RASTROVACIA SONDOVÁ MIKROSKOPIA

Size: px
Start display at page:

Download "RASTROVACIA SONDOVÁ MIKROSKOPIA"

Transcription

1 Katedra experimentálnej fyziky Fakulta matematiky, fyziky a informatiky UNIVERZITA KOMENSKÉHO V BRATISLAVE RASTROVACIA SONDOVÁ MIKROSKOPIA Prof.RNDr. Andrej PLECENIK, DrSc.

2 Obsah prednášky História tunelového javu Od tunelového javu k Rastrovaciemu tunelovému mikroskopu Princíp Rastrovacieho tunelového mikroskopu Rozdelenie Rastrovacích tunelových mikroskopov Meranie lokálnej hustoty stavov Rastrovacie silové mikroskopy ich princípy AFM, EFM, MFM,... SNOM Využitie SPM v litografii

3 Pravdepodobnosť prechodu elektrónu cez potenciálovú bariéru [ ] 2 1/ 2 1/ ) ( 2 ), ( ), ( ) ( x x d x K x E x V m E x dx E x K Me E D = = = α α TUNELOVÝ JAV

4 y N 1 I N 2 z x ~ N 1 ( E ev ) f ( E ev )de ~ N 2 [ ]de ( E) 1 f ( E) j = en v f ( E) = 1 1+ e E E kt F je Fermiho rozdelovacia funkcia j = de D( E ) de N1( E) N2( E ev) ) π me h { f ( E) f ( E ev }

5 Hustota stavov N E = dn de V 2π 3 / 2 1/ 2 Hustota stavov ( ) = 2 2m 2 E -počet stavov na jednotkovú oblasť energie f ( E k ) = E exp( k 1 E f ) + 1 kt

6 Ionizácia vodíka Oppenheimer 1928 rozpad jadier ťažkých prvkov Gamov 1928 Studená emisia Fowler a Nordheim 1928 Hustota stavov - Frenkel 1930, Giaver 1960 Tunelová dióda Esaki 1957 Rezonančné diódy,...

7 Princíp Rastrovacieho tunelové mikroskopu je založený na fundamentálnom jave kvantovej mechaniky známeho už na začiatku 20-tého storočia pod pojmom tunelový jav. Tunelový rastrovací mikroskop: Binning a Rohrer IBM Zürich Research Laboratory, Rüschlikon, Švajčiarsko Prvé zariadenie, pomocou ktorého bolo možné zmapovať trojdimenzionálne povrch vodivých tuhých látok s atómovým rozlíšením 1986, t.j. iba päť rokov po svojom objave Nobelová cena za fyziku AlPO 4, quartz - (SiO 2 ) tetrahedra, GaPO 4,BaTiO 3, LiNbO 3,... (Pb[Zr x Ti 1 x ]O 3 0<x<1),

8 I 2d V exp m( V E) 0 TUNELOVÝ PRÚD ZÁVISÍ EXPONENCIÁLNE OD HRÚBKY TUNELOVEJ BARIÉRY (VZDIALENOSŤ HROTU OD POVRCHU VZORKY)!!! x z y Hrot I T V T Vzorka Schematické znázornenie posuvu hrotu nad skúmaným povrchom pomocou troch piezokryštálov. Rozmer atómu ~ m = 0.1 nm = 1 Å

9 SMER RÝCHLEHO ZÁPISU x y Rastrovanie povrchu v x-ovej a y-ovej osi. Tunelový prúd je meraný iba v smeroch vyznačených plnou čiarou. Povrch grafitu snímaný pomocou Rastrovacieho tunelového mikroskopu s atomárnym rozlišením a znázornenie jednej rastrovacej dráhy hrotu

10 Mód konštantnej výšky Mód konštantného prúdu Smer rastrovania z y Smer rastrovania x I (z=konšt.) z I=konšt. a) b) Princíp rastrovania v móde konštantného konštantnej výšky (a) a konštantného prúdu (b) V móde rastrovacieho tunelového mikroskopu iba vzorky s vodivým povrchom!!! Pozor na zmenu hustoty stavov!!!

