Regents Physics Most Missed Questions of 2014 Review

Size: px
Start display at page:

Download "Regents Physics Most Missed Questions of 2014 Review"

Transcription

1 Regents Physics Most Missed Questions of 2014 Review Answers And Explanations Here: 1. A sound wave traveling eastward through air causes the air molecules to 1) vibrate east and west 2) vibrate north and south 3) move eastward, only 4) move northward, only 2. In the diagram below, a 20.-newton force due north and a 20.-newton force due east act concurrently on an object, as shown in the diagram below. 5. In the diagram below, 400. joules of work is done raising a 72-newton weight a vertical distance of 5.0 meters. The additional force necessary to bring the object into a state of equilibrium is 1) 20. N, northeast 2) 20. N, southwest 3) 28 N, northeast 4) 28 N, southwest 3. A 15.0-kilogram mass is moving at 7.50 meters per second on a horizontal, frictionless surface. What is the total work that must be done on the mass to increase its speed to 11.5 meters per second? 1) 120. J 2) 422 J 3) 570. J 4) 992 J 4. A circuit consists of a resistor and a battery. Increasing the voltage of the battery while keeping the temperature of the circuit constant would result in an increase in 1) current, only 2) resistance, only 3) both current and resistance 4) neither current nor resistance How much work is done to overcome friction as the weight is raised? 1) 40. J 2) 360 J 3) 400. J 4) 760 J 6. A tuning fork vibrating in air produces sound waves. These waves are best classified as 1) transverse, because the air molecules are vibrating parallel to the direction of wave motion 2) transverse, because the air molecules are vibrating perpendicular to the direction of wave motion 3) longitudinal, because the air molecules are vibrating parallel to the direction of wave motion 4) longitudinal, because the air molecules are vibrating perpendicular to the direction of wave motion 7. A 512-hertz sound wave travels 100. meters to an observer through air at STP. What is the wavelength of this sound wave? 1) m 2) m 3) 1.55 m 4) 5.12 m Page 1

2 8. Several pieces of copper wire, all having the same length but different diameters, are kept at room temperature. Which graph best represents the resistance, R, of the wires as a function of their cross-sectional areas, A? 9. According to the Standard Model, a proton is constructed of two up quarks and one down quark (uud) and a neutron is constructed of one up quark and two down quarks (udd). During beta decay, a neutron decays into a proton, an electron, and an electron antineutrino. During this process there is a conversion of a 1) u quark to a d quark 2) d quark to a meson 3) baryon to another baryon 4) lepton to another lepton 10. Which combination of fundamental units can be used to express energy? 1) kg m/s 2) kg m 2 /s 3) kg m/s 2 4) kg m 2 /s A block weighing 40. newtons is released from rest on an incline 8.0 meters above the horizontal, as shown in the diagram below. 13. The diagram below represents the magnetic field near point P. If a compass is placed at point P in the same plane as the magnetic field, which arrow represents the direction the north end of the compass needle will point? If 50. joules of heat is generated as the block slides down the incline, the maximum kinetic energy of the block at the bottom of the incline is 1) 50. J 2) 270 J 3) 320 J 4) 3100 J 12. A wave passes through an opening in a barrier. The amount of diffraction experienced by the wave depends on the size of the opening and the wave s 1) amplitude 2) wavelength 3) velocity 4) phase Page 2

