsio, w obtai: g Ngθ, [gθ] σ Taylor Sris: Th Dlta Mtho Eampl Lt a Nθ, σ Q: g =δ? δ is a ostat First, alulat th irst two momts o g : g = δ plim g =δθ g = -δ plim g =-δθ Rall lta mtho ormula: g Th, g a Nδθ, δ θ σ a Ngθ, [gθ] σ. 5 6

27 RS - Ch 7 - Ruls o Dirtiatio Gomtri sris !!!. arou Malauri sris th o trms irst iv th Fi. Giv a a a a Gomtri sris: Eah trm is obtai rom th prig o by multiplyig it by, ovrgt i <. 5 9 whr a a a a y. a a y 7.7 Gomtri sris: Approimatig -a - It is possibl to auratly approimat som ratios, with - trm i th omiator, with a gomtri sris. Rall: For =. a=. -a=. & =. a=.9 -a= & =.95

28 RS - Ch 7 - Ruls o Dirtiatio 7.7 Gomtri sris: Approimatig A - AA Taylor sris approimat io - I i I A A I A A... A by aalogy A A A A I... salar algbra Appliatio to th Loti Mol =A+ => I-A =.5 A..5.5 I A I A with 6 I A Appliatio: Gomtri sris & PV Mols A stok pri P is qual to th isout som o all uturs ivis. Assum ivis ar ostat a th isout rat is r. Th: whr. Eampl: = USD ; r = 8% P = USD.8 = USD.5 = 56 8

29 RS - Ch 7 - Ruls o Dirtiatio 7.7 Appliatio: Gomtri sris & PV Mols Now, w assum ivis grow at a ostat g a th isout rat is r. Th:, Eampl: = USD ; r = 8% & g = % P = USD *..8-. = USD 7. whr Not: NPV o ivi growth = USD 7 USD.5 = USD.5 57 Q: What is th irst rivativ o a ow? A: Prim Rib! 9

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation Ltur otts Dsity of stats Distributio futio Statisti of arrirs Itrisi trisi with o ompsatio ompsatio S 68 Ltur #7 Dsity of stats Problm: alulat umbr of stats pr uit rgy pr uit volum V() Larg 3D bo (L is

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

Lecture contents. Semiconductor statistics. NNSE508 / NENG452 Lecture #12

Lecture contents. Semiconductor statistics. NNSE508 / NENG452 Lecture #12 Ltur otts Sioutor statistis S58 / G45 Ltur # illig th pty bas: Distributio futio ltro otratio at th rgy (Dsity of stats) (istributio futio): ( ) ( ) f ( ) Pauli lusio Priipl: o two ltros (frios) a hav

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

UNIT 2: MATHEMATICAL ENVIRONMENT

UNIT 2: MATHEMATICAL ENVIRONMENT UNIT : MATHEMATICAL ENVIRONMENT. Itroductio This uit itroducs som basic mathmatical cocpts ad rlats thm to th otatio usd i th cours. Wh ou hav workd through this uit ou should: apprciat that a mathmatical

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Unit C Algbra Trigonomtr Gomtr Calculus Vctor gomtr Pag Algbra Molus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor ad Maclauri Sris Taylor ad Maclauri Sris Thory sctio which dals with th followig topics: - Th Sigma otatio for summatio. - Dfiitio of Taylor sris. - Commo Maclauri sris. - Taylor sris ad Itrval

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

MSLC Math 151 WI09 Exam 2 Review Solutions

MSLC Math 151 WI09 Exam 2 Review Solutions Eam Rviw Solutions. Comput th following rivativs using th iffrntiation ruls: a.) cot cot cot csc cot cos 5 cos 5 cos 5 cos 5 sin 5 5 b.) c.) sin( ) sin( ) y sin( ) ln( y) ln( ) ln( y) sin( ) ln( ) y y

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Exercises for lectures 23 Discrete systems

Exercises for lectures 23 Discrete systems Exrciss for lcturs 3 Discrt systms Michal Šbk Automatické říí 06 30-4-7 Stat-Spac a Iput-Output scriptios Automatické říí - Kybrtika a robotika Mols a trasfrs i CSTbx >> F=[ ; 3 4]; G=[ ;]; H=[ ]; J=0;