11 Typy skenerov Piezoelektrická trubica Tripod (trojnožka)

12 Rozdelenie STM podľa pracovného prostredia: 1. Vzdušný variant Pracuje na vzduchu pri teplote 300 K 2. Kryogénny variant Pracuje v kryogénnych zariadeniach, zvyčajne pri teplotách 4.2 K a nižšie s možnosťou zmeny teploty až do 300 K. 3. UHV variant Pracuje v UHV vákuovej komore pri tlaku do torr. V niektorých prípadoch je možné meniť teplotu vzorky do 76 K, resp. 4.2 K

13 Kryogénny Rastrovací silový mikroskop s antivibračným kryostatom Oxford Instruments Optistat (vľavo) a detail hlavice Rastrovacieho silového mikroskopu (vpravo) Hlavica Rastrovacieho silového mikroskopu NT MDT typ SOLVER P47 s optickým mikroskopom a CCD kamerou pre justovanie laserového lúča vzdušný variant.

14 Multifunkčné zariadenie Fy. Omicron NanoTechnology a dva typy SPM hlavíc pracujúcich pod UHV vákuom

15 Atómové rozlíšenie mica STM obrázok povrchu grafitu až po atómové rozlíšenie

16 Jednotlivé techniky na meranie a zobrazovanie povrchov

17 Základné charakteristiky jednotlivých mikroskopických metód

18 Meranie lokálnej hustoty stavov Hustota stavov N dn de V 2π 3 / 2 1/ 2 ( E) = = E 2 2m 2 -počet stavov na jednotkovú oblasť energie Re = E 0 E N 2 2 S(E) N(0) E > E < j = de D( E ) de N1( E) N2( E ev ) ) π me h { f ( E) f ( E ev }

19 Lokálna hustota stavov na Si

20 STM/STS MERANIE LOKÁLNEJ HUSTOTY STAVOV

21 Názov mikroskopickej metódy Name of microscopic method Akronym Engl. Typ interakcie hrotu sondy a povrchu Rastrovací tunelový mikroskop Scanning Probe Microscope Rastrovacia tunelová spektroskopia Scanning Tunneling Spectroscopy STM STS Tunelový jav Tunelový jav Atómový silový mikroskop Scanning Atomic Force Microscope Magnetický silový mikroskop Scanning Magnetic Force Microscope Elektrostatický silový mikroskop Scanning Electrostatic Force microscope Laterálny silový mikroskop Scanning Lateral Force Microscope Rastrovací teplotný mikroskop Scanning Thermal Microscopy AFM MFM EFM LFM SThM Medziatómové silové pôsobenie medzi hrotom a povrchom Pôsobenie magnetických síl medzi magnetickým hrotom sondy a magnetickým povrchom materiálu Pôsobenie elektrostatických sil medzi hrotom sondy a povrchom materiálu Ako AFM s dodatočným pôsobením aj laterálnych síl na hrot sondy Meranie teploty povrchov materiálov Rastrovací blízkopoľový optický mikroskop Scanning Near Field Optical Microscope SNOM Interakcia optického žiarenia s povrchom v submikrometrovej oblasti

22 KRÁTKO-DOSAHOVÉ INTERAKCIE ATÓMOVÝ SILOVÝ MIKROSKOP ATOMIC FORCE MICROSCOPE - AFM Príprava hrotu Lennard-Jonesovým potenciál SILA F V( r ) σ = 4ε r 12-6 σ r Kontaktný mód Repulzívna sila z vzdialenosť hrotu od povrchu vzorky Bezkontaktný Atraktívna sila mód Semikontaktný mód

23 Metódy merania ohybu nosníka hrotu Interferometer STM Merací hrot Vzorka šošovka Kapacita Piezo - Kryštál a) b) c) Polovodičový laser Kvadrantová Dióda d) e) Niekoľko metód používaných pre meranie ohybu nosníka s hrotom a) tunelová metóda, b) interferometrická metóda, c) kapacitná metóda, d) metóda merania odrazeného lúča a e) metóda merania rozváženia Wheatstonového mostíka.

