Impulse,Momentum, CM Practice Questions

Size: px
Start display at page:

Download "Impulse,Momentum, CM Practice Questions"

Transcription

1 Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times greater D. nine times greater 5. A 7.0-kilogram cart, A, and a 3.0-kilogram cart, B, are initially held together at rest on a horizontal, frictionless surface. When a compressed spring attached to one of the carts is released, the carts are pushed apart. After the spring is released, the speed of cart B is 6.0 meters per second, as represented in the diagram below. 2. A golf club hits a stationary kilogram golf ball with an average force of newtons, accelerating the ball to a speed of 44 meters per second. What is the magnitude of the impulse imparted to the ball by the golf club? A. 2.2 N s B. 880 N s C N s D N s 3. What is the magnitude of the gravitational force of attraction between two kilogram soccer balls when the distance between their centers is meter? A N B N C N D N 4. A kilogram cart traveling to the right on a horizontal, frictionless surface at 2.20 meters per second collides head on with a kilogram cart moving to the left at 1.10 meters per second. What is the magnitude of the total momentum of the two-cart system after the collision? A kg m/s B kg m/s C kg m/s D kg m/s What is the speed of cart A after the spring is released? A. 14 m/s B. 6.0 m/s C. 3.0 m/s D. 2.6 m/s 6. Base your answer to the following question on the information below and on your knowledge of physics. A cannonball with a mass of 1.0 kilogram is fired horizontally from a 500.-kilogram cannon, initially at rest, on a horizontal, frictionless surface. The cannonball is acted on by an average force of newtons for second. What is the magnitude of the change in momentum of the cannonball during firing? A. 0 kg m/s B kg m/s C kg m/s D kg m/s 7. A blue lab cart is traveling west on a track when it collides with and sticks to a red lab cart traveling east. The magnitude of the momentum of the blue cart before the collision is 2.0 kilogram meters per second, and the magnitude of the momentum of the red cart before the collision is 3.0 kilogram meters per second. The magnitude of the total momentum of the two carts after the collision is A. 1.0 kg m/s B. 2.0 kg m/s C. 3.0 kg m/s D. 5.0 kg m/s page 1

2 8. A kilogram car traveling 20.0 meters per second east experiences an impulse of newton seconds west. What is the final velocity of the car after the impulse has been applied? 13. An air bag is used to safely decrease the momentum of a driver in a car accident. The air bag reduces the magnitude of the force acting on the driver by A m/s east B m/s east C m/s west D m/s west 9. A 160.-kilogram space vehicle is traveling along a straight line at a constant speed of 800. meters per second. The magnitude of the net force on the space vehicle is A. increasing the length of time the force acts on the driver B. decreasing the distance over which the force acts on the driver C. increasing the rate of acceleration of the driver D. decreasing the mass of the driver A. 0 N B N C N D N 10. A 1.5-kilogram cart initially moves at 2.0 meters per second. It is brought to rest by a constant net force in 0.30 second. What is the magnitude of the net force? A N B N C. 10. N D. 15 N 11. A kilogram ball traveling at 60.0 meters per second hits a concrete wall. What speed must a kilogram bullet have in order to hit the wall with the same magnitude of momentum as the ball? 14. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A. more mass and more inertia B. more mass and the same inertia C. the same mass and more inertia D. less mass and more inertia 15. A 7.28-kilogram bowling ball traveling 8.50 meters per second east collides head-on with a 5.45 kilogram bowling ball traveling 10.0 meters per second west. Determine the magnitude of the total momentum of the two-ball system after the collision. A m/s B m/s C m/s D m/s 12. A 3.0-kilogram object is acted upon by an impulse having a magnitude of 15 newton seconds. What is the magnitude of the object s change in momentum due to this impulse? 16. The diagram below shows an 8.0-kilogram cart moving to the right at 4.0 meters per second about to make a head-on collision with a 4.0-kilogram cart moving to the left at 6.0 meters per second. A. 5.0 kg m/s B. 15 kg m/s C. 3.0 kg m/s D. 45 kg m/s After the collision, the 4.0-kilogram cart moves to the right at 3.0 meters per second. What is the velocity of the 8.0-kilogram cart after the collision? A m/s left B m/s right C. 5.5 m/s left D. 5.5 m/s right page 2

