DRAM Reliability: Parity, ECC, Chipkill, Scrubbing. Alpha Particle or Cosmic Ray. electron-hole pairs. silicon. DRAM Memory System: Lecture 13

Size: px
Start display at page:

Download "DRAM Reliability: Parity, ECC, Chipkill, Scrubbing. Alpha Particle or Cosmic Ray. electron-hole pairs. silicon. DRAM Memory System: Lecture 13"

Transcription

1 slide 1 DRAM Reliability: Parity, ECC, Chipkill, Scrubbing Alpha Particle or Cosmic Ray electron-hole pairs silicon

2 Alpha Particles: Radioactive impurity in package material slide 2 - Soft errors were big problems for early DRAM chips. - Low energy alpha particles were discovered to be the culprit, but where were they coming from? - Intel published paper in 1979 caused industry to pay close attention to material purity in silicon processing and packaging. - Now largely considered as solved problem

3 Cosmic Rays: Space aliens bent on destroying human technology slide 3 - High energy cosmic rays originate in space. - Number of cosmic ray events depend on altitude. - IBM claims 5950 failures per billion device-hours at sea level, 0 failures in underground vault, with 50 feet of rocks completely shielding test setup. - Computers are more susceptable to cosmic rays in Denver and on space station. - Computers designed for space applications need to account for effects of cosmic ray

4 Parity: For Farmers slide Even or odd parity x1 chip Parity check Memory Controller ERROR! DRAM - Odd bit error detection - No error correction capability - Overhead: 1 bit per byte

5 slide 5 Error Correcting Code I ECC Encode DRAM Memory Controller ECC Decode - Also based on parity checking, but more sophisticated - Error detection AND correction capability - Overhead: depending on scheme

6 slide 6 Error Correcting Code IIa Single-bit Error Correction (SEC) D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 start with 8 data bits (do not use D 0 ) R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 Reserve R m bit positions where m is a power of 2. Move data bits into available bit positions. (skip R 0 ) Display m in binary format. R 0001 R 0010 R 0011 R 0100 R 0101 R 0110 R 0111 R 1000 R 1001 R 1010 R 1011 R 1100 R m bit positions will be the check bits, where each R m bit will store the parity of the other bit positions where the m th bit in the index is set R 0001 = R 0011 R 0101 R 0111 R 1001 R 1011 R 0010 = R 0011 R 0110 R 0111 R 1010 R requires n+1 check bits to provide SEC to 2 n data bits

7 Error Correcting Code IIb slide 7 SEC Encoding Example D 1 D 2 D 3 D 4 D 5 D 6 D 7 D start with 8 data bits (do not use D 0 ) R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 Reserve R m bit positions where m is a power of 2. Move data bits into available bit positions. (skip R 0 ) Display m in binary format. R 0001 R R R R m bit positions will be the check bits, where each R m bit will store the parity of the other bit positions where the m th bit in the index is set R 0001 = R 0011 R 0101 R 0111 R 1001 R 1011 R 0010 = R 0011 R 0110 R 0111 R 1010 R 1011 R 0100 = R 0101 R 0110 R 0111 R 1100 R 1000 = R 1001 R 1010 R 1011 R 1100 = = 0 = = 1 = = 0 = = 1 D = { } R = { }

8 slide 8 Error Correcting Code IIc SEC Verification Example R = { } R = { } Recompute check bits One bit error. Can we detect and correct? R 0001 = R 0011 R 0101 R 0111 R 1001 R 1011 R 0010 = R 0011 R 0110 R 0111 R 1010 R 1011 R 0100 = R 0101 R 0110 R 0111 R 1100 R 1000 = R 1001 R 1010 R 1011 R 1100 = = 1 = = 0 = = 0 = = 0 XOR old check bits against new check bits R 1000 R 0100 R 0010 R Old New C Difference! Bit position 11 is rotten

9 slide 9 Error Correcting Code IIIa What about multi-bit errors? R = { } R = { } Multi bit error. Can we detect and correct? Recompute check bits R 0001 = R 0011 R 0101 R 0111 R 1001 R 1011 R 0010 = R 0011 R 0110 R 0111 R 1010 R 1011 R 0100 = R 0101 R 0110 R 0111 R 1100 R 1000 = R 1001 R 1010 R 1011 R 1100 = = 1 = = 0 = = 1 = = 1 XOR old check bits against new check bits R 1000 R 0100 R 0010 R Old New Difference! Oops, Bit position 7 is NOT rotten