24 Princíp merania ohybu nosníka hrotu kvadrantovou diódou

25 Sila v smere osi z Registrácia polohy z Laterálna sila Kontrolná elektronika x, y Metóda: 1 statická 2 dynamická (oscilácia hrotu) Vysokonapäťové predzosilňovače x, y, z Z z Z x x z y Z y Vzorka Kontrolná elektronika z sila hrotu

26 Oveľa citlivejšie metódy sú založené na oscilácii držiaka hrotu a meraním zmeny jeho rezonančnej frekvencie. Tieto metódy sú založené na zmene gradientu sily F' = df/dn. Zmenou gradientu sily sa mení aj efektívna konštanta pružiny (držiaku hrotu), ktorá je daná ako c eff = c-f', kde F' je gradient sily v smere osi z, t.j.. V dôsledku zmeny konštanty pružiny sa mení aj rezonančná frekvencia systému ω 1/ 2 ' 1/ 2 ' 1/ 2 ' c = eff c F F = = ω m m c Typické závislosti amplitúdy A kmitov spružiny od frekvencie je na nasledujúcom obrázku. Amplitúda A A Bez interakcie S atraktívnou silou F Frekvencia ω Pre dve častice s priemerom 10 nm (približne priemer hrotu) a ich vzdialenosti d = 10 nm (zvyčajná vzdialenosť hrotu od povrchu ) je minimálna detekovateľná zmena sily F = 5x10-13 N a citlivosť je asi 5x10-13 m.

27 Chyby merania závislosť od tvaru ihly

28 Topografia zafíru CdF 2 /CaF 2 epitaxná vrstva na Si

29 Nanomembrány na báze Al2O3 Polymerové fólie po protónovom ostreľovaní

30 SPM - bio

31 Snímanie biologických objektov v imerznom prostredí pomocou AFM Červené krvinky

32 All images were got in semicontact mode. a) aggregation of DNA molecules. Image was obtained in alcohol, b) vegetable ribosome-activating toxin ML1 on mica imaged in air. Single molecules are seen. 2) SPM for cells, tissues, bacteria.

33 DLHO-DOSAHOVÉ SILY Elektrostatické sily F electrostatic = ( V ) C z Magnetostatické sily F magetostatic = ( m. B ) sample Potenciál Sila Gradient sily = U = du dz 2 = d U dz 2

34 ELECTROSTATIC FORCE MICROSCOPE (VOLTAGE FORCE MICROSCOPE) Pentium IV (2000) 42 mil. tranzistorov

35 MAGNETIC FORCE MICROSCOPY Hrot pokrytý magnetickým materiálom Dráha pohybu hrotu F = m. H - nekontaktná statická metóda - nekontaktné metóda s vibráciou hrotu - s konštantnou frekvenciou - s fázovým závesom Magnetické domény meraná vzorka Hard disk Videopáska

36 THERMAL FORCE MICROSCOPE

37 FORCE MODULATION MICROSCOPE Nanoindentácia Tvrdosť Adhézia Opotrebovanie

38 SNOM - Scanning Near-field Optical Microscopy V roku 1870 Ernst Abbe rozlišenie dvoch objektov v optickom mikroskope: d λ 2sin Θ t.j. rozlíšenie na úrovni 200 nm SNOM rozlíšenie na úrovni 50 nm A. Lewis, M. Isaacson, A. Harootunian and A. Murray, Ultramicroscopy 13, 227 (1984); D.W. Pohl, W. Denk and M. Lanz, APL 44, 651 (1984)]

39 SNOM DNA SNOM Červená krvinka SNOM Optická mriežka

40

41 AFM lokálna oxidácia AFM scratch metóda Elektrónová Si litografia + AFM Priama iónová litografia 2 - FIB U SiO 2 Si w1 w h ox [nm] 4 2 h ox [nm] Voltage [V] N

42 APPLIED PHYSICS LETTERS 91, MgB2 radio-frequency superconducting quantum interference device prepared by atomic force microscope lithography M. Gregor, T. Plecenik, M. Praščák, R. Mičunek, M. Kubinec, V.Gašparík, M. Grajcar, P. Kúš, and A. Plecenik Department of Experimental Physics, Comenius University, SK Bratislava, Slovakia