3 17. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block s momentum is A kg m/s B kg m/s C kg m/s D kg m/s 18. When a 1.0-kilogram cart moving with a speed of 0.50 meter per second on a horizontal surface collides with a second 1.0-kilogram cart initially at rest, the carts lock together. What is the speed of the combined carts after the collision? [Neglect friction.] A. 1.0 m/s B m/s C m/s D. 0 m/s 19. A 75-kilogram hockey player is skating across the ice at a speed of 6.0 meters per second. What is the magnitude of the average force required to stop the player in 0.65 second? A. 120 N B. 290 N C. 690 N D. 920 N 20. A 3.1-kilogram gun initially at rest is free to move. When a kilogram bullet leaves the gun with a speed of 500. meters per second, what is the speed of the gun? A. 0.0 m/s B. 2.4 m/s C. 7.5 m/s D m/s 22. A motorcycle being driven on a dirt path hits a rock. Its 60.-kilogram cyclist is projected over the handlebars at 20. meters per second into a haystack. If the cyclist is brought to rest in 0.50 second, the magnitude of the average force exerted on the cyclist by the haystack is A N B N C N D N 23. A 70-kilogram hockey player skating east on an ice rink is hit by a 0.1-kilogram hockey puck moving toward the west. The puck exerts a 50-newton force toward the west on the player. Determine the magnitude of the force that the player exerts on the puck during this collision. [1] 24. Centripetal force F c acts on a car going around a curve. If the speed of the car were twice as great, the magnitude of the centripetal force necessary to keep the car moving in the same path would be A. F c B. 2F c C. F c 2 D. 4F c 25. The instant before a batter hits a 0.14-kilogram baseball, the velocity of the ball is 45 meters per second west. The instant after the batter hits the ball, the ball s velocity is 35 meters per second east. The bat and ball are in contact for second. Calculate the magnitude of the average force the bat exerts on the ball while they are in contact. [Show all work, including the equation and substitution with units.] 21. When Earth and the Moon are separated by a distance of meters, the magnitude of the gravitational force of attraction between them is newtons. What would be the magnitude of this gravitational force of attraction if Earth and the Moon were separated by a distance of meters? A N B N C N D N 26. Base your answer(s) to the following question(s) on the information below. A 1200-kilogram car moving at 12 meters per second collides with a 2300-kilogram car that is waiting at rest at a traffic light. After the collision, the cars lock together and slide. Eventually, the combined cars are brought to rest by a force of kinetic friction as the rubber tires slide across the dry, level, asphalt road surface. Calculate the speed of the locked-together cars immediately after the collision. [Show all work, including the equation and substitution with units.] page 3

4 27. Calculate the magnitude of the frictional force that brings the locked-together cars to rest. [Show all work, including the equation and substitution with units.] 31. The diagram below represents two masses before and after they collide. Before the collision, mass m A is moving to the right with speed v, and mass m B is at rest. Upon collision, the two masses stick together. 28. A 0.45-kilogram football traveling at a speed of 22 meters per second is caught by an 84-kilogram stationary receiver. If the football comes to rest in the receiver s arms, the magnitude of the impulse imparted to the receiver by the ball is A N s B. 9.9 N s C. 4.4 N s D. 3.8 N s 29. A carpenter hits a nail with a hammer. Compared to the magnitude of the force the hammer exerts on the nail, the magnitude of the force the nail exerts on the hammer during contact is A. less B. greater C. the same 30. As a meteor moves from a distance of 16 Earth radii to a distance of 2 Earth radii from the center of Earth, the magnitude of the gravitational force between the meteor and Earth becomes A. 1 8 as great B. 8 times as great C. 64 times as great D. 4 times as great Which expression represents the speed, v 1, of the masses after the collision? [Assume no outside forces are acting on m A or m B ] A. C. m A + m B v m A B. m B v m A + m B D. m A + m B m A v m A v m A + m B 32. A 1.0-kilogram laboratory cart moving with a velocity of 0.50 meter per second due east collides with and sticks to a similar cart initially at rest. After the collision, the two carts move off together with a velocity of 0.25 meter per second due east. The total momentum of this frictionless system is A. zero before the collision B. zero after the collision C. the same before and after the collision D. greater before the collision than after the collision 33. A bicycle and its rider have a combined mass of 80. kilograms and a speed of 6.0 meters per second. What is the magnitude of the average force needed to bring the bicycle and its rider to a stop in 4.0 seconds? A N B N C N D N page 4

