Exercise 3: Transfer functions (Solutions)

Size: px
Start display at page:

Download "Exercise 3: Transfer functions (Solutions)"

Transcription

1 Exercise 3: Transfer functions (Solutions) Transfer functions are a model form based on the Laplace transform. Transfer functions are very useful in analysis and design of linear dynamic systems. A general Transfer function is on the form: Where is the output and is the input. MathScript has several functions for creating transfer functions: Function Description Example tf Sys_order1 Sys_order2 step Example: Creates system model in transfer function form. You also can use this function to state-space models to transfer function form. Constructs the components of a first-order system model based on a gain, time constant, and delay that you specify. You can use this function to create either a state-space model or a transfer function model, depending on the output parameters you specify. Constructs the components of a second-order system model based on a damping ratio and natural frequency you specify. You can use this function to create either a state-space model or a transfer function model, depending on the output parameters you specify. Creates a step response plot of the system model. You also can use this function to return the step response of the model outputs. If the model is in state-space form, you also can use this function to return the step response of the model states. This function assumes the initial model states are zero. If you do not specify an output, this function creates a plot. Given the following transfer function: >num=[1]; >den=[1, 1, 1]; >H = tf(num, den) >K = 1; >tau = 1; >H = sys_order1(k, tau) >dr = 0.5 >wn = 20 >[num, den] = sys_order2(wn, dr) >SysTF = tf(num, den) >num=[1,1]; >den=[1,-1,3]; >H=tf(num,den); >t=[0:0.01:10]; >step(h,t); In MathScript we will use the following code: % Define Transfer function num = [1]; den = [1, 1]; H = tf(num, den) Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: Fax:

2 2 % Step Response step(h) This gives the following step response: A general transfer function can be written on the following general form: The Numerators of transfer function models describe the locations of the zeros of the system, while the Denominators of transfer function models describe the locations of the poles of the system. In MathScript we can define such a transfer function using the built-in tf function as follows: num = [bm, bm_1, bm_2,, b1, b0]; den = [an, an_1, an_2,, a1, a0]; H = tf(num, den) Task 1: 1.order transfer functions Given the following system: Task 1.1 What are the values for the gain and the time constant for this system? Sketch the step response for the system using pen and paper.

3 3 Find the step response using MathScript and compare the result with your sketch. Gain and the time-constant : Step response for a 1.order system: MathScript: clear clc K=2; T=4; num=[k]; den=[t, 1]; H = tf(num, den); step(h) This gives the following plot:

4 4 Task 1.2 Find the differential equation from the transfer function above and draw a block diagram of the system ( pen and paper ). For a 1.order system in general we have: or: Which gives: In the time domain we get the following differential equation (using Inverse Laplace): We can draw the following block diagram of the system:

5 5 Where and for our system: Note! Even when the system is in the time plane we normally use the symbol. Other symbols that are commonly used for the integrator are: or. Task 1.3 From the block diagram in Task 1.2, find the transfer function (The answer shall of course be ) From the block diagram in the previous task we get the following transfer function: As expected, the result is the same as the transfer function given in Task 1.1. Note! We have used both the serial and feedback rules that yield for block diagram reduction.

6 6 Task 1.4 Find the solution for the differential equation and plot it ( pen and paper ). We will use a step for the control signal ( ). Note! The Laplace Transformation pair for a step is as follows: Tip! You also need to use the following Laplace transform pair: Compare to the results from Task 1.1. For a 1.order system in general we have: Here we will find the mathematical expression for the step response ( ): Where We use inverse Laplace and find the corresponding transformation pair in order to find ). We use the following Laplace transform pair:

7 7 This gives: Setting, and gives: ( ) We can plot this in MathScript: clear clc K=2; T=4; U=1; t=0:0.1:20; % Method 1 - Transfer Function num=[k]; den=[t, 1]; H = tf(num, den); figure(1) step(h, t) % Method 2 - Plot the solution of the differential equation y = K*U*(1-exp(-t/T)); figure(2) plot(t,y) We get the same results (of course). Task 2: Transfer functions in MathScript Define the following transfer functions in MathScript. Task 2.1 Given the following transfer function: MathScript Code:

8 8 num = [2, 3, 4]; den = [5, 9]; H = tf(num, den) Task 2.2 Given the following transfer function: MathScript Code: num = [4, 0, 0, 3, 4]; den = [5, 0, 9]; H = tf(num, den) Note! If some of the orders are missing, we just put in zeros. The transfer function above can be rewritten as: Task 2.3 Given the following transfer function: We need to rewrite the transfer function to get it in correct orders: MathScript Code: num = [2, 3, 7]; den = [6, 5, 0]; H = tf(num, den) Task 3: Differential equations to Transfer functions Task 3.1 Given the following differential equation:

9 9 Find the following transfer function: Solution: Laplace gives: Further: Further: Further: This gives: Task 4: PI Controller A PI controller is defined as: Where u is the controller output and is the control error: Task 4.1 Find the transfer function for the PI Controller: Using Laplace gives:

10 10 Then we get: This gives the following transfer function for the PI controller: Additional Resources Here you will find tutorials, additional exercises, etc.

Exercise 1a: Transfer functions

Exercise 1a: Transfer functions Exercise 1a: Transfer functions Transfer functions are a model form based on the Laplace transform. Transfer functions are very useful in analysis and design of linear dynamic systems. A general Transfer

More information

Solutions. MathScript. So You Think You Can. Part III: Frequency Response HANS-PETTER HALVORSEN,

Solutions. MathScript. So You Think You Can. Part III: Frequency Response HANS-PETTER HALVORSEN, Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Solutions So You Think You Can HANS-PETTER HALVORSEN, 2011.10.05 MathScript Part III: Frequency

More information

Step Response of First-Order Systems

Step Response of First-Order Systems INTRODUCTION This tutorial discusses the response of a first-order system to a unit step function input. In particular, it addresses the time constant and how that affects the speed of the system s response.

More information

INTRODUCTION TO TRANSFER FUNCTIONS

INTRODUCTION TO TRANSFER FUNCTIONS INTRODUCTION TO TRANSFER FUNCTIONS The transfer function is the ratio of the output Laplace Transform to the input Laplace Transform assuming zero initial conditions. Many important characteristics of

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

9/9/2011 Classical Control 1

9/9/2011 Classical Control 1 MM11 Root Locus Design Method Reading material: FC pp.270-328 9/9/2011 Classical Control 1 What have we talked in lecture (MM10)? Lead and lag compensators D(s)=(s+z)/(s+p) with z < p or z > p D(s)=K(Ts+1)/(Ts+1),

More information

Task 1 (24%): PID-control, the SIMC method

Task 1 (24%): PID-control, the SIMC method Final Exam Course SCE1106 Control theory with implementation (theory part) Wednesday December 18, 2014 kl. 9.00-12.00 SKIP THIS PAGE AND REPLACE WITH STANDARD EXAM FRONT PAGE IN WORD FILE December 16,

More information

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

More information

Frequency Response part 2 (I&N Chap 12)

Frequency Response part 2 (I&N Chap 12) Frequency Response part 2 (I&N Chap 12) Introduction & TFs Decibel Scale & Bode Plots Resonance Scaling Filter Networks Applications/Design Frequency response; based on slides by J. Yan Slide 3.1 Example

More information

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems EE451/551: Digital Control Chapter 3: Modeling of Digital Control Systems Common Digital Control Configurations AsnotedinCh1 commondigitalcontrolconfigurations As noted in Ch 1, common digital control

More information

Chapter 1 Indices & Standard Form

Chapter 1 Indices & Standard Form Chapter 1 Indices & Standard Form Section 1.1 Simplifying Only like (same letters go together; same powers and same letter go together) terms can be grouped together. Example: a 2 + 3ab + 4a 2 5ab + 10

More information

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho Tel: Fax: Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 02-760-4253 Fax:02-760-4435 Introduction In this lesson, you will learn the following : The

More information

Representation of standard models: Transfer functions are often used to represent standard models of controllers and signal filters.

Representation of standard models: Transfer functions are often used to represent standard models of controllers and signal filters. Chapter 5 Transfer functions 5.1 Introduction Transfer functions is a model form based on the Laplace transform, cf. Chapter 4. Transfer functions are very useful in analysis and design of linear dynamic

More information

CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

More information

LabVIEW 开发技术丛书 控制设计与仿真实战篇

LabVIEW 开发技术丛书 控制设计与仿真实战篇 LabVIEW 开发技术丛书 控制设计与仿真实战篇 录目录 Modeling DC Motor Position 1-8 Motor Position PID Control 9-18 Root Locus Design Method for Motor Position Control 19-28 Frequency Design Method for Motor Position Control

More information

Problem Value Score Total 100/105

Problem Value Score Total 100/105 RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first