Atómová a magnetická silová mikroskopia

Atómová a magnetická silová mikroskopia Atómová a magnetická silová mikroskopia Predmet: Experimentálne metódy Bratislava, 23. októbra 2017 Milan Pavúk Ústav jadrového a fyzikálneho inžinierstva, Fakulta elektrotechniky a informatiky STU v Bratislave

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Microscopie a stilo: principi ed esempi di applicazione

Microscopie a stilo: principi ed esempi di applicazione Microscopie a stilo: principi ed esempi di applicazione Adele Sassella Dipartimento di Scienza dei Materiali Università degli Studi di Milano Bicocca adele.sassella@unimib.it Pavia, 22 aprile 2009 SCANNING

More information

Scanning Probe Microscopy

Scanning Probe Microscopy 1 Scanning Probe Microscopy Dr. Benjamin Dwir Laboratory of Physics of Nanostructures (LPN) Benjamin.dwir@epfl.ch PH.D3.344 Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Other SPM Techniques. Scanning Probe Microscopy HT10

Other SPM Techniques. Scanning Probe Microscopy HT10 Other SPM Techniques Scanning Near-Field Optical Microscopy (SNOM) Scanning Capacitance Microscopy (SCM) Scanning Spreading Resistance Microscopy (SSRM) Multiprobe techniques Electrostatic Force Microscopy,

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

SNOM Challenges and Solutions

SNOM Challenges and Solutions SiO x SiO x Au Au E k SNOM Challenges and Solutions Ralf Vogelgesang, Ph.D. Ralf.Vogelgesang@fkf.mpg.de Nanoscale Science Department (Prof. Kern) Max-Planck-Institut für Festkörperforschung, Stuttgart,

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

Scanning Probe Microscopy: Atomic Force Microscopy And Scanning Tunneling Microscopy (NanoScience And Technology) [Kindle Edition] By Bert Voigtl

Scanning Probe Microscopy: Atomic Force Microscopy And Scanning Tunneling Microscopy (NanoScience And Technology) [Kindle Edition] By Bert Voigtl Scanning Probe Microscopy: Atomic Force Microscopy And Scanning Tunneling Microscopy (NanoScience And Technology) [Kindle Edition] By Bert Voigtl READ ONLINE If searched for a book Scanning Probe Microscopy:

More information

(Scanning Probe Microscopy)

(Scanning Probe Microscopy) (Scanning Probe Microscopy) Ing-Shouh Hwang (ishwang@phys.sinica.edu.tw) Institute of Physics, Academia Sinica, Taipei, Taiwan References 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett.

More information

Control of Dynamics of SPM Probes for Non-destructive Defectoscopy

Control of Dynamics of SPM Probes for Non-destructive Defectoscopy XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, 2005 209 Control of Dynamics of SPM Probes for Non-destructive Defectoscopy KALA, Jaroslav Ing., Physics Department, FEEC, BUT, Technická

More information

Surface Studies by Scanning Tunneling Microscopy

Surface Studies by Scanning Tunneling Microscopy Surface Studies by Scanning Tunneling Microscopy G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel IBM Zurich Research Laboratory, 8803 Ruschlikon-ZH, Switzerland (Received by Phys. Rev. Lett. on 30th April,

More information

Low Temperature Physics Measurement Systems

Low Temperature Physics Measurement Systems PAGE 6 & 2008 2007 PRODUCT CATALOG Accelerate your Semiconductor Research & Developments towards Nanoscale Products. Experience your new working horse in the emerging field of semiconductor research for

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) CHEM53200: Lecture 9 Scanning Probe Microscopy (SPM) Major reference: 1. Scanning Probe Microscopy and Spectroscopy Edited by D. Bonnell (2001). 2. A practical guide to scanning probe microscopy by Park

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

MRSEC. Refrigerator Magnet Activity Guide. Quick Reference Activity Guide. a) b) c) = north = south. Activity Materials