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

First order differential equation Linear equation; Method of integrating factors

First order differential equation Linear equation; Method of integrating factors First orr iffrntial quation Linar quation; Mtho of intgrating factors Exampl 1: Rwrit th lft han si as th rivativ of th prouct of y an som function by prouct rul irctly. Solving th first orr iffrntial

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thomas Whitham Sith Form Pur Mathmatics Cor rvision gui Pag Algbra Moulus functions graphs, quations an inqualitis Graph of f () Draw f () an rflct an part of th curv blow th ais in th ais. f () f () f

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6)

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6) AP Calculus BC Review Chapter (Sequeces a Series), Part Two Thigs to Kow a Be Able to Do Uersta the meaig of a power series cetere at either or a arbitrary a Uersta raii a itervals of covergece, a kow

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2 Beroulli Numbers Beroulli umbers are amed after the great Swiss mathematiia Jaob Beroulli5-705 who used these umbers i the power-sum problem. The power-sum problem is to fid a formula for the sum of the

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

and one unit cell contains 8 silicon atoms. The atomic density of silicon is

and one unit cell contains 8 silicon atoms. The atomic density of silicon is Chaptr Vsualzato o th Slo Crystal (a) Plas rr to Fgur - Th 8 orr atoms ar shar by 8 ut lls a thror otrbut atom Smlarly, th 6 a atoms ar ah shar by ut lls a otrbut atoms A, 4 atoms ar loat s th ut ll H,

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Pier Franz Roggero, Michele Nardelli, Francesco Di Noto

Pier Franz Roggero, Michele Nardelli, Francesco Di Noto Vrsio.0 9/06/04 Pagia di 7 O SOME EQUATIOS COCEIG THE IEMA S PIME UMBE FOMULA AD O A SECUE AD EFFICIET PIMALITY TEST. MATHEMATICAL COECTIOS WITH SOME SECTOS OF STIG THEOY Pir Fra oggro, Michl ardlli, Fracsco

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Representing Functions as Power Series. 3 n ...

Representing Functions as Power Series. 3 n ... Math Fall 7 Lab Represetig Fuctios as Power Series I. Itrouctio I sectio.8 we leare the series c c c c c... () is calle a power series. It is a uctio o whose omai is the set o all or which it coverges.

More information

3 a b c km m m 8 a 3.4 m b 2.4 m

3 a b c km m m 8 a 3.4 m b 2.4 m Chaptr Exris A a 9. m. m. m 9. km. mm. m Purpl lag hapr y 8p 8m. km. m Th triangl on th right 8. m 9 a. m. m. m Exris B a m. m mm. km. mm m a. 9 8...8 m. m 8. 9 m Ativity p. 9 Pupil s own answrs Ara =

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable auss of dadloks Four ssary oditios for dadlok to our ar: Exlusiv ass: prosss rquir xlusiv ass to a rsour Wait whil hold: prosss hold o prviously aquird rsours whil waitig for additioal rsours No prmptio:

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

1. Do the following sequences converge or diverge? If convergent, give the limit. Explicitly show your reasoning. 2n + 1 n ( 1) n+1.

1. Do the following sequences converge or diverge? If convergent, give the limit. Explicitly show your reasoning. 2n + 1 n ( 1) n+1. Solutio: APPM 36 Review #3 Summer 4. Do the followig sequeces coverge or iverge? If coverget, give the limit. Eplicitly show your reasoig. a a = si b a = { } + + + 6 c a = e Solutio: a Note si a so, si

More information

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District Logarithms Sondary Mathmatis Pag 6 Jordan Shool Distrit Unit Clustr 6 (F.LE. and F.BF.): Logarithms Clustr 6: Logarithms.6 For ponntial modls, prss as a arithm th solution to a and d ar numrs and th as

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x "±# ( ).

A. Limits and Horizontal Asymptotes ( ) f x f x. f x. x ±# ( ). A. Limits and Horizontal Asymptots What you ar finding: You can b askd to find lim x "a H.A.) problm is asking you find lim x "# and lim x "$#. or lim x "±#. Typically, a horizontal asymptot algbraically,

More information

8. Barro Gordon Model

8. Barro Gordon Model 8. Barro Gordo Modl, -.. mi s t L mi goals of motary poliy:. Miimiz dviatios of iflatio from its optimal rat π. Try to ahiv ffiit mploymt, > Stati Phillips urv: = + π π, Loss futio L = π π + Rspos of th

More information