10 slide 10 Error Correcting Code IIIb What about multi-bit errors? Single Error Correction Double Error Detection (SECDED) D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 start with 8 data bits R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 Basic Idea: Use R 0 to check parity of entire bit vector, check bits inclusive R 0 = R 1 R 2 R (2 n + n + 1) - requires n+2 check bits to provide SECDED to 2 n data bits

11 slide 11 Error Correcting Code IIIc What about multi-bit errors - Redux R = { } R = { } Multi bit error. Can we detect and correct? Recompute check bits R 0001 = R 0011 R 0101 R 0111 R 1001 R 1011 R 0010 = R 0011 R 0110 R 0111 R 1010 R 1011 R 0100 = R 0101 R 0110 R 0111 R 1100 = = 1 = = 0 = = 1 R 1000 = R 1001 R 1010 R 1011 R 1100 = = 1 XOR old check bits against new check bits R 1000 R 0100 R 0010 R Old New Difference! XOR check bits tell us there is error, but R 0 parity says all is well. This is a 2 bit error, cannot be corrected.

12 Error Correcting Code IV slide ECC Encode 72 DRAM 64 ECC Decode 72 - SECDED requires n + 2 check bits to protect 2 n data bits - Data bus width of 64 = 2 6 requires = 8 check bits to provide SECDED protection - Logic depth of n + 1 = 7 to compute XOR parity for 0 th bit - May cost additional cycle(s) on read latency

13 slide 13 Weaknesses of ECC? What if this chip dies? (hard failure) Does not work with masked (partial) writes to DRAM Future low power, smaller cell, smaller capacitance DRAM may be more susceptable to Alpha Particle or Cosmic Ray Multiple bits from same chip may be corrupt wide (per chip) data bus is not good for fault tolerance Error rate is given in failures per bit. There are always more DRAM storage bits in the next generation system.

14 Chipkill I slide 14 Separate ECC protected words, each can detect and correct single bit error Architect the memory system so there is no Single Point of Failure that could bring down the system

15 slide 15 Chipkill II SECDED requires n + 2 bits to protect 2 n bits. Need 9 check bits to protect 128 data bits. wider interface Deploy more advanced algorithm to detect and repair multi-bit errors with 128 data bits and 16 check bits, or 256:32. Architect the memory system so there is no Single Point of Failure that could bring down the system. Deploy method 1, method 2, or combination of both to protect against multi-bit errors

16 Problems Remain slide 16 DQS is per byte for the x8 and x16 chip. topology matched, source synchronous is a problem for certain types of chipkill implementation 16 Pwr/Gnd 16 Data 15 Addr 7 Cmd 2 Clk 7 NC 2 DQS 1 Vref DDR SDRAM ECC/Chipkill protects data transmission error in addition to Single Event Upset storage error. Address/command transmission errors are not protected

17 Scrubbing slide 17 Alpha Particle or Cosmic Ray Soft error model based on Single Event Upset alpha particles or cosmic rays. Scrubbing merely reads out data to controller, scrub out any correctable error(s), write it back into memory before multi-bit errors build up and become no longer correctable

18 slide 18 Serverworks Grand Champion HE 128 bit ECC algorithm. 16 bit detection, 8 bit correction. Memory scrubbing Spare memory Memory mirroring Hot plug memory card

19 slide 19 What about Rambus? RDRAM Controller term bus clock row cmd col cmd r 0 c 0 c1 p 0 data bus q 0 q 1 Each access to DRAM is serviced by a single DRAM chip. One DRAM chip will provide 8 consecutive beats of data, 16 bit wide per beat. - Design ECC version, with 18 bit wide interface. provides SECDED protection, not chipkill

20 slide 20 Interleaved Device Mode RDRAM Controller - Each chip provides 2 bits of data for every read request - Provides effective chipkill capability when used in multiple channel configuration (i.e. EV7)

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs EECS150 - Digital Design Lecture 26 - Faults and Error Correction April 25, 2013 John Wawrzynek 1 Types of Faults in Digital Designs Design Bugs (function, timing, power draw) detected and corrected at

More information

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap EECS150 - Digital Design Lecture 26 Faults and Error Correction Nov. 26, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof.

More information

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs April 16, 2009 John Wawrzynek Spring 2009 EECS150 - Lec24-blocks Page 1 Cross-coupled NOR gates remember, If both R=0 & S=0, then

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world.

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world. Outline EECS 150 - Components and esign Techniques for igital Systems Lec 18 Error Coding Errors and error models Parity and Hamming Codes (SECE) Errors in Communications LFSRs Cyclic Redundancy Check

More information

EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs)

EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) EECS150 - igital esign Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Nov 21, 2002 John Wawrzynek Fall 2002 EECS150 Lec26-ECC Page 1 Outline Error detection using parity Hamming

More information

Statistical Reliability Modeling of Field Failures Works!