More information

EXAMINATION INFORMATION PAGE Written examination

EXAMINATION INFORMATION PAGE Written examination EXAMINATION INFORMATION PAGE Written examination Course code: Course name: PEF3006 Process Control Examination date: 30 November 2018 Examination time from/to: 09:00-13:00 Total hours: 4 Responsible course

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

More information

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version

CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version CONTROL SYSTEMS ENGINEERING Sixth Edition International Student Version Norman S. Nise California State Polytechnic University, Pomona John Wiley fir Sons, Inc. Contents PREFACE, vii 1. INTRODUCTION, 1

More information

EE 4343/ Control System Design Project

EE 4343/ Control System Design Project Copyright F.L. Lewi 2004 All right reerved EE 4343/5320 - Control Sytem Deign Project Updated: Sunday, February 08, 2004 Background: Analyi of Linear ytem, MATLAB Review of Baic Concept LTI Sytem LT I

More information

Solutions 1-4 by Poya Khalaf

Solutions 1-4 by Poya Khalaf Solutions -4 by Poya Khalaf. Consider the function: f { t < [ e t sin(t), te 2t] T t Calculate f 2,[, ] using the time-domain definition and then using Parsevals identity. The following code has been written

More information

MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox

MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox Laplace Transform and the Symbolic Math Toolbox 1 MAT 275 Laboratory 7 Laplace Transform and the Symbolic Math Toolbox In this laboratory session we will learn how to 1. Use the Symbolic Math Toolbox 2.

More information

Scilab Manual for Control Systems & Electrical Machines by Dr Lochan Jolly Electronics Engineering Thakur College of Engineering & Technology 1

Scilab Manual for Control Systems & Electrical Machines by Dr Lochan Jolly Electronics Engineering Thakur College of Engineering & Technology 1 Scilab Manual for Control Systems & Electrical Machines by Dr Lochan Jolly Electronics Engineering Thakur College of Engineering & Technology 1 Solutions provided by Dr Lochan Jolly Electronics Engineering

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

Lesson 23: Complicated Quadratics

Lesson 23: Complicated Quadratics : Complicated Quadratics Opening Discussion 1. The quadratic expression 2x 2 + 4x + 3 can be modeled with the algebra tiles as shown below. Discuss with your group a method to complete the square with

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signals & Systems Prof. Mark Fowler Note Set #26 D-T Systems: Transfer Function and Frequency Response / Finding the Transfer Function from Difference Eq. Recall: we found a DT system s freq. resp.

More information

Numeric Matlab for Laplace Transforms

Numeric Matlab for Laplace Transforms EE 213 Spring 2008 LABORATORY # 4 Numeric Matlab for Laplace Transforms Objective: The objective of this laboratory is to introduce some numeric Matlab commands that are useful with Laplace transforms

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions

More information

CONTROL * ~ SYSTEMS ENGINEERING

CONTROL * ~ SYSTEMS ENGINEERING CONTROL * ~ SYSTEMS ENGINEERING H Fourth Edition NormanS. Nise California State Polytechnic University, Pomona JOHN WILEY& SONS, INC. Contents 1. Introduction 1 1.1 Introduction, 2 1.2 A History of Control

More information

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011 ENG M 54 Laboratory #7 University of Alberta ENGM 54: Modeling and Simulation of Engineering Systems Laboratory #7 M.G. Lipsett & M. Mashkournia 2 Mixed Systems Modeling with MATLAB & SIMULINK Mixed systems

More information

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

More information

Lab # 4 Time Response Analysis

Lab # 4 Time Response Analysis Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an

More information

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3

More information

Section 2.4: Add and Subtract Rational Expressions

Section 2.4: Add and Subtract Rational Expressions CHAPTER Section.: Add and Subtract Rational Expressions Section.: Add and Subtract Rational Expressions Objective: Add and subtract rational expressions with like and different denominators. You will recall

More information

EEL2216 Control Theory CT1: PID Controller Design

EEL2216 Control Theory CT1: PID Controller Design EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportional-integral-derivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers

More information

Poles and Zeros and Transfer Functions

Poles and Zeros and Transfer Functions Poles and Zeros and Transfer Functions Transfer Function: Considerations: Factorization: A transfer function is defined as the ratio of the Laplace transform of the output to the input with all initial