MRSEC. Refrigerator Magnet Activity Guide. Quick Reference Activity Guide. a) b) c) = north = south. Activity Materials MRSEC Refrigerator Magnet Activity Guide Quick Reference Activity Guide Activity Materials Refrigerator magnet with removable probe strip Magnetic field diagrams Starting Points One of the great breakthroughs

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

PY5020 Nanoscience Scanning probe microscopy

PY5020 Nanoscience Scanning probe microscopy PY500 Nanoscience Scanning probe microscopy Outline Scanning tunnelling microscopy (STM) - Quantum tunnelling - STM tool - Main modes of STM Contact probes V bias Use the point probes to measure the local

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

AFM for Measuring Surface Topography and Forces

AFM for Measuring Surface Topography and Forces ENB 2007 07.03.2007 AFM for Measuring Surface Topography and Forces Andreas Fery Scanning Probe : What is it and why do we need it? AFM as a versatile tool for local analysis and manipulation Dates Course

More information

Reducing dimension. Crystalline structures

Reducing dimension. Crystalline structures Reducing dimension 2D surfaces, interfaces and quantum wells 1D carbon nanotubes, quantum wires and conducting polymers 0D nanocrystals, nanoparticles, lithographically patterned quantum dots Crystalline

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Today s SPM in Nanotechnology

Today s SPM in Nanotechnology Today s SPM in Nanotechnology An introduction for Advanced Applications Qun (Allen) Gu, Ph.D., AFM Scientist, Pacific Nanotechnology IEEE Bay Area Nanotechnology Council, August, 2007 8/17/2015 1 Content

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

Physics Faculty Publications and Presentations

Physics Faculty Publications and Presentations Portland State University PDXScholar Physics Faculty Publications and Presentations Physics 9-2-2010 Systems for Assessing and Enhancing the Performance of Scanning Electron Microscopes by Quantifying

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Understanding the properties and behavior of groups of interacting atoms more than simple molecules

Understanding the properties and behavior of groups of interacting atoms more than simple molecules Condensed Matter Physics Scratching the Surface Understanding the properties and behavior of groups of interacting atoms more than simple molecules Solids and fluids in ordinary and exotic states low energy

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] G01Q SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] Scanning probes, i.e. devices having at least a tip of nanometre sized dimensions

More information

Od zmiešavacieho kalorimetra k ultra citlivej modulovanej kalorimetrii. Jozef Kačmarčík

Od zmiešavacieho kalorimetra k ultra citlivej modulovanej kalorimetrii. Jozef Kačmarčík Od zmiešavacieho kalorimetra k ultra citlivej modulovanej kalorimetrii CENTRUM FYZIKY VEĽMI NÍZKYCH TEPLÔT Ústavu experimentálnej fyziky SAV a Univerzity P.J.Šafárika Centrum excelentnosti SAV Jozef Kačmarčík

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy Byung Kim Department of Physics Boise State University Langmuir (in press, 2006) swollen collapsed Hydrophilic non-sticky

More information

Fyzika kondenzovaných látok

Fyzika kondenzovaných látok Fyzika kondenzovaných látok Štúdium dynamických magnetických vlastností a relaxačných procesov v magnetických nanočasticiach. školiteľ: doc. RNDr. Adriana Zeleňáková, PhD. Anotácia: Mono-doménové magnetické

More information

Crystalline Surfaces for Laser Metrology

Crystalline Surfaces for Laser Metrology Crystalline Surfaces for Laser Metrology A.V. Latyshev, Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Abstract: The number of methodological recommendations has been pronounced to describe

More information

Magnetic Resonance Force Microscopy. Christian Degen Department of Physics, ETH Zurich, Switzerland

Magnetic Resonance Force Microscopy. Christian Degen Department of Physics, ETH Zurich, Switzerland Magnetic Resonance Force Microscopy Christian Degen Department of Physics, ETH Zurich, Switzerland CIMST Summer School 2014 From Andreas Trabesinger / Wikipedia Scale of things 1m 1mm 1µm 1-100 nm 1nm

More information

Bridge between research in modern physics and entrepreneurship in nanotechnology. Quantum Physics