Statistical Reliability Modeling of Field Failures Works! Statistical Reliability Modeling of Field Failures Works! David Trindade, Ph.D. Distinguished Principal Engineer Sun Microsystems, Inc. Quality & Productivity Research Conference 1 Photo by Dave Trindade

More information

CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY

CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY CRYOGENIC DRAM BASED MEMORY SYSTEM FOR SCALABLE QUANTUM COMPUTERS: A FEASIBILITY STUDY MEMSYS-2017 SWAMIT TANNU DOUG CARMEAN MOINUDDIN QURESHI Why Quantum Computers? 2 Molecule and Material Simulations

More information

CMSC 313 Lecture 25 Registers Memory Organization DRAM

CMSC 313 Lecture 25 Registers Memory Organization DRAM CMSC 33 Lecture 25 Registers Memory Organization DRAM UMBC, CMSC33, Richard Chang A-75 Four-Bit Register Appendix A: Digital Logic Makes use of tri-state buffers so that multiple registers

More information

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p.

Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p. Lecture 20 Page 1 Lecture 20 Quantum error correction Classical error correction Modern computers: failure rate is below one error in 10 17 operations Data transmission and storage (file transfers, cell

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

University of Toronto Faculty of Applied Science and Engineering Final Examination

University of Toronto Faculty of Applied Science and Engineering Final Examination University of Toronto Faculty of Applied Science and Engineering Final Examination ECE 24S - Digital Systems Examiner: Belinda Wang, Jianwen Zhu 2: - 4:3pm, April 26th, 24 Duration: 5 minutes (2.5 hours)

More information

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Cung Nguyen and Robert G. Redinbo Department of Electrical and Computer Engineering University of California, Davis, CA email: cunguyen,

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

Error Detection and Correction: Hamming Code; Reed-Muller Code

Error Detection and Correction: Hamming Code; Reed-Muller Code Error Detection and Correction: Hamming Code; Reed-Muller Code Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Hamming Code: Motivation

More information

Spiral 2-1. Datapath Components: Counters Adders Design Example: Crosswalk Controller

Spiral 2-1. Datapath Components: Counters Adders Design Example: Crosswalk Controller 2-. piral 2- Datapath Components: Counters s Design Example: Crosswalk Controller 2-.2 piral Content Mapping piral Theory Combinational Design equential Design ystem Level Design Implementation and Tools

More information

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS:

PAST EXAM PAPER & MEMO N3 ABOUT THE QUESTION PAPERS: EKURHULENI TECH COLLEGE. No. 3 Mogale Square, Krugersdorp. Website: www. ekurhulenitech.co.za Email: info@ekurhulenitech.co.za TEL: 011 040 7343 CELL: 073 770 3028/060 715 4529 PAST EXAM PAPER & MEMO N3

More information

Information redundancy

Information redundancy Information redundancy Information redundancy add information to date to tolerate faults error detecting codes error correcting codes data applications communication memory p. 2 - Design of Fault Tolerant

More information

PC100 Memory Driver Competitive Comparisons

PC100 Memory Driver Competitive Comparisons Fairchild Semiconductor Application Note March 1999 Revised December 2000 PC100 Memory Driver Competitive Comparisons Introduction The latest developments in chipset and motherboard design have taken memory

More information

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding

Outline. EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Simple Error Detection Coding Outline EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Error detection using arity Hamming code for error detection/correction Linear Feedback Shift

More information

Tradeoff between Reliability and Power Management

Tradeoff between Reliability and Power Management Tradeoff between Reliability and Power Management 9/1/2005 FORGE Lee, Kyoungwoo Contents 1. Overview of relationship between reliability and power management 2. Dakai Zhu, Rami Melhem and Daniel Moss e,

More information

Lecture 16: Circuit Pitfalls

Lecture 16: Circuit Pitfalls Introduction to CMOS VLSI Design Lecture 16: Circuit Pitfalls David Harris Harvey Mudd College Spring 2004 Outline Pitfalls Detective puzzle Given circuit and symptom, diagnose cause and recommend solution

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

In-Memory Computing of Akers Logic Array

In-Memory Computing of Akers Logic Array In-Memory Computing of Akers Logic Array Eitan Yaakobi Electrical Engineering California Institute of Technology Pasadena, CA 91125 yaakobi@caltechedu Anxiao (Andrew) Jiang Computer Science and Engineering

