Lecture 5: Using electronics to make measurements


 Janis Eaton
 2 years ago
 Views:
Transcription
1 Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly sensed As an example, we ll assume we want to measure the strain on an object strain is the degree to which an object changes its shape due to an external force:! L strain = L We can convert this to an electrical signal by using a strain gauge, a device that changes its resistance under strain
2 The measuring power of a strain gauge is quantified by the gauge factor:! /! / GF = = strain! L / L A higher gauge factor makes a better gauge One example is a metallic wire bonded to a piece of material: wire become thinner and longer as material stretches resistance increases Typically these have resistance of 20Ω and GF 2
3 Let s say we want to be sensitive to strains of the order 05 or so using this gauge That means the change in resistance is:! 5 " = # S # GF = 20$ # 0 # 2 = $ How can we measure such a small change in resistance? One answer is the Wheatstone bridge:
4 Analysis of Wheatstone bridge Think of it as a set of two voltage dividers: 4 VA = Vo + So the difference in voltages is: Note that when =, V B = V # V! = # " V & ' 4 3 A B $ o % V o V A! V = 0 B The bridge is balanced when this happens
5 For simplicity, we ll choose 2 = 3 = 4 = The bridge is then balanced when = Let s see what happens when is close to, but not equal to, : = +! " # $ V = V % V = & % ' V ( +! + + ) A B o " # = & % ' Vo 2 (! /( 2) + ) "! #! * & % % ' Vo = % Vo 2 ( 2 ) 4 So we see that the voltage difference varies linearly with δ But since the change in resistance is small, so is the change in voltage! V 6 can be ~0 V 0
6 So we need to measure a very small voltage difference, without being sensitive to fluctuations in V o itself sounds like a job for a differential amplifier! We might try a variation on the inverting amplifier discussed in the last lecture This is called a follower with gain : V A V B V  V + V o
7 This has some nice features for example, the input impedance is very high (equal to the internal resistance of the opamp) Here s how it works as an amplifier: The opamp makes sure that V + = V  We also know that: V! I " 0k# = V = V A V! = VB = Vo + I " 0M# Current is the same through both resistors since no current flows into the opamp So we have two expressions for I that must be equal: VA! VB VB! Vo I = = 0k" 0M" 0M" 0M" V = V! V + V # V! V 0k" 0k"! ( ) ( ) o B A B B A B
8 This has high gain (000), depending only on resistor values that s good! But the output is only approximately equal to the difference between the inputs there was still that V B term all by itself means there is some commonmode gain as well This circuit is good enough for many differentialamplification uses but not good enough for our strain gauge!
9 Instrumentation Amplifier To do the job we want, we need a circuit like this (called an instrumentation amplifier): V A v v o V B v 2 We ll break this up into pieces to see how it works
10 We ll start with the two left opamps: Each opamp has equal voltage at its inputs so, voltage at top of is V A, and at bottom it s V B Current through is: I V = A! V B This current can t go into opamps must go across 2 and 3
11 Putting that information together, we have: I = V A! V ( ) 2 A A B ( ) 3 B A B " # v! v2 = ( VA! VB ) $ + % & ' So this is also a differential amplifier gain determined by resistors, which is good! B v! I = V v + I = V v = V + V! V v = V! V! V A B
12 What about the commonmode gain of these two opamps? Using the equations on the previous slide, we have: v = V + V! V 2 ( ) 2 A A B v = V! V! V ( ) 3 B A B "! # v + v2 = V + V + V! V & ' If we choose and 2 to be equal, the commonmode output is the same as the input in other words, commonmode gain is one CM is already pretty good for this circuit but not good enough for our strain gauge! ( ) 2 3 A B $ A B %
13 That brings us to the final opamp in our instrumentation amplifier: Applying the ideal opamp rules here, we have: V = v! I = v + I 4 o 4 V = v! I = I V! + = V +! We can solve for the currents: v2 I2 = 2 4 I = v! v + I = v! v I v! v = / 2
14 With this, we can solve for v o :! v " vo = v # 2$ v # % = v # v & 2 ' 2 2 This part of the circuit is a subtractor Gets rid of the commonmode signal that makes it through the first set of opamps Note that exact subtraction requires all four resistors to have the same value Large CM will require the use of highprecision resistors!