More information

SECTION 1.2. DYNAMIC MODELS

SECTION 1.2. DYNAMIC MODELS CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 5 September 16 10 6:47 PM SECTION 1.2. DYNAMIC MODELS A dynamic model is a mathematical description of the process to be controlled. Specifically, a set

More information

Tutorial 4 (Week 11): Matlab - Digital Control Systems

Tutorial 4 (Week 11): Matlab - Digital Control Systems ELEC 3004 Systems: Signals & Controls Tutorial 4 (Week ): Matlab - Digital Control Systems The process of designing and analysing sampled-data systems is enhanced by the use of interactive computer tools

More information

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20) 1 Homework 7 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pt] Ue partial fraction expanion to compute x(t) when X 1 () = 4 2 + 2 + 4 Ue partial fraction expanion to compute x(t) when X 2 () = ( )

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 Electrical and Electronics Engineering TUTORIAL QUESTION BAN Course Name : CONTROL SYSTEMS Course Code : A502 Class : III

More information

Sensitivity of Time Response to Parameter Change

Sensitivity of Time Response to Parameter Change Appendix W Sensitivity of Time Response to Parameter Change We have considered the e ects of errors on the steady-state gain of a dynamic system have shown how feedback control can reduce these errors.

More information

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad -500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech

More information

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada Digital Control System Models M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Model of ADC. Model of DAC. Model of ADC, analog subsystem and DAC. Systems with transport

More information

CDS 101/110: Lecture 6.2 Transfer Functions

CDS 101/110: Lecture 6.2 Transfer Functions CDS 11/11: Lecture 6.2 Transfer Functions November 2, 216 Goals: Continued study of Transfer functions Review Laplace Transform Block Diagram Algebra Bode Plot Intro Reading: Åström and Murray, Feedback

More information

ECE 3793 Matlab Project 3 Solution

ECE 3793 Matlab Project 3 Solution ECE 3793 Matlab Project 3 Solution Spring 27 Dr. Havlicek. (a) In text problem 9.22(d), we are given X(s) = s + 2 s 2 + 7s + 2 4 < Re {s} < 3. The following Matlab statements determine the partial fraction

More information

Solve by factoring and applying the Zero Product Property. Review Solving Quadratic Equations. Three methods to solve equations of the

Solve by factoring and applying the Zero Product Property. Review Solving Quadratic Equations. Three methods to solve equations of the Topic 0: Review Solving Quadratic Equations Three methods to solve equations of the form ax 2 bx c 0. 1. Factoring the expression and applying the Zero Product Property 2. Completing the square and applying

More information

Review Solving Quadratic Equations. Solve by factoring and applying the Zero Product Property. Three methods to solve equations of the

Review Solving Quadratic Equations. Solve by factoring and applying the Zero Product Property. Three methods to solve equations of the Topic 0: Review Solving Quadratic Equations Three methods to solve equations of the form ax bx c 0. 1. Factoring the expression and applying the Zero Product Property. Completing the square and applying

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

for non-homogeneous linear differential equations L y = f y H

for non-homogeneous linear differential equations L y = f y H Tues March 13: 5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y P for non-homogeneous linear differential equations (so that you can use the general solution y = y P y = y x in this section...

More information

SAMPLE EXAMINATION PAPER (with numerical answers)

SAMPLE EXAMINATION PAPER (with numerical answers) CID No: IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

( ) + ( ) ( ) ( ) Exercise Set 6.1: Sum and Difference Formulas. β =, π π. π π. β =, evaluate tan β. Simplify each of the following expressions.

( ) + ( ) ( ) ( ) Exercise Set 6.1: Sum and Difference Formulas. β =, π π. π π. β =, evaluate tan β. Simplify each of the following expressions. Simplify each of the following expressions ( x cosx + cosx ( + x ( 60 θ + ( 60 + θ 6 cos( 60 θ + cos( 60 + θ 7 cosx + cosx+ 8 x+ + x 6 6 9 ( θ 80 + ( θ + 80 0 cos( 90 + θ + cos( 90 θ 7 Given that tan (

More information

EE 4314 Lab 1 Handout Control Systems Simulation with MATLAB and SIMULINK Spring Lab Information

EE 4314 Lab 1 Handout Control Systems Simulation with MATLAB and SIMULINK Spring Lab Information EE 4314 Lab 1 Handout Control Systems Simulation with MATLAB and SIMULINK Spring 2013 1. Lab Information This is a take-home lab assignment. There is no experiment for this lab. You will study the tutorial

More information

EXAMPLE PROBLEMS AND SOLUTIONS

EXAMPLE PROBLEMS AND SOLUTIONS Similarly, the program for the fourth-order transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa4-2o0sa3 + 1 80O0sA2-840000~ + 16800000 sa4

More information

Notice the minus sign on the adder: it indicates that the lower input is subtracted rather than added.

