Finite Element Formulation for Large Deformation Problem

Size: px
Start display at page:

Download "Finite Element Formulation for Large Deformation Problem"

Transcription

1 Finie Elemen Formulaion for Large Deformaion Problem Sushan Verma 1*, Sandeep Kumar Singh 1, Anuj Gupa 1, Anwer Ahmed 1 1 Mechanical Engineering Deparmen, G.L Bajaj Insiue of Technology and Managemen, India ABSTRACT In his paper finie elemen procedure has been applied o solve he large deformaion and large srain problems. Linear and nonlinear mechanics followed by finie elemen formulaion has been used o solve he russ problem. The aim of his research paper is o give an overview abou he algorihm used o solve he complex problem. For ha he behaviour of he hyperelasic maerial is sudied subjeced o large srain by using he code FLagSHyP (Finie Elemen Large Srain Hyperelasic Program) wrien by Javier Bone and Richard D. Wood. The resul obained from he code FLagSHyP is also compared from he resul obained by he abaqus sofware. In his Work hree hyperelasic consiuive models i.e. Odgen model, Incompressible neo-hookean model and Mooney-Rivlin model have been used o solve he russ problem subjeced o large srain. Keywords: Finie Elemen,Hyperelasic program,large deformaion I INTRODUCTION In linear and non-linear finie elemen analysis involving large displacemens, large srains and maerial nonlineariies, i is necessary o resor o an incremenal formulaion of he equaions of moion. Various formulaions are used in pracice. Some procedures are general and ohers are resriced o accoun for maerial non-lineariies only, or for large displacemens bu no for large srains, or he formulaion may only be applicable o cerain ypes of elemens. Limied resuls have been obained in dynamic non-linear analysis involving large displacemens and large srains. The earlies non-linear finie elemen analysis were essenially based on exensions of linear analysis and have been developed for specific applicaions. The procedures were primarily developed on an inuiive basis in order o obain soluions o he specific problems considered. However, o provide general analysis capabiliies using isoparameric (and relaed) elemens a general formulaion need o be used. The isoparameric finie elemen discreizaion procedure has proved o be very effecive in many applicaions, and laely i has been shown ha general nonlinear formulaions based on principles of coninuum mechanics can be efficienly implemened. Now a day, analysis of non-linear behavior of componens is mos likely o involve a simulaion, because of he easy availabiliy of finie elemen sofware s o provide good resuls wih accuracy i is necessary o undersand he 617 P a g e

2 fundamenal of linear and non-linear coninuum mechanics, non-linear finie elemen formulaion and soluion procedure. A number of books are available o provide background on his subjec, for example he book of JN Reddy [1], Klaus Hackl and Mehndi goodarazi [2] explain he basic conceps of linear and non-linear coninuum mechanics (sress and ensor, elasiciy, Hooke s law, displacemen funcions. The book of Javier Bone and Richard D. Wood [3], Moron E. Gurin [4], J. Tensley Oden [5], explain he conceps dealing wih differen ypes of nonlineariies viz geomerical non-lineariy, maerial non-lineariy and conac non-lineariy; kinemaics conceps viz deformaion ensors, srains; kineics conceps viz Cauchy sress, firs and second piola kirchoff sress and differen governing equaions involved in i. Klaus-Jurgen Bahe e al. [6] derived and compared he wo-finie elemen incremenal formulaions viz Updaed lagrangian formulaion and oal lagrangian formulaion for nonlinear saic and dynamic analysis. Concerning he applicaion of finie elemen mehods o he soluion of problem involving large displacemen and roaion we noe ha here are basically wo differen approaches used in FEM firs is he oal lagrangian formulaion and he second is updaed lagrangian formulaion. The formulaion includes large displacemen, large srain and maerial non lineariies. The formulaions are lised below Toal lagrangian formulaion: C ijrs v Ɛ rs δ Ɛ ij dv + S Updaed lagrangian formulaion: v + C ijrs ij δ η v ij dv + + Ɛ rs δ Ɛ ij dv + ζ + = R S + + ij δ ηij dv ij δ e v ij dv (1) + = R ζ + + ij δ e ij dv v (2) Where, and + are ime sep/load level showing he reference configuraion, new reference configuraion and curren configuraion respecively; C + ijrs, he configuraion a ime and respecively; Ɛ Cijrs are he componens of consiuive ensor a ime referred o + rs, + Ɛrs componens of srain incremen ensor referred o configuraion a ime and respecively; e ij, e ij are linear par of srain incremen a ime and respecively; η + ij, ηij are non linear par of srain imcremen a ime and respecively; componens of second piola kirchoff sress ensor a ime referred o configuraion a ime ; componens of Cauchy sress encor a ime and configuraion a ime +. S ij are he ζ ij are he + R is he exernal virual work expression corresponding o 1.1Finie elemen procedure In his procedure he problem is solved in incremenal seps. I uses he ieraive mehods o give he resuls. The seps involved in he procedure. 618 P a g e