Bridge between research in modern physics and entrepreneurship in nanotechnology. Quantum Physics Bridge between research in modern physics and entrepreneurship in nanotechnology Quantum Physics The physics of the very small with great applications Part 2 QUANTUM PROPERTIES & TECHNOLOGY TRANSLATION

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Supporting Information Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides Qiqi Zhang,, Yao Xiao, #, Tao Zhang,, Zheng Weng, Mengqi Zeng, Shuanglin Yue, ± Rafael

More information

Carbon Nanomaterials

Carbon Nanomaterials Carbon Nanomaterials STM Image 7 nm AFM Image Fullerenes C 60 was established by mass spectrographic analysis by Kroto and Smalley in 1985 C 60 is called a buckminsterfullerene or buckyball due to resemblance

More information

Atomic Force Microscopy (AFM) Part I

Atomic Force Microscopy (AFM) Part I Atomic Force Microscopy (AFM) Part I CHEM-L2000 Eero Kontturi 6 th March 2018 Lectures on AFM Part I Principles and practice Imaging of native materials, including nanocellulose Part II Surface force measurements

More information

Probing Molecular Electronics with Scanning Probe Microscopy

Probing Molecular Electronics with Scanning Probe Microscopy Probing Molecular Electronics with Scanning Probe Microscopy Mark C. Hersam Assistant Professor Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108 Ph: 847-491-2696,

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs Physical methods in bio-molecular studies Osváth Szabolcs Semmelweis University szabolcs.osvath@eok.sote.hu Light emission and absorption spectra Stokes shift is the difference (in wavelength or frequency

More information

Molecular and carbon based electronic systems

Molecular and carbon based electronic systems Molecular and carbon based electronic systems Single molecule deposition and properties on surfaces Bottom Up Top Down Fundamental Knowledge & Functional Devices Thilo Glatzel, thilo.glatzel@unibas.ch

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM)

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) WORKSHOP Nanoscience on the Tip Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) Table of Contents: 1. Motivation... 1. Simple Harmonic Motion... 1 3. AC-Mode Imaging...

More information

AFM: Atomic Force Microscopy II

AFM: Atomic Force Microscopy II AM: Atomic orce Microscopy II Jan Knudsen The MAX IV laboratory & Division of synchrotron radiation research K522-523 (Sljus) 4 th of May, 2018 http://www.sljus.lu.se/staff/rainer/spm.htm Last time: The

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications History of Nanotechnology: Time Line Democritus in ancient Greece: concept of atom 1900 : Rutherford : discovery of atomic nucleus The first TEM was

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

Scanning Gate Microscopy (SGM) of semiconductor nanostructures

Scanning Gate Microscopy (SGM) of semiconductor nanostructures Scanning Gate Microscopy (SGM) of semiconductor nanostructures H. Sellier, P. Liu, B. Sacépé, S. Huant Dépt NANO, Institut NEEL, Grenoble, France B. Hackens, F. Martins, V. Bayot UCL, Louvain-la-Neuve,

More information

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

Surface Characte i r i zat on LEED Photoemission Phot Linear optics Surface Characterization i LEED Photoemission Linear optics Surface characterization with electrons MPS M.P. Seah, WA W.A. Dench, Surf. Interf. Anal. 1 (1979) 2 LEED low energy electron diffraction De

More information

AFM (Atomic force microscope) a jeho využitie pri štúdiu povrchu a povrchových síl minerálov

AFM (Atomic force microscope) a jeho využitie pri štúdiu povrchu a povrchových síl minerálov AFM (Atomic force microscope) a jeho využitie pri štúdiu povrchu a povrchových síl minerálov Jiří Škvarla 1 AFM (Atomic force microscope) and its use in studying the surface and surface forces of minerals

More information

Lecture 12. study surfaces.