3 14. A 3.0-kilogram steel block is at rest on a friction-less horizontal surface. A 1.0-kilogram lump of clay is propelled horizontally at 6.0 meters per second toward the block as shown in the diagram below. 19. The graph below shows the relationship between the speed and elapsed time for an object falling freely from rest near the surface of a planet. Upon collision, the clay and steel block stick together and move to the right with a speed of 1) 1.5 m/s 2) 2.0 m/s 3) 3.0 m/s 4) 6.0 m/s 15. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude? 1) 0º 2) 45º 3) 90.º 4) 180.º 16. The speed of an object undergoing constant acceleration increases from 8.0 meters per second to 16.0 meters per second in 10. seconds. How far does the object travel during the 10. seconds? 1) m 2) m 3) m 4) m 17. The diagram below shows a force of magnitude F applied to a mass at angle relative to a horizontal frictionless surface. What is the total distance the object falls during the first 3.0 seconds? 1) 12 m 2) 24 m 3) 44 m 4) 72 m 20. A boat weighing Newtons requires a horizontal force of Newtons to move it across the water at meters per second. The boat s engine must provide energy at the rate of 1) J 2) W 3) J 4) W 21. A 5.0-newton force and a 7.0-newton force act concurrently on a point. As the angle between the forces is increased from 0 to 180, the magnitude of the resultant of the two forces changes from 1) 0.0 N to 12.0 N 2) 2.0 N to 12.0 N 3) 12.0 N to 2.0 N 4) 12.0 N to 0.0 N 22. The graph below represents the relationship between speed and time for an object moving along a straight line. As angle is increased, the horizontal acceleration of the mass 1) decreases 2) increases 3) remains the same 18. Which unit is equivalent to a newton per kilogram? 1) m s 2) W s 3) J s 4) kg m s What is the total distance traveled by the object during the first 4 seconds? 1) 5 m 2) 20 m 3) 40 m 4) 80 m Page 3

4 23. The diagram below represents a force vector, A and resultant vector, R. Which force vector B below could be added to force vector A to produce resultant vector, R. 24. Two forces act concurrently on an object. Their resultant force has the largest magnitude when the angle between the forces is 1) 0 2) 30 3) 90 4) The diagram below represents two masses before and after they collide. Before the collision, mass ma is moving to the right with speed v, and mass mb is at rest. Upon collision, the two masses stick together. Which expression represents the speed, v', of the masses after the collision? [Assume no outside forces are acting on ma or mb.] 26. A wooden crate is pushed at constant speed across a level wooden floor. Which graph best represents the relationship between the total mechanical energy of the crate and the duration of time the crate is pushed? Page 4

5 27. If the magnitude of the gravitational force of Earth on the Moon is F, the magnitude of the gravitational force of the Moon on Earth is 1) smaller than F 2) larger than F 3) equal to F 28. Two 30.-newton forces act concurrently on an object. In which diagram would the forces produce a resultant with a magnitude of 30. newtons? 1) 2) 30. A high school physics student is sitting in a seat reading this question. The magnitude of the force with which the seat is pushing up on the student to support him is closest to 1) 0 N 2) 60 N 3) 600 N 4) 6,000 N 31. A baseball player runs 27.4 meters from the batter's box to first base, overruns first base by 3.0 meters, and then returns to first base. Compared to the total distance traveled by the player, the magnitude of the player's total displacement from the batter's box is 1) 3.0 m shorter 2) 6.0 m shorter 3) 3.0 m longer 4) 6.0 m longer 32. The diagram below shows a moving, 5.00-kilogram cart at the foot of a hill 10.0 meters high. For the cart to reach the top of the hill, what is the minimum kinetic energy of the cart in the position shown? [Neglect energy loss due to friction.] 3) 4) 29. Base your answer to the following question on the information and table below. The weight of an object was determined at five different distances from the center of Earth. The results are shown in the table below. Position A represents results for the object at the surface of Earth. 1) 4.91 J 2) 50.0 J 3) 250. J 4) 491 J 33. A sonar wave is reflected from the ocean floor. For which angles of incidence do the wave s angle of reflection equal its angle of incidence? 1) angles less than 45, only 2) an angle of 45, only 3) angles greater than 45, only 4) all angles of incidence 34. Parallel wave fronts incident on an opening in a barrier are diffracted. For which combination of wavelength and size of opening will diffraction effects be greatest? 1) short wavelength and narrow opening 2) short wavelength and wide opening 3) long wavelength and narrow opening 4) long wavelength and wide opening 35. A car travels at constant speed v up a hill from point A to point B, as shown in the diagram below. As the car travels from A to B, its gravitational potential energy At what distance from the center of Earth is the weight of the object approximately 28 newtons? 1) m 2) m 3) m 4) m 1) increases and its kinetic energy decreases 2) increases and its kinetic energy remains the same 3) remains the same and its kinetic energy decreases 4) remains the same and its kinetic energy remains the same Page 5