More information

Fault Tolerant Computing CS 530 Information redundancy: Coding theory. Yashwant K. Malaiya Colorado State University

Fault Tolerant Computing CS 530 Information redundancy: Coding theory. Yashwant K. Malaiya Colorado State University CS 530 Information redundancy: Coding theory Yashwant K. Malaiya Colorado State University March 30, 2017 1 Information redundancy: Outline Using a parity bit Codes & code words Hamming distance Error

More information

256M (16Mx16bit) Hynix SDRAM Memory

256M (16Mx16bit) Hynix SDRAM Memory 256Mb Synchronous DRAM based on 4M x 4Bank x16 I/O 256M (16Mx16bit) Hynix SDRAM Memory Memory Cell Array - Organized as 4banks of 4,194,304 x 16 This document is a general product description and is subject

More information

EM48AM3284LBB. Revision History. Revision 0.1 (May. 2010) - First release.

EM48AM3284LBB. Revision History. Revision 0.1 (May. 2010) - First release. Revision History Revision 0.1 (May. 2010) - First release. Revision 0.2 (Sep. 2010) - Delete CL=2 parameters - Input Leakage Current = -2μA ~ +2μA - Change Supply Voltage Rating = -0.5 ~ +2.3 - Delete

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Coping with disk crashes

Coping with disk crashes Lecture 04.03 Coping with disk crashes By Marina Barsky Winter 2016, University of Toronto Disk failure types Intermittent failure Disk crash the entire disk becomes unreadable, suddenly and permanently

More information

Information Redundancy: Coding

Information Redundancy: Coding Info Redundancy April 2, 23 Information Redundancy: Coding Often applied to Info transfer: often serial communication thru a channel Info storage Hamming distance: error detection & correction capability

More information

The Pennsylvania State University. The Graduate School. Department of Computer Science and Engineering

The Pennsylvania State University. The Graduate School. Department of Computer Science and Engineering The Pennsylvania State University The Graduate School Department of Computer Science and Engineering A SIMPLE AND FAST VECTOR SYMBOL REED-SOLOMON BURST ERROR DECODING METHOD A Thesis in Computer Science

More information

DDR4 Board Design and Signal Integrity Verification Challenges

DDR4 Board Design and Signal Integrity Verification Challenges DDR4 Board Design and Signal Integrity Verification Challenges Outline Enabling DDR4 Pseudo Open Drain Driver - Benefit POD SI effects VrefDQ Calculation Data Eye Simulating SSN New Drive Standards Difference

More information

CSE 4201, Ch. 6. Storage Systems. Hennessy and Patterson

CSE 4201, Ch. 6. Storage Systems. Hennessy and Patterson CSE 4201, Ch. 6 Storage Systems Hennessy and Patterson Challenge to the Disk The graveyard is full of suitors Ever heard of Bubble Memory? There are some technologies that refuse to die (silicon, copper...).

More information

74ACT Bit D-Type Flip-Flop with 3-STATE Outputs

74ACT Bit D-Type Flip-Flop with 3-STATE Outputs 74ACT18823 18-Bit D-Type Flip-Flop with 3-STATE Outputs General Description The ACT18823 contains eighteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications.

More information

3.3 V 256 K 16 CMOS SRAM

3.3 V 256 K 16 CMOS SRAM August 2004 AS7C34098A 3.3 V 256 K 16 CMOS SRAM Features Pin compatible with AS7C34098 Industrial and commercial temperature Organization: 262,144 words 16 bits Center power and ground pins High speed

More information

64K x 18 Synchronous Burst RAM Pipelined Output

64K x 18 Synchronous Burst RAM Pipelined Output 298A Features Fast access times: 5, 6, 7, and 8 ns Fast clock speed: 100, 83, 66, and 50 MHz Provide high-performance 3-1-1-1 access rate Fast OE access times: 5 and 6 ns Optimal for performance (two cycle

More information

Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults

Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults Mark Wilkening, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva Gurumurthi and David R. Kaeli ECE Department, Northeastern

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

256M (16Mx16bit) Hynix SDRAM Memory

256M (16Mx16bit) Hynix SDRAM Memory 256Mb Synchronous DRAM based on 4M x 4Bank x16 I/O 256M (16Mx16bit) Hynix SDRAM Memory Memory Cell Array - Organized as 4banks of 4,194,304 x 16 This document is a general product description and is subject