Notice the minus sign on the adder: it indicates that the lower input is subtracted rather than added. 6.003 Homework Due at the beginning of recitation on Wednesday, February 17, 010. Problems 1. Black s Equation Consider the general form of a feedback problem: + F G Notice the minus sign on the adder:

More information

2.4. Characterising Functions. Introduction. Prerequisites. Learning Outcomes

2.4. Characterising Functions. Introduction. Prerequisites. Learning Outcomes Characterising Functions 2.4 Introduction There are a number of different terms used to describe the ways in which functions behave. In this Section we explain some of these terms and illustrate their

More information

UNIVERSITI MALAYSIA PERLIS

UNIVERSITI MALAYSIA PERLIS UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 230 SIGNALS AND SYSTEMS LABORATORY MODULE LAB 5 : LAPLACE TRANSFORM & Z-TRANSFORM 1 LABORATORY OUTCOME Ability to describe

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

Chemical Engineering 436 Laplace Transforms (1)

Chemical Engineering 436 Laplace Transforms (1) Chemical Engineering 436 Laplace Transforms () Why Laplace Transforms?? ) Converts differential equations to algebraic equations- facilitates combination of multiple components in a system to get the total

More information

6.003 Homework #6 Solutions

6.003 Homework #6 Solutions 6.3 Homework #6 Solutions Problems. Maximum gain For each of the following systems, find the frequency ω m for which the magnitude of the gain is greatest. a. + s + s ω m = w This system has poles at s

More information

MAS107 Control Theory Exam Solutions 2008

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

More information

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox

More information

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs

Course roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform

More information

16.31 Homework 2 Solution

16.31 Homework 2 Solution 16.31 Homework Solution Prof. S. R. Hall Issued: September, 6 Due: September 9, 6 Problem 1. (Dominant Pole Locations) [FPE 3.36 (a),(c),(d), page 161]. Consider the second order system ωn H(s) = (s/p

More information

ECE 203 LAB 1 MATLAB CONTROLS AND SIMULINK

ECE 203 LAB 1 MATLAB CONTROLS AND SIMULINK Version 1.1 1 of BEFORE YOU BEGIN PREREQUISITE LABS ECE 01 and 0 Labs EXPECTED KNOWLEDGE ECE 03 LAB 1 MATLAB CONTROLS AND SIMULINK Linear systems Transfer functions Step and impulse responses (at the level

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Dynamics and Control II Design Project

Massachusetts Institute of Technology Department of Mechanical Engineering Dynamics and Control II Design Project Massachusetts Institute of Technology Department of Mechanical Engineering.4 Dynamics and Control II Design Project ACTIVE DAMPING OF TALL BUILDING VIBRATIONS: CONTINUED Franz Hover, 5 November 7 Review

More information

MAE 143B - Homework 7

MAE 143B - Homework 7 MAE 143B - Homework 7 6.7 Multiplying the first ODE by m u and subtracting the product of the second ODE with m s, we get m s m u (ẍ s ẍ i ) + m u b s (ẋ s ẋ u ) + m u k s (x s x u ) + m s b s (ẋ s ẋ u

More information

Motivation. From SS to TF (review) Realization: From TF to SS. MECH468 Modern Control Engineering MECH550P Foundations in Control Engineering

Motivation. From SS to TF (review) Realization: From TF to SS. MECH468 Modern Control Engineering MECH550P Foundations in Control Engineering MECH468 Modern Control Engineering MECH550P Foundations in Control Engineering Realization Dr. Ryozo Nagamune Department of Mechanical Engineering University of British Columbia 2008/09 MECH468/550P 1

More information

Representing Polynomials

Representing Polynomials Lab 4 Representing Polynomials A polynomial of nth degree looks like: a n s n +a n 1 a n 1 +...+a 2 s 2 +a 1 s+a 0 The coefficients a n, a n-1,, a 2, a 1, a 0 are the coefficients of decreasing powers

More information

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes Engineering Applications of z-transforms 21.4 Introduction In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or output sequence for a discrete system. This

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

Solve by factoring and applying the Zero Product Property. Review Solving Quadratic Equations. Three methods to solve equations of the

