Grid-Forming Inverters in Microgrids

Size: px
Start display at page:

Download "Grid-Forming Inverters in Microgrids"

Transcription

1 Axel Seibel, Peter Unruh Department: Converters and Drive Technology Fraunhofer IWES Slide 1

2 Contents Introduction Improving the control of grid-forming inverters SelfSync Improving SelfSync Robust control Practical tests Conclusion Fraunhofer IWES Slide 2

3 Introduction Grid-forming means that an operating device participates actively on forming the grid voltage. Grid-forming inverters act as voltage sources. f U P ff = ff 0 kk pp (PP PP 0 ) UU = UU 0 kk qq (QQ QQ 0 ) Q Fraunhofer IWES Slide 3

4 Introduction A high penetration of grid-forming inverters is inherently system stabilizing. This approach can cover: Virtual inertia Uninterruptable power supply Black start capability Fraunhofer IWES Slide 4

5 Basic Idea for grid forming inverters Transfer droops of power plant behaviour with synchronous generators to inverters I Z L = jωl L f U U E 0 P Q E 0 δ U δ P U Q Fraunhofer IWES Slide 5

6 Grid-Forming Inverters in Microgrids Control SelfSyncTM SelfSync is a technique that based on conventionel droops (f(p)- respectively U(Q)-characteristic) f0 P Q [V] 0 Load Current Fraunhofer IWES Slide 6 f st1 - Tm TWR Q st2 ϕ u u SelfSync 250 Load Voltage P U0 500 Current Inv1 TWR st1 An additional angle feedforward improves stability and the dynamic behavior Current Inv2 Tm Disconnection [A] Load Voltage Load Current Current Inv1 Current Inv2

7 Control SelfSync TM Transfer droops of power plants with synchronous generators to inverters P T m T WR P f st 1 f 0 - ϕ Represent the Best of behaviour of a synchronous generator in the control structure Q T m T WR Q st 1 st 2 u U 0 u + working well and stable in well planned microgrids (industrial application) SelfSync - Line resistance is ignored: Quality criteria (performance) of control deteriorates Fraunhofer IWES Slide 7

8 Control challenge 20xx Wishes for the future of energy production (20xx): 100% renewables in all voltage levels Arbitrary spatial distribution of grid-forming inverters Stable control in all voltage levels Handicaps for the future of energy production (20xx): Storage of energy Stability of the electrical energy system Market (investments, politics, industrial interests,..) Fraunhofer IWES Slide 8

9 What happen at low voltage level? High voltage (HV) cable has X L /R L ratio of appr. 7 (mainly inductive ) Low voltage (LV) cable has a X L /R L ratio of appr. 2 HV I Z L = jωl L LV I Z L = R L + jωl L U E 0 U E 0 δ P δ P U Q U Q Fraunhofer IWES Slide 9

10 Control challenge I Z L = R L + jωl L PP = LL kk ss + RR kk LL kk ss + RR kk 2 + ωωll kk 2 UU2 UUEE 0 cos δδ ωωll kk LL kk ss + RR kk 2 + ωωll kk 2 UUEE 0 sin δδ U E 0 QQ = ωωωω kk LL kk ss + RR kk 2 + ωωll kk 2 UU2 UUEE 0 cos δδ + LL kk ss + RR kk LL kk ss + RR kk 2 + ωωll kk 2 UUEE 0 sin δδ δ U P Q Difficulty: distribution grid angle/frequency deviation results in reactive power flow. Arbitrary spatial distribution Fraunhofer IWES Slide 10

11 Control Improving SelfSync U N f N δ N Feedback matrix F U soll f soll δ f F G GG 11 GG 12 GG 13 GG 21 GG 22 GG 23 1 TT ff ss + 1 P Q k p, k q reflect the droops angle feedforward: improve stability and transient behavior (k p, k q ) U 1 TT ff ss + 1 k p = Δf/P max k q = ΔU/Q max Fraunhofer IWES Slide 11

12 Improving SelfSync - choice of the parameters k p, k q With a higher resistive grid impedance the parameter k q gets more relevance (here L k = 1 mh, R k = 0.4 Ω). Fraunhofer IWES Slide 12

13 Comparing grid parameters to choose k p, k q Different L k = xx mh (R k = 0.4 Ω) 10-3 L k = 1 mh L k = 3 mh Fraunhofer IWES Slide 13