6 36. As a box is pushed 30. meters across a horizontal floor by a constant horizontal force of 25 newtons, the kinetic energy of the box increases by 300. joules. How much total internal energy is produced during this process? 38. The graph below shows elongation as a function of the applied force for two springs, A and B. 1) 150 J 2) 250 J 3) 450 J 4) 750 J 37. A 1,200-kilogram car traveling at 10. meters per second hits a tree and is brought to rest in 0.10 second. What is the magnitude of the average force acting on the car to bring it to rest? 1) N 2) N 3) N 4) N Compared to the spring constant for spring A, the spring constant for spring B is 1) smaller 2) larger 3) the same 39. A car s horn produces a sound wave of constant frequency. As the car speeds up going away from a stationary spectator, the sound wave detected by the spectator 1) decreases in amplitude and decreases in frequency 2) decreases in amplitude and increases in frequency 3) increases in amplitude and decreases in frequency 4) increases in amplitude and increases in frequency 40. A plane flying horizontally above Earth s surface at 100. meters per second drops a crate. The crate strikes the ground 30.0 seconds later. What is the magnitude of the horizontal component of the crate s velocity just before it strikes the ground? [Neglect friction.] 1) 0 m/s 2) 100. m/s 3) 294 m/s 4) 394 m/s Page 6

7 Physics Name Class Date Page 7

8 Answer Key Most Missed Questions 2014 Review Answers and explanations Here: Page 11

Top 40 Missed Regents Physics Questions Review

Top 40 Missed Regents Physics Questions Review Top 40 Missed Regents Physics Questions - 2015 Review 1. Earth s mass is approximately 81 times the mass of the Moon. If Earth exerts a gravitational force of magnitude F on the Moon, the magnitude of

More information

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart. 1. The diagram below shows a worker using a rope to pull a cart. 6. The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth. The worker s

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D

3) 4) Which car has the greatest acceleration during the time interval 10. seconds to 15 seconds? 1) A 2) B 3) C 4) D 1. A cart travels with a constant nonzero acceleration along a straight line. Which graph best represents the relationship between the distance the cart travels and time of travel? 1) 2) 3) 4) 2. On a

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Thursday, June 15, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Thursday, June 15, :15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Thursday, June 15, 2017 1:15 to 4:15 p.m., only The possession or use of any communications

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

3.The wrecking crane shown is moving toward a brick wall that is to be torn down.

3.The wrecking crane shown is moving toward a brick wall that is to be torn down. Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 18, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 18, :15 to 4:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Tuesday, June 18, 2002 1:15 to 4:15 p.m., only The answer sheet for Part A and Part B 1 is the last page

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Thursday, January 24, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Thursday, January 24, :15 to 4:15 p.m. PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Thursday, January 24, 2008 1:15 to 4:15 p.m., only The answer sheet for Part A and Part B 1 is

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Page 1. Name: 1) The diagram below represents two concurrent forces.

Page 1. Name: 1) The diagram below represents two concurrent forces. Name: 3434-1 - Page 1 1) The diagram below represents two concurrent forces. Which vector represents the force that will produce equilibrium with these two forces? 2) Which diagram represents a box in

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C.

Forces. 3. The graph given shows the weight of three objects on planet X as a function of their mass. A. 0 N. B. between 0 N and 12 N C. Name: Date: 1. When a 12-newton horizontal force is applied to a box on a horizontal tabletop, the box remains at rest. The force of static friction acting on the box is 3. The graph given shows the weight

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below.

1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. Name Vectors Practice 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the object, will establish

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXMINTION PHYSICL SETTING PHYSICS Thursday, June 22, 2006 9:15 a.m. to 12:15 p.m., only The answer sheet for Part and Part B 1 is

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

1d forces and motion

1d forces and motion Name: ate: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 4. book weighing 20. newtons slides at constant velocity down a ramp inclined

More information

Vectors & scalars: Force as vector Review

Vectors & scalars: Force as vector Review Vectors & scalars: Force as vector Review Name 1. Two forces act concurrently on an object on a horizontal, frictionless surface, as shown in the diagram below. What additional force, when applied to the

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B)

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B) 1. The data table below lists the mass and speed of four different objects. 6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? Which

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 21, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 21, :15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Tuesday, June 21, 2016 1:15 to 4:15 p.m., only The possession or use of any communications