15 Active lowpass filter We studied filters in the first lecture, and built them in the first lab Those were passive filters they could transmit or suppress a signal, but they couldn t amplify it With an opamp, we can build an active filter an amplifier where the gain depends on the frequency of the signal Here s how it might look: Impedance Z F
16 This looks like an inverting amplifier, so we know the gain is: Vo Z F =! V The impedance is given by: i + i! 2C = + = + i! C = Z Z Z F F 2 c = + i! C So the gain is: Vo " 2 # = $ Vi % + i! 2C & ' ( 2
Lecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationMechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I
Mechatronics II Laboratory EXPEIMENT #1: FOCE AND TOQUE SENSOS DC Motor Characteristics Dynamometer, Part I Force Sensors Force and torque are not measured directly. Typically, the deformation or strain
More informationMechatronics II Laboratory EXPERIMENT #1 MOTOR CHARACTERISTICS FORCE/TORQUE SENSORS AND DYNAMOMETER PART 1
Mechatronics II Laboratory EXPEIMENT #1 MOTO CHAACTEISTICS FOCE/TOQUE SENSOS AND DYNAMOMETE PAT 1 Force Sensors Force and torque are not measured directly. Typically, the deformation or strain of some
More informationBiosensors and Instrumentation: Tutorial 2
Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of
More informationLecture 4: Feedback and OpAmps
Lecture 4: Feedback and OpAmps Last time, we discussed using transistors in smallsignal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,
More informationD is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationElectronics Resistive Sensors and Bridge Circuits
Electronics Resistive Sensors and Bridge Circuits Wilfrid Laurier University September 27, 2012 Switches in voltage dividers One of the simplest forms of voltage divider is where one of the elements is
More informationE40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1
E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863866. Reader, Chapter 8 Noninverting Amp http://www.electronicstutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronicstutorials.ws/opamp/opamp_2.html
More information1. Mark the correct statement(s)
1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 516 kg 1.2 The range of the scale is a) 16
More informationDesigning Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Opamps in Negative Feedback
EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Opamps in Negative Feedback In the last note, we saw that can use an opamp as a comparator. However,
More informationMAS.836 PROBLEM SET THREE
MAS.836 PROBLEM SET THREE FSR, Strain Gauge, and Piezo Circuits: The purpose of this problem set is to familiarize yourself with the most common forms of pressure and force measurement. The circuits you
More informationElectronics for Analog Signal Processing  II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras
Electronics for Analog Signal Processing  II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture  14 Oscillators Let us consider sinusoidal oscillators.
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More information20.2 Design Example: Countdown Timer
EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to
More informationThe Strain Gauge. James K Beard, Ph.D. Rowan Hall Auditorium November 2, 2006
The Strain Gauge James K Beard, Ph.D. Rowan Hall Auditorium beard@rowan.edu http://rowan.jkbeard.com November 2, 2006 What is Strain? Strain is elongation or deformation of a solid body due to forces applied
More informationChapter 7. Chapter 7
Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important
More informationEE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6
EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6 Homework Passive Components Capacitors RC Filters fc Calculations Bode Plots Module III Homework due 2/20 (Najera), due 2/23 (Quinones)
More informationExercise 2: Bending Beam Load Cell
Transducer Fundamentals The Strain Gauge Exercise 2: Bending Beam Load Cell EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain and demonstrate the operation of a board,
More informationOutline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.
Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in
More informationDesigning Information Devices and Systems I Spring 2018 Lecture Notes Note 20
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv
More informationECE 2100 Lecture notes Wed, 1/22/03
HW #4, due, /24 Ch : 34, 37, 43 ECE 0 Lecture notes Wed, /22/03 Exercises: 2., 2.2, 2.4, 2.5 Stu or hints etc., see lecture notes or, /7 Problem Sessions: W, :502:40 am, WBB 22 (tall brick geology building),
More informationResistance Learning Outcomes
Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationResistance Learning Outcomes. Resistance Learning Outcomes. Resistance
Resistance Learning Outcomes Define resistance and give its unit. Solve problems about resistance. State Ohm s Law. HL: Derive the formulas for resistors in series and parallel. Solve problems about resistors
More informationDesigning Information Devices and Systems I Spring 2019 Midterm 2
1 EECS 16A Designing Information Devices and Systems I Spring 2019 Midterm 2 1. How is your semester so far? (1 point) 2. Do you have any summer plans? (1 point) Do not turn this page until the proctor
More informationDepartment of Mechanical and Aerospace Engineering. MAE334  Introduction to Instrumentation and Computers. Final Examination.
Name: Number: Department of Mechanical and Aerospace Engineering MAE334  Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your
More informationElectromechanical devices MM2EMD. Lecture 5 Using Operational Amplifiers (opamps) in the real world
University of Nottingham Electromechanical devices MM2EMD Lecture 5 Using Operational Amplifiers (opamps) in the real world Dr. roderick.mackenzie@nottingham.ac.uk Summer 2015 @rcimackenzie Released under
More informationCircuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore
Circuits for Analog System Design Prof. Gunashekaran M K Center for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture No. # 08 Temperature Indicator Design Using Opamp Today,
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationMA 3260 Lecture 10  Boolean Algebras (cont.) Friday, October 19, 2018.
MA 3260 Lecture 0  Boolean Algebras (cont.) Friday, October 9, 208. Objectives: Boolean algebras on { 0, }. Before we move on, I wanted to give you a taste of what the connection between Boolean algebra
More informationP1: Basics  Things you now know that you didn t know you knew (25 pts)
P1: Basics  Things you now know that you didn t know you knew (25 pts) a) Birds routinely land and relax on power lines which carry tens of thousands of volts of electricity. Explain why these birds do
More informationLab #3 Linearity, Proportionality, and Superposition
This lab experiment will focus on three concepts. Those concepts are linearity, proportionality, and superposition. Linearity and proportionality are like twins; they look similar at first glance, but
More informationLet s go to something more concrete
Let s go to something more concrete Let me define an electric current Whenever charges of like sign are moving, an electric current exists Suppose I have a surface A with charges (assume + because of Franklin
More informationCIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers
6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:
More informationDesigning Information Devices and Systems I Spring 2018 Lecture Notes Note 17
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 17 17.1 Capacitive Touchscreen Viewing the physical structure corresponding to one pixel on the capacitive screen, we
More informationME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 9
ME411 Engineering Measurement & Instrumentation Winter 2017 Lecture 9 1 Introduction If we design a load bearing component, how do we know it will not fail? Simulate/predict behavior from known fundamentals
More informationCircuit Analysis. by John M. Santiago, Jr., PhD FOR. Professor of Electrical and Systems Engineering, Colonel (Ret) USAF. A Wiley Brand FOR
Circuit Analysis FOR A Wiley Brand by John M. Santiago, Jr., PhD Professor of Electrical and Systems Engineering, Colonel (Ret) USAF FOR A Wiley Brand Table of Contents. ' : '" '! " ' ' '... ',. 1 Introduction
More informationMAE140 Linear Circuits Fall 2016 Final, December 6th Instructions
MAE40 Linear Circuits Fall 206 Final, December 6th Instructions. This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a handheld
More informationExperiment 25. Wheatstone Bridge experiment
Experiment 25. Wheatstone Bridge experiment Use the Wheatstone Bridge to measure the unknown electrical resistance and learn the structure and principles of the Wheatstone Bridge. In the laboratory, the
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationPHYS225 Lecture 9. Electronic Circuits
PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current
More informationStart with the transfer function for a secondorder highpass. s 2. ω o. Q P s + ω2 o. = G o V i
aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq
More informationLab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips
Lab Week 6 Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips Quiz 3 Voltage Divider (20 pts.) Please clear desks and turn
More informationThe equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
More informationDesigning Information Devices and Systems I Fall 2017 Official Lecture Notes Note 13
EECS 16A Designing Information Devices and Systems I Fall 2017 Official Lecture Notes Note 13 13.1 Analysis Review: Voltage Divider In order to review the analysis procedure described in the previous note,
More informationWhat to Add Next time you update?