14 Comparing grid parameters to choose k p, k q Different L k = xx mh (R k = 0.4 Ω) L k = 1 mh L k = 3 mh Fraunhofer IWES Slide 14

15 Comparing grid parameters to choose k p, k q Different L k = xx mh (R k = 0.4 Ω) L k = 1 mh L k = 3 mh Fraunhofer IWES Slide 15

16 Experimental results voltage step 20 Double angle feedforward I out [A] Single angle feedforward Voltage step from 230 V eff to 245 V eff and back Grid impedance (0.345 Ω, filter) Smooth settling with double angle feedforward I out [A] I out [A] Without angle feedforward Time [s] Fraunhofer IWES Slide 16

17 Experimental results frequency step Frequency step from 50Hz to 49.5Hz and back Smooth settling Instantaneous reaction P [kw] Double angle feedforward Frequency [Hz] Single angle feedforward 51 P [kw] Frequency [Hz] Time [s] Fraunhofer IWES Slide 17

18 Conclusion Grid-forming inverters are inherently system stabilizing with regard to the power grid control Improved control behavior due to the angle feedforward For an optimal controller design an impedance estimation tool was applied Outlook: Actual we are designing a robust control for grid forming inverters This will be the next story! Fraunhofer IWES Slide 18

19 Contact Axel Seibel Königstor 59 D Kassel Fraunhofer IWES Slide 19

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid

Single-Phase Synchronverter for DC Microgrid Interface with AC Grid The First Power Electronics and Renewable Energy Workshop (PEREW 2017) March 1-2, 2017- Aswan Faculty of Engineering, Aswan Egypt Single-Phase Synchronverter for Microgrid Interface with AC Grid Presenter:

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems SECTION 7: FAULT ANALYSIS ESE 470 Energy Distribution Systems 2 Introduction Power System Faults 3 Faults in three-phase power systems are short circuits Line-to-ground Line-to-line Result in the flow

More information

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I

SECTION 5: CAPACITANCE & INDUCTANCE. ENGR 201 Electrical Fundamentals I SECTION 5: CAPACITANCE & INDUCTANCE ENGR 201 Electrical Fundamentals I 2 Fluid Capacitor Fluid Capacitor 3 Consider the following device: Two rigid hemispherical shells Separated by an impermeable elastic

More information

MICROGRID is a future trend of integrating renewable

MICROGRID is a future trend of integrating renewable IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 64, NO. 7, JULY 2017 5741 New Perspectives on Droop Control in AC Microgrid Yao Sun, Xiaochao Hou, Jian Yang, Hua Han, Mei Su, and Josep M. Guerrero Abstract

More information

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Variable speed turbine based wind farm including storage system connected to a power grid or islanded

Variable speed turbine based wind farm including storage system connected to a power grid or islanded Variable speed turbine based wind farm including storage system connected to a power grid or islanded A. Davigny and B. Robyns Laboratoire d Electrotechnique et d Electronique de Puissance de Lille (L2EP)

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid ESNRajuP Research Scholar, Electrical Engineering IIT Indore Indore, India Email:pesnraju88@gmail.com Trapti Jain Assistant Professor,

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

DQ-axis Current-based Droop Controller

DQ-axis Current-based Droop Controller DQ-axis Current-based Droop Controller Ibrahim Alsaleh and Lingling Fan 2 Abstract During an islanding operation of a microgrid comprised of multiple distributed generation (DG) units serving a load, DG

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. 1 Q. 25 carry one mark each. Q.1 Given ff(zz) = gg(zz) + h(zz), where ff, gg, h are complex valued functions of a complex variable zz. Which one of the following statements is TUE? (A) If ff(zz) is

More information

Virtual Inertia: Current Trends and Future Directions

Virtual Inertia: Current Trends and Future Directions applied sciences Review Virtual Inertia: Current Trends and Future Directions Ujjwol Tamrakar 1, Dipesh Shrestha 1, Manisha Maharjan 1, Bishnu P. Bhattarai 2, Timothy M. Hansen 1 and Reinaldo Tonkoski

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

3. Mathematical Modelling

3. Mathematical Modelling 3. Mathematical Modelling 3.1 Modelling principles 3.1.1 Model types 3.1.2 Model construction 3.1.3 Modelling from first principles 3.2 Models for technical systems 3.2.1 Electrical systems 3.2.2 Mechanical