5 34. Which situation will produce the greatest change of momentum for a 1.0-kilogram cart? 37. Which two quantities can be expressed using the same units? A. accelerating it from rest to 3.0 m/s B. accelerating it from 2.0 m/s to 4.0 m/s C. applying a net force of 5.0 N for 2.0 s D. applying a net force of 10.0 N for 0.5 s A. energy and force B. impulse and force C. momentum and energy D. impulse and momentum 35. In the diagram below, scaled vectors represent the momentum of each of two masses, A and B, sliding toward each other on a frictionless, horizontal surface. 38. In the diagram below, a block of mass M initially at rest on a frictionless horizontal surface is struck by a bullet of mass m moving with horizontal velocity v. Which scaled vector best represents the momentum of the system after the masses collide? A. B. C. D. What is the velocity of the bullet-block system after the bullet embeds itself in the block? A. C. ( M + v M ) m B. ( m + v ) m D. M ( m + M m ) v ( m ) v m + M 36. A 3.0-kilogram steel block is at rest on a friction-less horizontal surface. A 1.0-kilogram lump of clay is propelled horizontally at 6.0 meters per second toward the block as shown in the diagram below. 39. The diagram here shows a 1-kilogram aluminum sphere and a 3-kilogram copper sphere of equal radius located 20 meters above the ground. Upon collision, the clay and steel block stick together and move to the right with a speed of Just before striking the ground, the speed of the copper sphere is 20 meters per second. What is the momentum of the copper sphere? A. 1.5 m/s B. 2.0 m/s C. 3.0 m/s D. 6.0 m/s A. 10 kg-m/sec B. 20 kg-m/sec C. 60 kg-m/sec D. 600 kg-m/sec page 5

6 40. When objects exert forces on each other, the total momentum of the system A. decreases B. increases C. remains the same 45. The diagram shown represents two objects at rest on a frictionless horizontal surface with a spring compressed between them. When the compressed spring is released, the two objects are pushed apart. 41. The momentum of a 5-kilogram object moving at 6 meters per second is A. 1 kg m/sec B. 5 kg m/sec C. 11 kg m/sec D. 30 kg m/sec 42. In the diagram shown, a 10-kilogram ball is fired with a velocity of 500 meters per second from a 1,000-kilogram cannon. What is the recoil velocity of the cannon? What is the total momentum of the two-object system that is shown after the expansion of the spring? A. 20 kg-m/s B. 10 kg-m/s C. 5.0 kg-m/s D. 0 kg-m/s 46. What is the velocity of the 2.0-kilogram object that is shown after being acted on by 10 newton-seconds of impulse? A. 1.0 m/s B. 2.0 m/s C. 5.0 m/s D. 10 m/s A. 5 m/sec B. 2 m/sec C. 10 m/sec D. 500 m/sec 43. As a 1.0-kilogram mass falls freely to the Earth, its momentum A. decreases B. increases C. remains the same 44. A reaction engine acquires motion by ejecting hot gases in the opposite direction. This is an example of the law of A. conservation of heat B. conservation of energy C. conservation of momentum D. conservation of mass 47. If the 1.0-kilogram object that is shown receives an impulse of 20 newton-seconds, what impulses does the 2.0-kilogram object receive? A. 0 N-s B N-s C. +10 N-s D. +20 N-s 48. As the unbalanced force applied to an object increases, the time rate of change of the object s momentum A. decreases B. increases C. remains the same 49. A rocket with a mass of 1,000 kilograms is moving at a speed of 20 meters per second. The magnitude of the momentum is A. 50 kg m/s B. 200 kg m/s C. 20,000 kg m/s D. 400,000 kg m/s page 6