More information

5 V 64K X 16 CMOS SRAM

5 V 64K X 16 CMOS SRAM September 2006 A 5 V 64K X 16 CMOS SRAM AS7C1026C Features Industrial (-40 o to 85 o C) temperature Organization: 65,536 words 16 bits Center power and ground pins for low noise High speed - 15 ns address

More information

Reliability Techniques for Data Communication and Storage in FPGA-Based Circuits

Reliability Techniques for Data Communication and Storage in FPGA-Based Circuits Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2012-12-11 Reliability Techniques for Data Communication and Storage in FPGA-Based Circuits Yubo Li Brigham Young University -

More information

80386DX. 32-Bit Microprocessor FEATURES: DESCRIPTION: Logic Diagram

80386DX. 32-Bit Microprocessor FEATURES: DESCRIPTION: Logic Diagram 32-Bit Microprocessor 21 1 22 1 2 10 3 103 FEATURES: 32-Bit microprocessor RAD-PAK radiation-hardened agait natural space radiation Total dose hardness: - >100 Krad (Si), dependent upon space mission Single

More information

Software Engineering 2DA4. Slides 8: Multiplexors and More

Software Engineering 2DA4. Slides 8: Multiplexors and More Software Engineering 2DA4 Slides 8: Multiplexors and More Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on S. Brown and Z. Vranesic, Fundamentals of Digital Logic

More information

14.1. Unit 14. State Machine Design

14.1. Unit 14. State Machine Design 4. Unit 4 State Machine Design 4.2 Outcomes I can create a state diagram to solve a sequential problem I can implement a working state machine given a state diagram STATE MACHINES OVERVIEW 4.3 4.4 Review

More information

eorex EM48AM3284LBA Revision History Revision 0.1 (Jul. 2006) - First release. Revision 0.2 (Aug. 2007).. - Add IDD6 PASR Spec.

eorex EM48AM3284LBA Revision History Revision 0.1 (Jul. 2006) - First release. Revision 0.2 (Aug. 2007).. - Add IDD6 PASR Spec. Revision History Revision 0.1 (Jul. 2006) - First release. Revision 0.2 (Aug. 2007).. - Add IDD6 PASR Spec.(page 7) Revision 0.3 (Dec. 2007).. - TRCD: improved from 30ns to 22.5ns - TRC: improved from

More information

HYB39SC128800FE HYB39SC128160FE HYI39SC128800FE HYI39SC128160FE

HYB39SC128800FE HYB39SC128160FE HYI39SC128800FE HYI39SC128160FE June 2007 HYB39SC128800FE HYB39SC128160FE HYI39SC128800FE HYI39SC128160FE Green Product SDRAM Internet Data Sheet Rev. 1.12 HYB39SC128800FE, HYB39SC128160FE, HYI39SC128800FE, HYI39SC128160FE Revision History:

More information

5.0 V 256 K 16 CMOS SRAM

5.0 V 256 K 16 CMOS SRAM February 2006 5.0 V 256 K 16 CMOS SRAM Features Pin compatible with AS7C4098 Industrial and commercial temperature Organization: 262,144 words 16 bits Center power and ground pins High speed - 10/12/15/20

More information

Quantum computing with superconducting qubits Towards useful applications

Quantum computing with superconducting qubits Towards useful applications Quantum computing with superconducting qubits Towards useful applications Stefan Filipp IBM Research Zurich Switzerland Forum Teratec 2018 June 20, 2018 Palaiseau, France Why Quantum Computing? Why now?

More information

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University

Radiation Effects on Electronics. Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University Dr. Brock J. LaMeres Associate Professor Electrical & Computer Engineering Montana State University Research Statement Support the Computing Needs of Space Exploration & Science Computation Power Efficiency

More information

Communications II Lecture 9: Error Correction Coding. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved

Communications II Lecture 9: Error Correction Coding. Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Communications II Lecture 9: Error Correction Coding Professor Kin K. Leung EEE and Computing Departments Imperial College London Copyright reserved Outline Introduction Linear block codes Decoding Hamming

More information

NEC PerforCache. Influence on M-Series Disk Array Behavior and Performance. Version 1.0

NEC PerforCache. Influence on M-Series Disk Array Behavior and Performance. Version 1.0 NEC PerforCache Influence on M-Series Disk Array Behavior and Performance. Version 1.0 Preface This document describes L2 (Level 2) Cache Technology which is a feature of NEC M-Series Disk Array implemented

More information

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1.