More information

Application of Virtual Synchronous Generator in Solar Power Generation

Application of Virtual Synchronous Generator in Solar Power Generation Journal of Physics: Conference Series PAPER OPEN ACCESS Application of Virtual Synchronous Generator in Solar Power Generation To cite this article: Jianjun Su et al 18 J. Phys.: Conf. Ser. 187 66 View

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

Participation in the Frequency Regulation Control of a Resilient Microgrid for a Distribution Network

Participation in the Frequency Regulation Control of a Resilient Microgrid for a Distribution Network International Journal of Integrated Energy Systems, Vol, No, January-June 9 Participation in the Frequency Regulation Control of a Resilient Microgrid for a Distribution Network Peng LI Philippe DEGOBER

More information

A Computer Application for Power System Control Studies

A Computer Application for Power System Control Studies A Computer Application for Power System Control Studies Dinis C. A. Bucho Student nº55262 of Instituto Superior Técnico Technical University of Lisbon Lisbon, Portugal Abstract - This thesis presents studies

More information

Classification of Components

Classification of Components Classification of Components Classification of SMD LEDs TLM.31../TLM.32../TLM.33../ + 3... series, Mini LEDs TLM.21... / TLM.23.. / TLM.2.. and 63 LEDs TLM.11../TLM1.. Light Intensity / Color Devices are

More information

Load Current Distribution between Parallel Inverters based on Capacitor Voltage Control for UPS Applications

Load Current Distribution between Parallel Inverters based on Capacitor Voltage Control for UPS Applications IEEJ Journal of Industry Applications Vol.6 No.4 pp.58 67 DOI: 0.54/ieejjia.6.58 Paper Load Current Distribution between Parallel Inverters based on Capacitor Voltage Control for UPS Applications Mohammad

More information

10 23, 24 21, 22 19, , 14

10 23, 24 21, 22 19, , 14 MWI -T7T Six-Pack Trench IGBT = S = (sat) typ. = 1.7 Part name (Marking on product) MWI -T7T, 1, 1 1 9 17 NTC 1 3, 1, 19, E773 1 3 7 11 Pin configuration see outlines. 7, 13, 1 Features: Trench IGBT technology

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

Unit certificate for solar inverters

Unit certificate for solar inverters Unit certificate for solar inverters Certificate number: MOE 09-0326-14 Original 2013-08-07 _ of 4 This certificate replaces certificate number MOE 09-0326-11. For restrictions and conditions of validity,

More information

HOW TO DEAL WITH ELECTROMAGNETIC DISTURBANCES CAUSED BY NEW INVERTER TECHNOLOGIES CONNECTED TO PUBLIC NETWORK

HOW TO DEAL WITH ELECTROMAGNETIC DISTURBANCES CAUSED BY NEW INVERTER TECHNOLOGIES CONNECTED TO PUBLIC NETWORK HOW TO DEAL WITH ELECTROMAGNETIC DISTURBANCES CAUSED BY NEW INVERTER TECHNOLOGIES CONNECTED TO PUBLIC NETWORK Xavier YANG EDF R&D - France xavier.yang@edf.fr Ludovic BERTIN EDF R&D - France ludovic-g.bertin@edf.fr

More information

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid Comparion of Hardware Tet with SIMULINK Model of UW Microgrid Introduction Thi report include a detailed dicuion of the microource available on the Univerity- of- Wiconin microgrid. Thi include detail

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Toolbox: Electrical Systems Dynamics

Toolbox: Electrical Systems Dynamics Toolbox: Electrical Systems Dynamics Dr. John C. Wright MIT - PSFC 05 OCT 2010 Introduction Outline Outline AC and DC power transmission Basic electric circuits Electricity and the grid Image removed due

More information

Properties of CMOS Gates Snapshot

Properties of CMOS Gates Snapshot MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology 21 22 NTC 8 D11 D13 D15 7 D7 16 15 T1 T3 T5 D1 D3 D5 18 2 17 19 1 2 3 6 5 4 9 D12 D14 D16 14 T7 11 T2 T4 T6 D2 D4 D6 12 13 E72873

More information

STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD

STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD Nigerian Journal of Technology, Vol. 22, No. 1, March 2003, Okoro 46 STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD O. I. Okoro Department of Electrical Engineering, University

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

ECEN 460 Exam 1 Fall 2018

ECEN 460 Exam 1 Fall 2018 ECEN 460 Exam 1 Fall 2018 Name: KEY UIN: Section: Score: Part 1 / 40 Part 2 / 0 Part / 0 Total / 100 This exam is 75 minutes, closed-book, closed-notes. A standard calculator and one 8.5 x11 note sheet

More information

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G.

SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID POWER SYSTEM INCLUDING A.G. Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 25 (pp59-514) SYNCHRONOUS GENERATOR s ROTOR INVESTIGATION OF A HYBRID

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

PID Control. Objectives

PID Control. Objectives PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology

Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology MUBW 5-17 T8 Converter - Brake - Inverter Module (CBI3) with Trench IGBT technology 21 22 NTC 8 D11 D13 D15 7 D7 16 15 T1 T3 T5 D1 D3 D5 18 2 17 19 1 2 3 6 5 4 9 D12 D14 D16 14 T7 11 T2 T4 T6 D2 D4 D6

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Six-Pack XPT IGBT MIXA20W1200MC. V CES = 1200 V I C25 = 28 A V CE(sat) = 2.1 V. Part name (Marking on product) MIXA20W1200MC

Six-Pack XPT IGBT MIXA20W1200MC. V CES = 1200 V I C25 = 28 A V CE(sat) = 2.1 V. Part name (Marking on product) MIXA20W1200MC MIXWMC Six-Pack XPT IGBT S = = 8 (sat) =. Part name (Marking on product) MIXWMC O9 P9 L9 S8 W8 E I4 C G4 K4 E K C G H Features: Easy paralleling due to the positive temperature coefficient of the on-state

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review. Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon

More information

Six-Pack XPT IGBT MIXA80W1200TEH V CES I C25 = 1200 V. Part name (Marking on product) MIXA80W1200TEH

Six-Pack XPT IGBT MIXA80W1200TEH V CES I C25 = 1200 V. Part name (Marking on product) MIXA80W1200TEH MIXW1TEH Six-Pack XPT IGBT CES = 1 = 1 CE(sat) = 1. Part name (Marking on product) MIXW1TEH 3, 31, 3 1, 17, 1 1 T1 D1 T3 D3 9 T D 19 NTC 3 T D 7 9 7 T D 1 11 T D 1 3 E773 Pin configuration see outlines.

More information

Converter - Brake - Inverter Module (CBI 1) Trench IGBT

Converter - Brake - Inverter Module (CBI 1) Trench IGBT Converter - Brake - Inverter Module (CBI 1) Trench IGBT Preliminary data Three Phase Rectifier Brake Chopper Three Phase Inverter RRM = 16 CES = 12 CES = 12 I DM25 = 151 I C25 = 19 I C25 = 43 I FSM = 32

More information

Basics of Electric Circuits

Basics of Electric Circuits António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

Published in: Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013

Published in: Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013 Aalborg Universitet Analysis, Modelling, and Simulation of Droop Control with Virtual Impedance Loop Applied to Parallel UPS Systems Lima, Francisco Kleber A.; Branco, Carlos Gustavo C.; Guerrero, Josep

More information

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition Rotational Motion Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition 1 We ll look for a way to describe the combined (rotational) motion 2 Angle Measurements θθ ss rr rrrrrrrrrrrrrr

More information

Micro-grid to System Synchronization Based on Pre-Insertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015

Micro-grid to System Synchronization Based on Pre-Insertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015 Micro-grid to System Synchronization Based on Pre-Insertion Impedance Method (Version 1.0) By Peter Zhou University of Alberta Jan 30 th, 2015 Outline 1. What is Synchronization? 2. Synchronization Concerns?

More information

Role of Synchronized Measurements In Operation of Smart Grids

Role of Synchronized Measurements In Operation of Smart Grids Role of Synchronized Measurements In Operation of Smart Grids Ali Abur Electrical and Computer Engineering Department Northeastern University Boston, Massachusetts Boston University CISE Seminar November

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 6, January-June 2005 p. 1-16 Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

SECTION 4: ULTRACAPACITORS. ESE 471 Energy Storage Systems

SECTION 4: ULTRACAPACITORS. ESE 471 Energy Storage Systems SECTION 4: ULTRACAPACITORS ESE 471 Energy Storage Systems 2 Introduction Ultracapacitors 3 Capacitors are electrical energy storage devices Energy is stored in an electric field Advantages of capacitors