Solve by factoring and applying the Zero Product Property. Review Solving Quadratic Equations. Three methods to solve equations of the Hartfield College Algebra (Version 2015b - Thomas Hartfield) Unit ONE Page - 1 - of 26 Topic 0: Review Solving Quadratic Equations Three methods to solve equations of the form ax 2 bx c 0. 1. Factoring

More information

HONORS GEOMETRY SUMMER REVIEW PACKET (2012)

HONORS GEOMETRY SUMMER REVIEW PACKET (2012) HONORS GEOMETRY SUMMER REVIEW PACKET (01) The problems in this packet are designed to help you review topics from previous mathematics courses that are important to your success in Honors Geometry. Please

More information

A Note on Bode Plot Asymptotes based on Transfer Function Coefficients

A Note on Bode Plot Asymptotes based on Transfer Function Coefficients ICCAS5 June -5, KINTEX, Gyeonggi-Do, Korea A Note on Bode Plot Asymptotes based on Transfer Function Coefficients Young Chol Kim, Kwan Ho Lee and Young Tae Woo School of Electrical & Computer Eng., Chungbuk

More information

Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

More information

Linear System Theory

Linear System Theory Linear System Theory - Laplace Transform Prof. Robert X. Gao Department of Mechanical Engineering University of Connecticut Storrs, CT 06269 Outline What we ve learned so far: Setting up Modeling Equations

More information

ECE 3793 Matlab Project 3

ECE 3793 Matlab Project 3 ECE 3793 Matlab Project 3 Spring 2017 Dr. Havlicek DUE: 04/25/2017, 11:59 PM What to Turn In: Make one file that contains your solution for this assignment. It can be an MS WORD file or a PDF file. Make

More information

INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto

INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto INC 341 Feedback Control Systems: Lecture 2 Transfer Function of Dynamic Systems I Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

Chapter 7: Time Domain Analysis

Chapter 7: Time Domain Analysis Chapter 7: Time Domain Analysis Samantha Ramirez Preview Questions How do the system parameters affect the response? How are the parameters linked to the system poles or eigenvalues? How can Laplace transforms

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report

More information

ACTIVITY: Simplifying Algebraic Expressions

ACTIVITY: Simplifying Algebraic Expressions . Algebraic Expressions How can you simplify an algebraic expression? ACTIVITY: Simplifying Algebraic Expressions Work with a partner. a. Evaluate each algebraic expression when x = 0 and when x =. Use

More information

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

More information

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay Week 05 Module - 05 Tutorial No.4 Welcome everyone my name is Basudev Majumder, I am

More information

Automatic Control EEE 2002 Tutorial Exercise IV

Automatic Control EEE 2002 Tutorial Exercise IV Automatic Control EEE Tutorial Exercise IV k A second order system is given by G() s =. as + bs + c k'. Write the transfer function as: G() s =. s + ζω ns + ωn () G s = as k = + bs + c s + k / a b s a

More information

2.2 Radical Expressions I

2.2 Radical Expressions I 2.2 Radical Expressions I Learning objectives Use the product and quotient properties of radicals to simplify radicals. Add and subtract radical expressions. Solve real-world problems using square root

More information

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1] ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Pitch Rate CAS Design Project

Pitch Rate CAS Design Project Pitch Rate CAS Design Project Washington University in St. Louis MAE 433 Control Systems Bob Rowe 4.4.7 Design Project Part 2 This is the second part of an ongoing project to design a control and stability

More information

AMJAD HASOON Process Control Lec4.

AMJAD HASOON Process Control Lec4. Multiple Inputs Control systems often have more than one input. For example, there can be the input signal indicating the required value of the controlled variable and also an input or inputs due to disturbances

More information

ECG SIGNAL FILTERING 6

ECG SIGNAL FILTERING 6 ECG SIGNAL FILTERING 6 Electrical Engineering 20N Department of Electrical Engineering and Computer Sciences University of California, Berkeley HSIN-I LIU, JONATHAN KOTKER, HOWARD LEI, AND BABAK AYAZIFAR

More information

Appendix 3B MATLAB Functions for Modeling and Time-domain analysis

Appendix 3B MATLAB Functions for Modeling and Time-domain analysis Appendix 3B MATLAB Functions for Modeling and Time-domain analysis MATLAB control system Toolbox contain the following functions for the time-domain response step impulse initial lsim gensig damp ltiview

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab

More information

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

More information