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 6.1 ROBERT SEDGEWICK

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

channel of communication noise Each codeword has length 2, and all digits are either 0 or 1. Such codes are called Binary Codes.

channel of communication noise Each codeword has length 2, and all digits are either 0 or 1. Such codes are called Binary Codes. 5 Binary Codes You have already seen how check digits for bar codes (in Unit 3) and ISBN numbers (Unit 4) are used to detect errors. Here you will look at codes relevant for data transmission, for example,

More information

Skew-Tolerant Circuit Design

Skew-Tolerant Circuit Design Skew-Tolerant Circuit Design David Harris David_Harris@hmc.edu December, 2000 Harvey Mudd College Claremont, CA Outline Introduction Skew-Tolerant Circuits Traditional Domino Circuits Skew-Tolerant Domino

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level Sponsored by SRC and Freescale under SRC task number 2042

Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level Sponsored by SRC and Freescale under SRC task number 2042 Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level Sponsored by SR and Freescale under SR task number 2042 Lukasz G. Szafaryn, Kevin Skadron Department of omputer Science

More information

Error Detection, Correction and Erasure Codes for Implementation in a Cluster File-system

Error Detection, Correction and Erasure Codes for Implementation in a Cluster File-system Error Detection, Correction and Erasure Codes for Implementation in a Cluster File-system Steve Baker December 6, 2011 Abstract. The evaluation of various error detection and correction algorithms and

More information

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1 Sequential Logic Handouts: Lecture Slides 6.4 - Spring 2 2/27/ L6 Sequential Logic Roadmap so far Fets & voltages Logic gates Combinational logic circuits Sequential Logic Voltage-based encoding V OL,

More information

Error Control Codes for Memories

Error Control Codes for Memories The 2 th Korea Test Conference Error Control Codes for Memories June 22, 2 Jun Jin Kong, Ph.D. (jjkong@samsung.com) Samsung Electronics Co., Ltd. (Memory) Biography of Jun Jin Kong Brief History Present:

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

Scalable, Robust, Fault-Tolerant Parallel QR Factorization. Camille Coti

Scalable, Robust, Fault-Tolerant Parallel QR Factorization. Camille Coti Communication-avoiding Fault-tolerant Scalable, Robust, Fault-Tolerant Parallel Factorization Camille Coti LIPN, CNRS UMR 7030, SPC, Université Paris 13, France DCABES August 24th, 2016 1 / 21 C. Coti

More information

A Low-Cost Methodology for Soft Error Free Logic Circuits

A Low-Cost Methodology for Soft Error Free Logic Circuits A Low-Cost Methodology for Soft Error Free Logic Circuits Sridevi Tumuluri 1, P.Sudhakar Rao 2 1 PG Student, Electronics & Communication Engineering, NOVA College of Engg & Tech., Vijayawada, A.P, India

More information

Coding theory: Applications

Coding theory: Applications INF 244 a) Textbook: Lin and Costello b) Lectures (Tu+Th 12.15-14) covering roughly Chapters 1,9-12, and 14-18 c) Weekly exercises: For your convenience d) Mandatory problem: Programming project (counts

More information

A Tale of Two Erasure Codes in HDFS

A Tale of Two Erasure Codes in HDFS A Tale of Two Erasure Codes in HDFS Dynamo Mingyuan Xia *, Mohit Saxena +, Mario Blaum +, and David A. Pease + * McGill University, + IBM Research Almaden FAST 15 何军权 2015-04-30 1 Outline Introduction

More information

512K x 32 Bit x 4 Banks Synchronous DRAM

512K x 32 Bit x 4 Banks Synchronous DRAM SDRAM FEATURES 512K x 32 Bit x 4 Banks Synchronous DRAM ORDERING INFORMATION JEDEC standard 3.3V power supply LVTTL compatible with multiplexed address Four banks operation MRS cycle with address key programs

More information

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007 EECS 150 - Components and Design Techniques for Digital Systems FSMs 9/11/2007 Sarah Bird Electrical Engineering and Computer Sciences University of California, Berkeley Slides borrowed from David Culler

More information

Coding for loss tolerant systems

Coding for loss tolerant systems Coding for loss tolerant systems Workshop APRETAF, 22 janvier 2009 Mathieu Cunche, Vincent Roca INRIA, équipe Planète INRIA Rhône-Alpes Mathieu Cunche, Vincent Roca The erasure channel Erasure codes Reed-Solomon

More information

Shift Register Counters

Shift Register Counters Shift Register Counters Shift register counter: a shift register with the serial output connected back to the serial input. They are classified as counters because they give a specified sequence of states.