More information

CHAPTER 2 MODELING OF POWER SYSTEM

CHAPTER 2 MODELING OF POWER SYSTEM 38 CHAPTER 2 MODELING OF POWER SYSTEM 2.1 INTRODUCTION In the day to day scenario, power is an essential commodity to the human beings. The demand is more in developed countries and there is increase in

More information

Fault Calculation Methods

Fault Calculation Methods ELEC9713 Industrial and Commercial Power Systems Fault Calculation Methods There are two major problems that can occur in electrical systems: these are open circuits and short circuits. Of the two, the

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Lecture (20) DC Machine Examples Start of Synchronous Machines

Lecture (20) DC Machine Examples Start of Synchronous Machines Lecture (20) DC Machine Examples Start of Synchronous Machines Energy Systems Research Laboratory, FIU All rights reserved. 20-1 Energy Systems Research Laboratory, FIU All rights reserved. 20-2 Ra R f

More information

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS G. HARI BABU Assistant Professor Department of EEE Gitam(Deemed to be University), Visakhapatnam

More information

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011 FE Review 1 ELECTRONICS E # 1 FUNDAMENTALS Electric Charge 2 In an electric circuit it there is a conservation of charge. The net electric charge is constant. There are positive and negative charges. Like

More information

Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive

Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive Journal of Mechanics Engineering and Automation 8 (2018) 205-213 doi: 10.17265/2159-5275/2018.05.003 D DAVID PUBLISHING Analysis and Design of Control Dynamics of Manipulator Robot s Joint Drive Bukhar

More information

EE141Microelettronica. CMOS Logic

EE141Microelettronica. CMOS Logic Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

Lecture 9 Time Domain vs. Frequency Domain

Lecture 9 Time Domain vs. Frequency Domain . Topics covered Lecture 9 Time Domain vs. Frequency Domain (a) AC power in the time domain (b) AC power in the frequency domain (c) Reactive power (d) Maximum power transfer in AC circuits (e) Frequency

More information

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 8. Active Filters - 2 Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Blast From The Past: Algebra of Polynomials * PP xx is a polynomial of the variable xx: PP xx = aa 0 + aa

More information

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2,

1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. Ans: x = 4, x = 3, x = 2, 1. The graph of a function f is given above. Answer the question: a. Find the value(s) of x where f is not differentiable. x = 4, x = 3, x = 2, x = 1, x = 1, x = 2, x = 3, x = 4, x = 5 b. Find the value(s)

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

EM Simulations using the PEEC Method - Case Studies in Power Electronics

EM Simulations using the PEEC Method - Case Studies in Power Electronics EM Simulations using the PEEC Method - Case Studies in Power Electronics Andreas Müsing Swiss Federal Institute of Technology (ETH) Zürich Power Electronic Systems www.pes.ee.ethz.ch 1 Outline Motivation:

More information

Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture 41 Application of capacitors in distribution system (Contd.) (Refer Slide

More information

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008

SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS. Transient Stability LECTURE NOTES SPRING SEMESTER, 2008 SCHOOL OF ELECTRICAL, MECHANICAL AND MECHATRONIC SYSTEMS LECTURE NOTES Transient Stability SPRING SEMESTER, 008 October 7, 008 Transient Stability Transient stability refers to the ability of a synchronous

More information

Phase Control Thyristor Type SKT552/16E

Phase Control Thyristor Type SKT552/16E Date:- 4 Feb 22 Data Sheet Issue:- 3 Absolute Maximum Ratings Phase Control Thyristor Type VOLTAGE RATINGS Symbol Parameter MAXIMUM UNITS V DRM Repetitive peak off-state voltage, (note 1) 16 V V DSM Non-repetitive

More information

Sample-and-Holds David Johns and Ken Martin University of Toronto

Sample-and-Holds David Johns and Ken Martin University of Toronto Sample-and-Holds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 Sample-and-Hold Circuits Also called track-and-hold circuits Often needed in A/D converters

More information

Power Sharing Correction in Angle Droop Controlled Inverter Interfaced Microgrids

Power Sharing Correction in Angle Droop Controlled Inverter Interfaced Microgrids Power Sharing Correction in Angle Droop Controlled Inverter Interfaced Microgrids Ramachandra Rao Kolluri, Iven Mareels Tansu Alpcan and Marcus Brazil Department of Electrical and Electronic Engineering