7 50. An unbalanced 6.0-newton force acts eastward on an object for 3.0 seconds. The impulse produced by the force is A. 18 N s east B. 2.0 N s east C. 18 N s west D. 2.0 N s west 51. What is the magnitude of the velocity of a 25-kilogram mass that is moving with a momentum of 100 kilogram-meters per second? A m/s B m/s C. 40 m/s D. 4.0 m/s 52. A 2.0-kilogram rifle initially at rest fires a kilogram bullet. As the bullet leaves the rifle with a velocity of 500 meters per second, what is the momentum of the rifle-bullet system? A. 2.5 kg m/s B. 2.0 kg m/s C. 0.5 kg m/s D. 0 kg m/s 53. Which pair of terms are vector quantities? 54. A constant braking force of 10 newtons applied for 5 seconds is used to stop a 2.5-kilogram cart traveling at 20 meters per second. The magnitude of the impulse applied to stop the cart is A. 10 N s B. 30 N s C. 50 N s D. 100 N s 55. A kilogram bullet is fired from a rifle by an unbalanced force of 200 newtons. If the force acts on the bullet for 0.1 second, what is the maximum speed attained by the bullet? A. 5 m/s B. 20 m/s C. 400 m/s D. 800 m/s 56. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two balls after collision? A. 0 kg m/s B. 8.0 kg m/s C. 16 kg m/s D. 32 kg m/s A. force and mass B. distance and displacement C. momentum and acceleration D. speed and velocity 57. Two rocks weighing 5 newtons and 10 newtons, respectively, fall freely from rest near the Earth s surface. After 3 seconds of free-fall, compared to the 5-newton rock, the 10-newton rock has greater A. acceleration B. height C. momentum D. speed page 7

8 58. Two railroad carts, A and B, are on a frictionless, level track. Cart A has a mass of kilograms and a velocity of 3.0 meters per second toward the right. Cart B has a velocity of 1.5 meters per second toward the left. The magnitude of the momentum of cart B is kilogram-meters per second. When the two carts collide, they lock together. a) What is the magnitude of the momentum of cart A before the collision? (Show all calculations, including equation and substitutions with units.) b) On the diagram, construct a scaled vector that represents the momentum of cart A before the collision. The momentum vector must be drawn to a scale of 1.0 centimeter = 1,000 kilogram-meters per second. [Be sure your final answer has the correct labels (numbers and units).] c) In one or more complete sentences, describe the momentum of the two carts after the collision and justify your answer based on the initial momenta of both carts. 59. A 2.0-kilogram toy cannon is at rest on a frictionless surface. A remote triggering device causes a kilogram projectile to be fired from the cannon. Which equation describes this system after the cannon is fired? A. mass of cannon + mass of projectile = 0 B. speed of cannon + speed of projectile = 0 C. momentum of cannon + momentum of projectile = 0 D. velocity of cannon + velocity of projectile = If a net force of 10 newtons acts on a 6.0-kilogram mass for 8.0 seconds, the total change of momentum of the mass is A. 48 kg m/s B. 60 kg m/s C. 80 kg m/s D. 480 kg m/s 62. As shown in the diagrams, a lump of clay travels horizontally to the right toward a block at rest on a frictionless surface. Upon collision, the clay and the block stick together and move to the right. Compared to the total momentum of the clay and the block before the collision, the momentum of the clay-block system after the collision is 61. Compared to the inertia of a 0.10-kilogram steel ball, the inertia of a 0.20-kilogram Styrofoam ball is A. one-half as great B. twice as great A. less B. greater C. the same C. the same D. four times as great page 8