More information

Sequential Circuits Sequential circuits combinational circuits state gate delay

Sequential Circuits Sequential circuits combinational circuits state gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

Radiation-induced soft errors in digital circuits

Radiation-induced soft errors in digital circuits Nat.Lab. Unclassified Report 2002/828 Date of issue: 08/02 Radiation-induced soft errors in digital circuits A literature survey Tino Heijmen Unclassified Report 2002/828 Unclassified Report Authors address

More information

1 Brief Introduction to Quantum Mechanics

1 Brief Introduction to Quantum Mechanics CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Yongshan Ding Scribe: Jean Salac Lecture 02: From bits to qubits October 4, 2018 1 Brief Introduction to Quantum Mechanics 1.1 Quantum

More information

Finite State Machine (FSM)

Finite State Machine (FSM) Finite State Machine (FSM) Consists of: State register Stores current state Loads next state at clock edge Combinational logic Computes the next state Computes the outputs S S Next State CLK Current State

More information

BALL CONFIGURATION (TOP VIEW) (BGA 90, 8mmX13mmX1.0mm Body, 0.8mm Ball Pitch) A DQ26 DQ24 VSS VDD DQ23 DQ21 B DQ28 VDDQ VSSQ VDDQ VSSQ DQ19

BALL CONFIGURATION (TOP VIEW) (BGA 90, 8mmX13mmX1.0mm Body, 0.8mm Ball Pitch) A DQ26 DQ24 VSS VDD DQ23 DQ21 B DQ28 VDDQ VSSQ VDDQ VSSQ DQ19 Mobile SDRAM 4M x 32 Bit x 4 Banks Mobile Synchronous DRAM FEATURES 1.8V power supply LVCMOS compatible with multiplexed address Four banks operation MRS cycle with address key programs - CAS Latency (2,

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

SRAM supply voltage scaling: a reliability perspective

SRAM supply voltage scaling: a reliability perspective SRAM supply voltage scaling: a reliability perspective Abstract SRAM leakage power is a significant fraction of the total power consumption on a chip. Traditional SRAM supply voltage scaling reduces the

More information

3.3 V 64K X 16 CMOS SRAM

3.3 V 64K X 16 CMOS SRAM September 2006 Advance Information AS7C31026C 3.3 V 64K X 16 CMOS SRAM Features Industrial (-40 o to 85 o C) temperature Organization: 65,536 words 16 bits Center power and ground pins for low noise High

More information

Channel Coding and Interleaving

Channel Coding and Interleaving Lecture 6 Channel Coding and Interleaving 1 LORA: Future by Lund www.futurebylund.se The network will be free for those who want to try their products, services and solutions in a precommercial stage.

More information

ELEC516 Digital VLSI System Design and Design Automation (spring, 2010) Assignment 4 Reference solution

ELEC516 Digital VLSI System Design and Design Automation (spring, 2010) Assignment 4 Reference solution ELEC516 Digital VLSI System Design and Design Automation (spring, 010) Assignment 4 Reference solution 1) Pulse-plate 1T DRAM cell a) Timing diagrams for nodes and Y when writing 0 and 1 Timing diagram

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 17 Encoders and Decoders Overview Binary decoders Converts an n-bit code to a single active output Can be developed using AND/OR gates Can

More information

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2

Chapter 1. Binary Systems 1-1. Outline. ! Introductions. ! Number Base Conversions. ! Binary Arithmetic. ! Binary Codes. ! Binary Elements 1-2 Chapter 1 Binary Systems 1-1 Outline! Introductions! Number Base Conversions! Binary Arithmetic! Binary Codes! Binary Elements 1-2 3C Integration 傳輸與介面 IA Connecting 聲音與影像 Consumer Screen Phone Set Top

More information

Gate-Level Mitigation Techniques for Neutron-Induced Soft Error Rate

Gate-Level Mitigation Techniques for Neutron-Induced Soft Error Rate Gate-Level Mitigation Techniques for Neutron-Induced Soft Error Rate Harmander Singh Deogun, Dennis Sylvester, David Blaauw Department of EECS, University of Michigan, Ann Arbor, MI, US 48109 {hdeogun,dmcs,blaauw@umich.edu}

More information

The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you.