More information

act concurrently on point P, as shown in the diagram. The equilibrant of F 1

act concurrently on point P, as shown in the diagram. The equilibrant of F 1 Page 1 of 10 force-friction-vectors review Name 12-NOV-04 1. A 150.-newton force, F1, and a 200.-newton force, F 2, are applied simultaneously to the same point on a large crate resting on a frictionless,

More information

Name (LAST, First):, Block (circle): Date: / /

Name (LAST, First):, Block (circle): Date: / / Name (LAST, First):, Block (circle): 1 2 3 4 5 6 7 8 Date: / / MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A new car manufacturer advertises

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 22, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 22, :15 to 4:15 p.m. PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 22, 2005 1:15 to 4:15 p.m., only The answer sheet for Part A and Part B 1 is

More information

Midterm Review. 1. A car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is

Midterm Review. 1. A car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is Name: Date: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 1.. 0.2 m/sec 2. 5 m/sec 2 C. 10 m/sec 2 D. 20 m/sec 2 2. steel ball is

More information

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?

5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant? 1. A 0.50-kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Which force causes the path of the stream of water to change due to the plastic rod? A) nuclear B) magnetic C) electrostatic D) gravitational

Which force causes the path of the stream of water to change due to the plastic rod? A) nuclear B) magnetic C) electrostatic D) gravitational 1. A positively charged rod is held near the knob of a neutral electroscope. Which diagram best represents the distribution of charge on the electroscope? A) B) C) D) 2. A charged electroscope can detect

More information

Physics Regents Review

Physics Regents Review Name: ate: 1. Which term identifies a scalar quantity?. displacement. momentum. velocity. time 2. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant

More information

Physics midterm review fall 2018

Physics midterm review fall 2018 Physics midterm review fall 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown?.... 4. Two forces ( O and O) act simultaneously at point O as shown on

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

AP Physics B Summer Assignment

AP Physics B Summer Assignment BERGEN COUNTY TECHNICAL SCHOOL AP Physics B Summer Assignment 2011 Solve all problems on separate paper. This will be due the first week of school. If you need any help you can e-mail Mr. Zavorotniy at

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems. Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Conservation of Energy Review

Conservation of Energy Review onservation of Energy Review Name: ate: 1. An electrostatic force exists between two +3.20 10 19 -coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges

More information

Physics: Momentum, Work, Energy, Power

Physics: Momentum, Work, Energy, Power Name: ate: 1. The momentum of a 5-kilogram object moving at 6 meters per second is. 1 kg m/sec. 5 kg m/sec. 11 kg m/sec. 30 kg m/sec 2. 60-kilogram student running at 3.0 meters per second has a kinetic

More information

Additional Practice Test 1 Physics

Additional Practice Test 1 Physics Name: ate: 1. person walks 5.0 kilometers north, then 5.0 kilometers east. His displacement is closest to 7.1 kilometers northeast 7.1 kilometers northwest 5. lab cart is loaded with different masses and

More information

SPH3U Culminating Task Review Package: Your review package should consist of two parts:

SPH3U Culminating Task Review Package: Your review package should consist of two parts: SPH3U Culminating Task Review Package: Your review package should consist of two parts: 1. Study notes of key terms/concepts from each unit. 2. Practice Problems: this package contains selected problems

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Thursday, January 24, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Thursday, January 24, :15 to 4:15 p.m. PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Thursday, January 4, 008 1:15 to 4:15 p.m., only The answer sheet for Part A and Part B 1 is

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

4. The diagram below represents two concurrent forces.

4. The diagram below represents two concurrent forces. 1. Two 20.-newton forces act concurrently on an object. What angle between these forces will produce a resultant force with the greatest magnitude? A) 0º B) 45º C) 90.º D) 180.º 2. Two forces act concurrently

More information

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

5. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1 1 (A) 2 (B) 2 (C) 1 (D) 2 (E) 2 2. A railroad flatcar of mass 2,000 kilograms rolls

More information

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above.

5. A car moves with a constant speed in a clockwise direction around a circular path of radius r, as represented in the diagram above. 1. The magnitude of the gravitational force between two objects is 20. Newtons. If the mass of each object were doubled, the magnitude of the gravitational force between the objects would be A) 5.0 N B)

More information

XX. Introductory Physics, High School

XX. Introductory Physics, High School XX. Introductory Physics, High School High School Introductory Physics Test The spring 015 high school Introductory Physics test was based on learning standards in the Introductory Physics content strand

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

Conceptual Physics Final Exam Review

Conceptual Physics Final Exam Review Useful Information Work and Energy W = F x W = work [J] F = force [N] x = displacement [m] U g = mgh U g = gravitational potential energy [J] m = mass [kg] h = height [m] g = 10 m/s 2 DC Circuits I =!!