9 63. The accompanying velocity-time graph represents the motion of a 3-kilogram cart along a straight line. The cart starts at t = 0 and initially moves north. 65. A kilogram car collides with a tree and is brought to rest in 0.50 seconds by an average force of newtons. What is the magnitude of the impulse on the car during this 0.50 second interval? A kg s B N s C N/s D N kg s 66. In the diagram below, a 60.-kilogram rollerskater exerts a 10.-newton force on a 30.-kilogram rollerskater for 0.20 second. What is the magnitude of the change in momentum of the cart between t = 0 and t = 3 seconds? A. 20 kg m/s B. 30 kg m/s C. 60 kg m/s D. 80 kg m/s 64. What is the momentum of a kilogram car as it travels at 30 meters per second due east for 60 seconds? A kg m/s, east B kg m/s, west What is the magnitude of the impulse applied to the 30.-kilogram rollerskater? A. 50. N s B. 2.0 N s C. 6.0 N s D. 12 N s C kg m, east D kg m, west page 9

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring?

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring? Name: ate: 1. The diagram here shows a 1-kilogram aluminum sphere and a 3-kilogram copper sphere of equal radius located 20 meters above the ground. 4. The diagram shown represents two objects at rest

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Upon collision, the clay and steel block stick together and move to the right with a speed of

Upon collision, the clay and steel block stick together and move to the right with a speed of 1. A 2.0-kilogram ball traveling north at 4.0 meters per second collides head on with a 1.0-kilogram ball traveling south at 8.0 meters per second. What is the magnitude of the total momentum of the two

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

UNIT 2G. Momentum & It s Conservation

UNIT 2G. Momentum & It s Conservation Name: Date:_ UNIT 2G Momentum & It s Conservation Momentum & Newton s 2 nd Law of Motion Newton s 2 nd Law states When an unbalanced force acts upon a body, it accelerates that body in the direction of

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s.

Physics! Review Problems Unit A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. Name Physics! Review Problems Unit 8 1. A force acting on a 7.0 kg body increases its speed uniformly from 1.0 m/s to 9.0 m/s in 3 s. a) What is the initial momentum of the body? b) What is the final momentum

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P and J review Name 10-FEB-03 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released. Cart A has a mass

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i Example Problems 8.2 Conservation of Momentum Brake Apart: p i p f ( )v 1,2i v 1f v 2 f Stick Together: p i p f v 1i v 2i ( )v 1,2 f Bouncing/Pass Through: p i p f v 1i v 2i v 1f v 2 f Example 1: - A monkey

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Physics: Momentum, Work, Energy, Power

Physics: Momentum, Work, Energy, Power Name: ate: 1. The momentum of a 5-kilogram object moving at 6 meters per second is. 1 kg m/sec. 5 kg m/sec. 11 kg m/sec. 30 kg m/sec 2. 60-kilogram student running at 3.0 meters per second has a kinetic

More information

Physics Final Review #3: Momentum

Physics Final Review #3: Momentum Name: ate: 1. The momentum of an object is the product of its. mass and acceleration. mass and velocity. force and displacement. force and distance 3. Four colored balls are thrown against a wall. The

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

Chapter Assessment Use with Chapter 9.

Chapter Assessment Use with Chapter 9. Date Period 9 Use with Chapter 9. Momentum and Its Conservation Understanding Concepts Part A Write the letter of the choice that best completes the statement or answers the question. 1. The linear momentum

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

Page 1. Name: 1) The diagram below represents two concurrent forces.