What to Add Next time you update? Work sheet with 3 and 4 resistors Create worksheet of tables Add Hypothesis and Questions Add Lab and Lecture Objectives Add equipment needed Add science standards Review
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (batteries) and energytakers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current
More informationCalculate the total resistance of this combination. (3)
1 The circuit shows a combination of three resistors. 22 Ω 47 Ω 620 Ω Calculate the total resistance of this combination. Total resistance = (Total for Question = 3 marks) 2 (a) Sketch a graph to show
More informationM E 345 Professor John M. Cimbala Lecture 42
M E 345 Professor John M. Cimbala Lecture 42 Today is the last day of class. We will Do some review example problems to help you prepare for the final exam Comments: Today, I will cover as many review
More informationPhysics 364, Fall 2012, reading due your answers to by 11pm on Thursday
Physics 364, Fall 2012, reading due 20120920. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This
More informationSTRAIN GAUGE MEASUREMENT
STRAIN GAUGE MEASUREMENT INTRODUCTION There are many possible ways of measuring strain gauges using a Datascan. All methods measure the change in resistance of the gauge within a bridge circuit and the
More informationCHAPTER 5. BRIDGES AND THEIR APPLICATION Resistance Measurements. Dr. Wael Salah
CHAPTER 5 BRIDGES AND THEIR APPLICATION Resistance Measurements 1 RESISTANCE MEASUREMENTS Conventional Ways of Measuring Resistance: 1) Using a Ohmmeter Convenient but inaccurate, requires calibration
More informationNotes on Electricity (Circuits)
A circuit is defined to be a collection of energygivers (active elements) and energytakers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The
More informationTHERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS
THERE MUST BE 50 WAYS TO FIND YOUR VALUES: AN EXPLORATION OF CIRCUIT ANALYSIS TECHNIQUES FROM OHM S LAW TO EQUIVALENT CIRCUITS Kristine McCarthy Josh Pratti Alexis RodriguezCarlson November 20, 2006 Table
More informationDesigning Information Devices and Systems I Spring 2019 Midterm 2. Exam Location: Cory 521 (DSP)
1 EECS 16A Designing Information Devices and Systems I Spring 2019 Midterm 2 Exam Location: Cory 521 (DSP) PRINT AND SIGN your name:, (last name) (first name) (signature) PRINT time of your Monday section
More informationLecture #3. Review: Power
Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is
More informationUnit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors
Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,
More informationEE100Su08 Lecture #9 (July 16 th 2008)
EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart
More informationVoltage, Current, Resistance, and Ohm's Law
Voltage, Current, Resistance, and Ohm's Law a learn.sparkfun.com tutorial Available online at: http://sfe.io/t27 Contents Electricity Basics Electrical Charge Voltage Current Resistance Ohm's Law An Ohm's
More informationBRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13
EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty
More informationName Date Time to Complete
Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will connect electric lamps together in a variety of circuits. The purpose of these exercises is to
More informationName Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.
Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will continue your exploration of dc electric circuits with a steady current. The circuits will be
More information1.6 Equations with Variables on Both Sides
1. Equations with Variables on Both Sides Learning Objectives Solve an equation with variables on both sides. Solve an equation with grouping symbols. Solve realworld problems using equations with variables
More informationDesigning a Thermostat Worksheet
Designing a Thermostat Worksheet Most of us have a thermostat in our homes to control heating and cooling systems of our home. These important devices help us save energy by automatically turning off energy
More informationDiscussion Question 6A
Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries
More informationOperational amplifiers (Op amps)
Operational amplifiers (Op amps) Recall the basic twoport model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also
More informationSystematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1
Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers Kevin D. Donohue, University of Kentucky Simple circuits with single loops or nodepairs can result
More information1 of 23. Boardworks Ltd Electrical Power
1 of 23 Boardworks Ltd 2016 Electrical Power Electrical Power 2 of 23 Boardworks Ltd 2016 What is electrical power? 3 of 23 Boardworks Ltd 2016 Electrical power is the rate at which energy is transferred
More informationLecture 16.1 :! Final Exam Review, Part 2
Lecture 16.1 :! Final Exam Review, Part 2 April 28, 2015 1 Announcements Online Evaluation emails should have been sent to you.! Please fill out the evaluation form. May 6 is deadline.! Remember that
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationImpedance and Admittance Parameters
1/31/011 mpedance and Admittance Parameters lecture 1/ mpedance and Admittance Parameters Say we wish to connect the put of one circuit to the input of another. #1 put port input port # The terms input
More informationBridge Method. Bridge Method
ridge Method EIE 240 Electrical and Electronic Measurement Class 7, March 13, 2015 1 ridge Method Diode bridge is an arrangement of four or more diodes for AC/DC fullwave rectifier. Component bridge methods
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3
Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the
More informationHomework 3 Solution. Due Friday (5pm), Feb. 14, 2013
University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled
More informationENGG 1203 Tutorial. Solution. Op Amps 7 Mar Learning Objectives. Determine V o in the following circuit. Assume that the opamp is ideal.
ENGG 03 Tutorial Q Op Amps 7 Mar Learning Objectives Analyze circuits with ideal operational amplifiers News HW Mid term Revision tutorial ( Mar :306:0, CBA) Ack.: MIT OCW 6.0 Determine V o in the following
More informationENGG 1203 Tutorial. Op Amps 10 Oct Learning Objectives. News. Ack.: MIT OCW Analyze circuits with ideal operational amplifiers
ENGG 1203 Tutorial Op Amps 10 Oct Learning Objectives Analyze circuits with ideal operational amplifiers News Mid term Revision tutorial Ack.: MIT OCW 6.01 1 Q1 This circuit is controlled by the charge
More informationPiezoresistive sensors
Perform a basic bridge analysis, specifically, find output voltage as a function of input voltage and the various resistances, and find the relationship between output voltage and changes in resistance.
More informationB: Know Circuit Vocabulary: Multiple Choice Level 1 Prerequisites: None Points to: Know Circuit Vocabulary (Short Answer)
B: Know Circuit Vocabulary: Multiple Choice Level 1 Prerequisites: None Points to: Know Circuit Vocabulary (Short Answer) Objectives:  Memorize the definitions of voltage, current resistance, and power.
More informationEECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems
EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Linearity
More informationTransducers. EEE355 Industrial Electronics
Transducers EEE355 Industrial Electronics 1 Terminology Transducers convert one form of energy into another Sensors/Actuators are input/output transducers Sensors can be passive (e.g. change in resistance)
More informationOhm's Law and Resistance
Ohm's Law and Resistance Resistance Resistance is the property of a component which restricts the flow of electric current. Energy is used up as the voltage across the component drives the current through
More informationDesigning Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen  ZZZ
EECS 16A Designing Information Devices and Systems I Fall 2017 Midterm 2 Exam Location: 150 Wheeler, Last Name: Nguyen  ZZZ PINT your student ID: PINT AND SIGN your name:, (last name) (first name) (signature)
More informationE1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13
RevisionLecture 1: E1.1 Analysis of Circuits (20144530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer
More informationNow let s look at some devices that don t have a constant resistance.