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter

More information

Lecture 5: Using electronics to make measurements

Lecture 5: Using electronics to make measurements Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly

More information

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives Nagaraja Yadav Ponagani Asst.Professsor, Department of Electrical & Electronics Engineering Dhurva Institute of Engineering

More information

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems

SECTION 5: POWER FLOW. ESE 470 Energy Distribution Systems SECTION 5: POWER FLOW ESE 470 Energy Distribution Systems 2 Introduction Nodal Analysis 3 Consider the following circuit Three voltage sources VV sss, VV sss, VV sss Generic branch impedances Could be

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

ECE 524: Reducing Capacitor Switching Transients

ECE 524: Reducing Capacitor Switching Transients ECE 54: Session 6; Page / Spring 08 ECE 54: Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive reactance

More information

Synchronous machine with PM excitation Two-axis model

Synchronous machine with PM excitation Two-axis model Synchronous machine with PM excitation q Two-axis model q i q u q d i Q d Q D i d N S i D u d Voltage, flux-linkage and motion equations for a PM synchronous machine dd ud Ri s d q dt dq uq Ri s q d dt

More information

Lecture 05 Power in AC circuit

Lecture 05 Power in AC circuit CA2627 Building Science Lecture 05 Power in AC circuit Instructor: Jiayu Chen Ph.D. Announcement 1. Makeup Midterm 2. Midterm grade Grade 25 20 15 10 5 0 10 15 20 25 30 35 40 Grade Jiayu Chen, Ph.D. 2

More information

Tutorial Sheet Fig. Q1

Tutorial Sheet Fig. Q1 Tutorial Sheet - 04 1. The magnetic circuit shown in Fig. Q1 has dimensions A c = A g = 9 cm 2, g = 0.050 cm, l c = 30 cm, and N = 500 turns. Assume the value of the relative permeability,µ r = 70,000

More information

coil of the circuit. [8+8]

coil of the circuit. [8+8] Code No: R05310202 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 ELECTRICAL MEASUREMENTS (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Power system modelling under the phasor approximation

Power system modelling under the phasor approximation ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasor-mode simulations

More information

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s ECE 54: Session 5; Page / Spring 04 ECE 54: Lecture 5 Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive

More information

D1 D2 D3 T1 T2 T3 5 D4 D5 D6 T4 T5 T6 7

D1 D2 D3 T1 T2 T3 5 D4 D5 D6 T4 T5 T6 7 MIX 11WEH Six-Pack XPT IGBT CES 5 = = 155 CE(sat) = 1. Part name (Marking on product) MIX11WEH 13, 1 1 D1 D D3 T1 T T3 5 9 1 19 17 15 E773 3 D D5 D T T5 T 7 11 1, Features: Easy paralleling due to the

More information

Total No. of Questions :09] [Total No. of Pages : 03

Total No. of Questions :09] [Total No. of Pages : 03 EE 4 (RR) Total No. of Questions :09] [Total No. of Pages : 03 II/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 016 Second Semester ELECTRICAL & ELECTRONICS NETWORK ANALYSIS Time: Three Hours Answer Question

More information

GENERATORS AND LOADS MODELS TO INVESTIGATE UNCONTROLLED ISLANDING ON ACTIVE DISTRIBUTION NETWORKS

GENERATORS AND LOADS MODELS TO INVESTIGATE UNCONTROLLED ISLANDING ON ACTIVE DISTRIBUTION NETWORKS GENERATORS AND LOADS MODELS TO INVESTIGATE UNCONTROLLED ISLANDING ON ACTIVE DISTRIBUTION NETWORKS Paolo MATTAVELLI, Riccardo SGARBOSSA Roberto TURRI University of Padova Italy paolo.mattavelli@unipd.it

More information

Six-Pack XPT IGBT MIXA30W1200TED. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TED

Six-Pack XPT IGBT MIXA30W1200TED. V CES = 1200 V I C25 = 43 A V CE(sat) = 1.8 V. Part name (Marking on product) MIXA30W1200TED MIX3W2TED Six-Pack XPT IGBT CES = 2 2 = 43 CE(sat) =.8 Part name (Marking on product) MIX3W2TED 2, 2, 9 7 NTC 2 23, 24 2, 22 9, 2 E 72873 8 3 7 Pin configuration see outlines. 4 27, 28 8 2 3, 4 Features:

More information