The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you. The first printing of this book was produced with a few minor printing errors. We apologize for any confusion this might cause you. Page Correction Sentence added before Figure 2.3: "R 6 out is typically

More information

Design of Fast and Robust State Elements

Design of Fast and Robust State Elements Design of Fast and Robust State Elements Yuen Hui Chee and Cheongyuen Tsang yhchee@eecs.berkeley.edu, ctsang@eecs.berkeley.edu Abstract With drastic device scaling and power reduction, latches and flip-flops

More information

EECS Components and Design Techniques for Digital Systems. Lec 26 CRCs, LFSRs (and a little power)

EECS Components and Design Techniques for Digital Systems. Lec 26 CRCs, LFSRs (and a little power) EECS 150 - Components and esign Techniques for igital Systems Lec 26 CRCs, LFSRs (and a little power) avid Culler Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~culler

More information

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture) COSC 243 Introduction to Logic And Combinatorial Logic 1 Overview This Lecture Introduction to Digital Logic Gates Boolean algebra Combinatorial Logic Source: Chapter 11 (10 th edition) Source: J.R. Gregg,

More information

ELECTRONIC circuits encode information in the form of a

ELECTRONIC circuits encode information in the form of a 128 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 2, APRIL-JUNE 2004 Characterization of Soft Errors Caused by Single Event Upsets in CMOS Processes Tanay Karnik, Senior Member, IEEE,

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

The Linear-Feedback Shift Register

The Linear-Feedback Shift Register EECS 141 S02 Timing Project 2: A Random Number Generator R R R S 0 S 1 S 2 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 The Linear-Feedback Shift Register 1 Project Goal Design a 4-bit LFSR SPEED, SPEED,

More information

Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM

Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM Seyed Mohammad Seyedzadeh, Rakan Maddah, Alex Jones, Rami Melhem University of Pittsburgh Intel Corporation seyedzadeh@cs.pitt.edu,

More information

ELEN Electronique numérique

ELEN Electronique numérique ELEN0040 - Electronique numérique Patricia ROUSSEAUX Année académique 2014-2015 CHAPITRE 3 Combinational Logic Circuits ELEN0040 3-4 1 Combinational Functional Blocks 1.1 Rudimentary Functions 1.2 Functions

More information

Bus transit = 20 ns (one way) access, each module cannot be accessed faster than 120 ns. So, the maximum bandwidth is

Bus transit = 20 ns (one way) access, each module cannot be accessed faster than 120 ns. So, the maximum bandwidth is 32 Flynn: Coputer Architecture { The Solutions Chapter 6. Meory Syste Design Proble 6. The eory odule uses 64 4 M b chips for 32MB of data and 8 4 M b chips for ECC. This allows 64 bits + 8 bits ECC to

More information

1M x 16 Bit x 4 Banks

1M x 16 Bit x 4 Banks SDRAM 1M x 16 Bit x 4 Banks Synchronous DRAM FEATURES ORDERING INFORMATION JEDEC standard 3.3V power supply LVTTL compatible with multiplexed address Four banks operation MRS cycle with address key programs

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 26: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed4 http://bu.edu.eg/staff/ahmedshalaby4# Slide Digital Fundamentals Digital Concepts Slide 2 What?

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Unequal Error Protection Codes Derived from Double Error Correction Orthogonal Latin Square Codes

Unequal Error Protection Codes Derived from Double Error Correction Orthogonal Latin Square Codes Unequal Error Protection Codes Derived from Double Error Correction Orthogonal Latin Square Codes Mustafa Demirci, Pedro Reviriego and Juan Antonio Maestro Abstract In recent years, there has been a growing

More information

9 THEORY OF CODES. 9.0 Introduction. 9.1 Noise

9 THEORY OF CODES. 9.0 Introduction. 9.1 Noise 9 THEORY OF CODES Chapter 9 Theory of Codes After studying this chapter you should understand what is meant by noise, error detection and correction; be able to find and use the Hamming distance for a

More information

Revisiting Memory Errors in Large-Scale Production Data Centers

Revisiting Memory Errors in Large-Scale Production Data Centers Revisiting Memory Errors in Large-Scale Production Da Centers Analysis and Modeling of New Trends from the Field Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu Overview Study of DRAM reliability: on modern

More information

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs Description: The NTE74HC173 is an high speed 3 State Quad D Type Flip Flop in a 16 Lead DIP type package that

More information

RAID+: Deterministic and Balanced Data Distribution for Large Disk Enclosures

RAID+: Deterministic and Balanced Data Distribution for Large Disk Enclosures RAID+: Deterministic and Balanced Data Distribution for Large Disk Enclosures Guangyan Zhang, Zican Huang, Xiaosong Ma SonglinYang, Zhufan Wang, Weimin Zheng Tsinghua University Qatar Computing Research

More information

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form

Vidyalankar. S.E. Sem. III [EXTC] Digital System Design. Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form S.E. Sem. III [EXTC] Digital System Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1 Solve following : [20] Q.1(a) Explain the following decimals in gray code form [5] (i) (42) 10 (ii) (17)

More information