Page 1. Name: 1) The diagram below represents two concurrent forces. Name: 3434-1 - Page 1 1) The diagram below represents two concurrent forces. Which vector represents the force that will produce equilibrium with these two forces? 2) Which diagram represents a box in

More information

Momentum and Impulse Practice Multiple Choice

Momentum and Impulse Practice Multiple Choice Choose the alternative that best answers the question and record your answer on the Scantron sheet provided 1. A ball of putty is thrown at a wall and sticks to its surface. Which of the following quantities

More information

1d forces and motion

1d forces and motion Name: ate: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 4. book weighing 20. newtons slides at constant velocity down a ramp inclined

More information

Which force causes the path of the stream of water to change due to the plastic rod? A) nuclear B) magnetic C) electrostatic D) gravitational

Which force causes the path of the stream of water to change due to the plastic rod? A) nuclear B) magnetic C) electrostatic D) gravitational 1. A positively charged rod is held near the knob of a neutral electroscope. Which diagram best represents the distribution of charge on the electroscope? A) B) C) D) 2. A charged electroscope can detect

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy. Physics Name: Date: Period: Final Review Write the appropriate formulas with all units below. Impulse Momentum Conservation of Momentum Rank these in order from least to most momentum:.01kg mass moving

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P And J Review TEACHER ANSWER KEY February 10, 2003 2 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released.

More information

Momentum Practice Problems

Momentum Practice Problems Momentum Practice Problems PSI AP Physics C Name Multiple Choice 1. A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball bounces

More information

Physics 11 Comprehensive Exam Preparation

Physics 11 Comprehensive Exam Preparation Physics 11 Comprehensive Exam Preparation Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

PSI AP Physics I Momentum

PSI AP Physics I Momentum PSI AP Physics I Momentum Multiple-Choice questions 1. A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped into the truck.

More information

Momentum, Work and Energy Review

Momentum, Work and Energy Review Momentum, Work and Energy Review 1.5 Momentum Be able to: o solve simple momentum and impulse problems o determine impulse from the area under a force-time graph o solve problems involving the impulse-momentum

More information

HONORS PHYSICS Linear Momentum

HONORS PHYSICS Linear Momentum HONORS PHYSICS Linear Momentum LESSON OBJECTIVES Students will be able to... understand that forces can act over time (impulse) resulting in changes in momentum identify characteristics of motion with

More information

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta. Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B)

6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? A) B) 1. The data table below lists the mass and speed of four different objects. 6. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line? Which

More information

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

CHAPTER 9 LINEAR MOMENTUM AND COLLISION CHAPTER 9 LINEAR MOMENTUM AND COLLISION Couse Outline : Linear momentum and its conservation Impulse and Momentum Collisions in one dimension Collisions in two dimension The center of mass (CM) 9.1 Linear

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law Action and Reaction Forces The force your bumper car exerts

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum

Slide 1 / 40. Multiple Choice AP Physics 1 Momentum Slide 1 / 40 Multiple Choice AP Physics 1 Momentum Slide 2 / 40 1 A truck moves along a frictionless level road at a constant speed. The truck is open on top. A large load of gravel is suddenly dumped

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass.

Centripetal Force Review. 1. The graph given shows the weight of three objects on planet X as a function of their mass. Name: ate: 1. The graph given shows the weight of three objects on planet X as a function of their mass. 3. If the circular track were to suddenly become frictionless at the instant shown in the diagram,

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law What is Newton s third law of motion? According to Newton

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Conservation of Momentum. The total momentum of a closed, isolated system does not change.

Conservation of Momentum. The total momentum of a closed, isolated system does not change. Conservation of Momentum In the 17 th century, Newton and others had measured the momentum of colliding objects before and after collision, and had discovered a strange phenomenon: the total momentum of

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Lecture Presentation Chapter 9 Momentum

Lecture Presentation Chapter 9 Momentum Lecture Presentation Chapter 9 Momentum Suggested Videos for Chapter 9 Prelecture Videos Impulse and Momentum Conservation of Momentum Video Tutor Solutions Momentum Class Videos Force and Momentum Change

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Momentum and Collisions. Resource Class/momentum/momtoc.html

Momentum and Collisions. Resource  Class/momentum/momtoc.html Momentum and Collisions Resource http://www.physicsclassroom.com/ Class/momentum/momtoc.html Define Inertia The property of any body to resist changes in its state of motion. The measure of Inertia is:

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass, what time would be required to stop a car of mass m traveling

More information

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: 1. Which of the following best represents the momentum of a small car

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Impulse. Two factors influence the amount by which an object s momentum changes.