Lab #3 Now let s look at some devices that don t have a constant resistance. This is the same circuit you built last time. But now, in place of the resistor first build the circuit with a light bulb, then
More informationComputer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic
Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Digital Logic Our goal for the next few weeks is to paint a a reasonably complete picture of how we can go from transistor
More informationMaterials Needed 1 DCell battery 6 6inch pieces of wire 3 flashlight light bulbs 3 light bulb holders (optional)
Experiment Module 3 Electric Circuits Objective/Introduction This experiment explores building simple circuits and testing Ohm s Law. Students will start lighting a simple light bulb. Then they will explore
More informationOperational amplifiers (Op amps)
Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.
More informationElectricity MR. BANKS 8 TH GRADE SCIENCE
Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively
More informationLab 4. Current, Voltage, and the Circuit Construction Kit
Physics 2020, Spring 2009 Lab 4 Page 1 of 8 Your name: Lab section: M Tu Wed Th F TA name: 8 10 12 2 4 Lab 4. Current, Voltage, and the Circuit Construction Kit The Circuit Construction Kit (CCK) is a
More informationPhysics 2112 Unit 19
Physics 11 Unit 19 Today s oncepts: A) L circuits and Oscillation Frequency B) Energy ) RL circuits and Damping Electricity & Magnetism Lecture 19, Slide 1 Your omments differential equations killing me.
More informationPower lines. Why do birds sitting on a highvoltage power line survive?
Power lines At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit high V, low I or high I, low V? (a) high V, low I (b) low V, high
More informationor Op Amps for short
or Op Amps for short Objective of Lecture Describe how an ideal operational amplifier (op amp) behaves. Define voltage gain, current gain, transresistance gain, and transconductance gain. Explain the operation
More informationIndustrial Electricity
Industrial Electricity PRELAB / LAB 7: Series & Parallel Circuits with Faults Name PRELAB due BEFORE beginning the lab (initials required at the bottom of page 3) PLEASE TAKE THE TIME TO READ THIS PAGE
More informationData Logger V2. Instruction Manual
Data Logger V2 Instruction Manual Joe Holdsworth 7292018 Contents Revision History... 2 Specifications... 3 Power Limits... 3 Data Rates... 3 Other Specifications... 3 Pin Outs... 4 AS21835SN... 4 AS21035SN...
More informationMET 487 Instrumentation and Automatic Controls. Lecture 13 Sensors
MET 87 nstrumentation and utomatic Controls Lecture Sensors July 69, 00 Stress and Strain Measurement Safe Load Level monitoring Force (indirect measurement by measuring strain of a flexural element Pressure
More informationPhysics 102: Lecture 05 Circuits and Ohm s Law
Physics 102: Lecture 05 Circuits and Ohm s Law Physics 102: Lecture 5, Slide 1 Summary of Last Time Capacitors Physical C = ke 0 A/d C=Q/V Series 1/C eq = 1/C 1 + 1/C 2 Parallel C eq = C 1 + C 2 Energy
More informationAnswer Key. Chapter 23. c. What is the current through each resistor?
Chapter 23. Three 2.0 resistors are connected in series to a 50.0 power source. a. What is the equivalent resistance of the circuit? R R R 2 R 3 2.0 2.0 2.0 36.0 b. What is the current in the circuit?
More informationIn this work, two types of studies were conducted. The first was the calibration of a largescale
AME 20213: Measurements and Data Analysis Technical Memo Date Submitted: Dates Performed: day/time To: From: Subject: Lab Exercise 1  Measurement Systems/Calibration Summary: In this work, two types of
More informationStrain Gauge Application and Measurement of Unknown Load
University Diploma Program Electronic Equipment Maintenance Lab Instructor: Muhammad Ajmal Khan EET027, Experiment # 6 Strain Gauge Application and Measurement of Unknown Load Objectives: 1. To find the
More information