Lecture 12. study surfaces. Lecture 12 Solid Surfaces Techniques to Solid Surfaces. Techniques to study surfaces. Solid Surfaces Molecules on surfaces are not mobile (to large extent) Surfaces have a long-range order (crystalline)

More information

Santosh Devasia Mechanical Eng. Dept., UW

Santosh Devasia Mechanical Eng. Dept., UW Nano-positioning Santosh Devasia Mechanical Eng. Dept., UW http://faculty.washington.edu/devasia/ Outline of Talk 1. Why Nano-positioning 2. Sensors for Nano-positioning 3. Actuators for Nano-positioning

More information

Scanning Force Microscopy And Related Techniques. With the help of.

Scanning Force Microscopy And Related Techniques. With the help of. With the help of. 1. Yosi Shacham TAU 2. Yossi Rosenwacks TAU 3. Julio Gomez-Herrero UAM 4. Adriana Gil - UAM 5. Serge Lemay - Delft 6. Hezy Cohen - HUJI 7. Scanning Force Microscopy And Related Techniques

More information

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n zigzag armchair Three major categories of nanotube structures can be identified based on the values of m and n m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Nature 391, 59, (1998) chiral J. Tersoff,

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study

Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study phys. stat. sol. (b) 4, No., 33 336 (005) / DOI 10.100/pssb.00460056 Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study M. Krawiec *,

More information

Combining High Resolution Optical and Scanning Probe Microscopy

Combining High Resolution Optical and Scanning Probe Microscopy Combining High Resolution Optical and Scanning Probe Microscopy Fernando Vargas WITec, Ulm, Germany www.witec.de Company Background Foundation 1997 by O. Hollricher, J. Koenen, K. Weishaupt WITec = Wissenschaftliche

More information

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Reference: #1 C. R. Brundle, C. A. Evans, S. Wilson, "Encyclopedia of Materials Characterization", Butterworth-Heinemann, Toronto (1992),

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Clark Atlanta University Center for Surface Chemistry and Catalysis Instrument Capabilities

Clark Atlanta University Center for Surface Chemistry and Catalysis Instrument Capabilities Center for Surface Chemistry and Catalysis Instrument Capabilities For information contact: Dr. Eric Mintz Research Center for Science and Technology Clark Atlanta University Atlanta, Georgia 30314 Phone:

More information

Application of electrostatic force microscopy in nanosystem diagnostics

Application of electrostatic force microscopy in nanosystem diagnostics Materials Science, Vol., No. 3, 003 Application of electrostatic force microscopy in nanosystem diagnostics TEODOR P. GOTSZALK *, PIOTR GRABIEC, IVO W. RANGELOW 3 Fulty of Microsystem Electronics and Photonics,

More information

Atomic Scale Coupling of Electromagnetic Radiation to Single Molecules. Wilson Ho University of California, Irvine

Atomic Scale Coupling of Electromagnetic Radiation to Single Molecules. Wilson Ho University of California, Irvine Atomic Scale Coupling of Electromagnetic Radiation to Single Molecules Wilson Ho University of California, Irvine Surface Photochemistry Direct Adsorbate Excitation Photoelectron Mechanism Objective How

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Scanning Probe Microscopy of Adsorbates on Insulating Films: From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Gerhard Meyer, Jascha Repp, Peter Liljeroth

More information

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in Pisa, Italy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy 2D Materials Research Activities at the NEST lab in

More information

MAGNETIC FORCE MICROSCOPY

MAGNETIC FORCE MICROSCOPY University of Ljubljana Faculty of Mathematics and Physics Department of Physics SEMINAR MAGNETIC FORCE MICROSCOPY Author: Blaž Zupančič Supervisor: dr. Igor Muševič February 2003 Contents 1 Abstract 3

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 399 407 (2009) 399 Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System

More information

Scanning Probe Microscopies (SPM)

Scanning Probe Microscopies (SPM) Scanning Probe Microscopies (SPM) Nanoscale resolution af objects at solid surfaces can be reached with scanning probe microscopes. They allow to record an image of the surface atomic arrangement in direct

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

CNPEM Laboratório de Ciência de Superfícies

CNPEM Laboratório de Ciência de Superfícies Investigating electrical charged samples by scanning probe microscopy: the influence to magnetic force microscopy and atomic force microscopy phase images. Carlos A. R. Costa, 1 Evandro M. Lanzoni, 1 Maria

More information