Impulse. Two factors influence the amount by which an object s momentum changes. Impulse In order to change the momentum of an object, either its mass, its velocity, or both must change. If the mass remains unchanged, which is most often the case, then the velocity changes and acceleration

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

r r Sample Final questions for PS 150

r r Sample Final questions for PS 150 Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

5.1 Momentum and Impulse

5.1 Momentum and Impulse Figure 1 When you hit a ball with a bat, the resulting collision has an effect on both the ball and the bat. linear momentum (p > ) a quantity that describes the motion of an object travelling in a straight

More information

2016 PHYSICS FINAL REVIEW PACKET

2016 PHYSICS FINAL REVIEW PACKET 2016 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN CHAPTER TOPIC # OF QUESTIONS 6 CONSERVATION OF ENERGY 22 7 MOMENTUM/COLLISIONS 17 5 CIRCULAR MOTION GRAVITY/SATELLITE MOTION 30 11 WAVES 24 - ELECTROMAGNETISM/MISC./LABS

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard General Physics How hard would a puck have to be shot to be able to knock

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

Physics Semester 1 Review

Physics Semester 1 Review Physics Semester 1 Review Name: 1. Define: Speed Velocity Acceleration Use the graph to the right to answer questions 2-4. 2. How far did the object travel in 3 seconds? 3. How long did it take for the

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Momentum and Impulse

Momentum and Impulse Momentum and Impulse Momentum All objects have mass; so if an object is moving, then it has momentum - it has its mass in motion. The amount of momentum which an object has is dependent upon two variables:

More information

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d. Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

More information

Momentum C HAPTER. Chapter Outline.

Momentum C HAPTER. Chapter Outline. www.ck12.org C HAPTER 7 Momentum Chapter Outline 7.1 M OMENTUM AND I MPULSE 7.2 C ONSERVATION OF M OMENTUM IN O NE D IMENSION 7.3 R EFERENCES This chapter is about momentum and impulse. There are an amazing

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

Momentum ~ Learning Guide Name:

Momentum ~ Learning Guide Name: Momentum ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the assignment

More information

Unit 6: Forces II PRACTICE PROBLEMS

Unit 6: Forces II PRACTICE PROBLEMS Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

3.The wrecking crane shown is moving toward a brick wall that is to be torn down.

3.The wrecking crane shown is moving toward a brick wall that is to be torn down. Test Name: Physics Practice Test Section 1 1.Which of the following best classifies a material that has extremely low conductivity? 1. A. semiconductor B. insulator C. metalloid D. conductor 2.Which of

More information

Regents Physics Most Missed Questions of 2014 Review

Regents Physics Most Missed Questions of 2014 Review Regents Physics Most Missed Questions of 2014 Review Answers And Explanations Here: http://youtu.be/meoporthklo 1. A sound wave traveling eastward through air causes the air molecules to 1) vibrate east

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.

1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0. Newton's Laws 1. A 7.0-kg bowling ball experiences a net force of 5.0 N. What will be its acceleration? a. 35 m/s 2 c. 5.0 m/s 2 b. 7.0 m/s 2 d. 0.71 m/s 2 2. An astronaut applies a force of 500 N to an

More information

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km

Slide 1 / A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 1 / 96 1 train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? 10 km 22.5 km 25 km 45 km 50 km Slide 2 / 96 2 bicyclist moves at a constant speed of 6 m/s. How long it will

More information

Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track. Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track. In the first 2 seconds, the athlete accelerates constantly and reaches a speed of 9 m/s. (i) Use the equation

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum. Momentum www.njctl.org 1 Momentum Click on the topic to go to that section Momentum Impulse Momentum of a System of Objects Conservation of Momentum Inelastic Collisions and Explosions Elastic Collisions

More information