More information

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring?

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring? Name: ate: 1. The diagram here shows a 1-kilogram aluminum sphere and a 3-kilogram copper sphere of equal radius located 20 meters above the ground. 4. The diagram shown represents two objects at rest

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40.

As the mass travels along the track, the maximum height it will reach above point E will be closest to A) 10. m B) 20. m C) 30. m D) 40. 1. As a pendulum swings from position A to position B as shown in the diagram, its total mechanical energy (neglecting friction) A) decreases B) increases C) remains the same 2. Base your answer to the

More information

Multiple Choice Review for Final Exam ~ Physics 1020

Multiple Choice Review for Final Exam ~ Physics 1020 Multiple Choice Review for Final Exam ~ Physics 1020 1. You are throwing a ball straight up in the air. At the highest point, the ball s a) velocity and acceleration are zero b) velocity is nonzero, but

More information

PHYSICS B SAMPLE EXAM I Time - 90 minutes 70 Questions

PHYSICS B SAMPLE EXAM I Time - 90 minutes 70 Questions Page 1 of 7 PHYSCS B SAMPLE EXAM Time - 90 minutes 70 Questions Directions:Each of the questions or incomplete statements below is followed by five suggested Solutions or completions. Select the one that

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, January 28, 2004 9:15 a.m. to 12:15 p.m., only You are to answer all questions in all parts of

More information

UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals

UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals 1. Contact forces are examples of which of the fundamental forces? a. Strong c. Weak b. Electromagnetic d. Gravitational 2. The

More information

Test 1 -Practice (Kinematics)

Test 1 -Practice (Kinematics) Name: ate: 1. car travels a distance of 98 meters in 10 seconds. What is the average speed of the car during this 10-second interval? 4.9 m/s 9.8 m/s 49 m/s 98 m/s 4. The diagram shown represents a force

More information

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0. Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

Spring Not-Break Review Assignment

Spring Not-Break Review Assignment Name AP Physics B Spring Not-Break Review Assignment Date Mrs. Kelly. A kilogram block is released from rest at the top of a curved incline in the shape of a quarter of a circle of radius R. The block

More information

Dynamics Review Checklist

Dynamics Review Checklist Dynamics Review Checklist Newton s Laws 2.1.1 Explain Newton s 1 st Law (the Law of Inertia) and the relationship between mass and inertia. Which of the following has the greatest amount of inertia? (a)

More information

Friction, Inclined Planes, Forces Practice

Friction, Inclined Planes, Forces Practice Name: Date: 1. The diagram below shows a 4.0-kilogram object accelerating at 10. meters per second 2 on a rough horizontal surface. 4. n 8.0-newton block is accelerating down a frictionless ramp inclined

More information

Friction (static & Kinetic) Review

Friction (static & Kinetic) Review Friction (static & Kinetic) Review 1. Sand is often placed on an icy road because the sand A) decreases the coefficient of friction between the tires of a car and the road B) increases the coefficient

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 15, :15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 15, :15 to 4:15 p.m. PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 15, 011 1:15 to 4:15 p.m., only The answers to all questions in this examination

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

1. For which of the following motions of an object must the acceleration always be zero?

1. For which of the following motions of an object must the acceleration always be zero? 1. For which of the following motions of an object must the acceleration always be zero? I. Any motion in a straight line II. Simple harmonic motion III. Any motion in a circle I only II only III that

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

Sample. Test Booklet. Subject: SC, Grade: HS STAAR April 2013 EoC Physics. - signup at to remove - Student name:

Sample. Test Booklet. Subject: SC, Grade: HS STAAR April 2013 EoC Physics. - signup at  to remove - Student name: Test Booklet Subject: SC, Grade: HS STAAR April 2013 EoC Physics Student name: Author: Texas District: Texas Released Tests Printed: Friday August 23, 2013 STAAR PHYSICS REFERENCE MATERIAlS Page 1 Page

More information