3 1.1.1 Deformaion Gradien ensor The deformaion gradien ensor is he second order ensor which maps he line elemens in he reference configuraion o he line elemens in he curren configuraion F=dx/dX (3) WheredX is he line elemen emanaing from posiion X in he reference configuraion and dx is he line elemen in he curren configuraion Srain Srain (Ɛ) is a measure of deformaion represening he displacemen beween paricles in he body relaive o a reference lengh. A general deformaion of a body can be expressed in he form x=f(x) where X is he reference posiion of maerial poins in he body and I is he ideniy ensor Ɛ = Cauchy sress ensor θ x X θx = F I (4) The Cauchy sress ensor (σ) is a second order ensor ha compleely defines he sae of sress a a poin inside a maerial in he deformed sae. The ensor relaes a uni-lengh direcion vecor n o he sress vecor T n across an imaginary surface perpendicular on and described as Principle of Virual Work T j n = σ ij i, j = 1, 2, 3(5) Consider he moion of a body, he principle of virual work is used o express he equilibrium of he body δu T Tds + δu T fdv = δɛ T σdv(6) s v Whereare inernal virual work due o racion and body force andis an exernal virual work 1.1.5For linear and nonlinearproblem The soluion canno be obaineddirecly as above equaion give he soluion in discree ime sep so we use he lagrangian formulaion [1] o solve he problem which inegrae he unknown variables (displacemen and srain) wih reference o iniial posiion or firs posiion. If here is nonlinearproblem, hen i became necessary o linearize i afer he lagrangian formulaion 1.2 FORMULATION OF CONTINUUM MECHANICS INCREMENTAL EQUATION Consider he moion of a body in a Caresian co-ordinae sysem. The aim is o evaluae he equilibrium posiions of he body a he discree ime poins,,2,3 where is an incremen in ime. Assume ha he soluion for he kinemaic and saic variables for all ime seps from ime o ime, inclusive, have been solved, and ha he 619 P a g e

4 soluion for ime + is required nex. I is noed ha he soluion process for he nex required equilibrium posiion is ypical and would be applied repeiively unil he complee soluion pah has been solved. Since he soluion is known a all discree poins,, 2.., he basic aim of he formulaion is o generae an equaion of virual work from which he unknown saic and kinemaic variables in he configuraion a ime + can be solved. The principle of virual work is used o express he equilibrium of he body in he configuraion a he ime +. I is saed as + + σ ij δ e + v + ij dv = R + Where R + (7) is he exernal virual work expression and shown as, R = + f k δu k dv + + v + k δu k dv k = 1, 2, 3 (8) + a + Where f k +, + k are he body force vecor and surface racion vecor in he configuraion a he ime + respecively,δu k is he (virual) variaion in he curren displacemen componen. The difficuly here being ha configuraion of he body a ime + Δ is unknown so he above equaion canno be solved direcly. A soluion can be obained by referring all he variables o a known previously calculaed equilibrium configuraion for ha wo approaches have been used i.e. Toal lagrangian formulaion and Updaed lagrangian formulaion Truss Problem A four noded russ of dimension 14mm 1.414mm.77mm has been chosen. The iniial orienaion angle is 45 degree. There is a hinge suppor on node 1 and roller suppor on node 2 which consrained he moion in x direcion and allows o move in y direcion as shown in Fig.1(all dimension in mm). The displacemen of he op node is prescribed downward in incremen of 1mm. Fig.1 Truss wih prescribed displacemen in downward direcion 62 P a g e

5 The problem is solved using 198 incremens (1 mm incremen in every incremen sep). A russ is divided ino 7 elemens as shown in Fig.2 The convergence crierion is se o 1.e-1 in he code wih a maximum 25 ieraions in every sep. Fig2. Meshed Geomery wih node where analysis is performed II RESULT The verical Reacion vs. displacemen graph of node 2 obained from FLagSHyP code is shown in Fig.3 Fig.3 Verical Reacion v/s Displacemen of node 2 In Fig.3, x is he verical posiion of node 2 in every incremen sep and L is he lengh of he russ. I can be observed ha he russ exhibi non-linear snap hrough behaviour (also see Fig.4). In his non-linear insabiliy region he equilibrium pah goes from one sable poin (a which force is.1322kn) o anoher sable poin(a which force is.1329 KN). 621 P a g e

6 Fig.4 Non-Linear Snap hrough behaviour of Truss [7] III CONCLUSION In he work, he behaviour of hyperelasic maerial (incompressible elasomer) has been sudied for large srains hrough he Finie elemen large srain hyper elasiciy program (FLagSHyP) wrien by Javier Bone and Richard D. Wood. The resuls have been scruinized o describe he behaviour of he maerial in differen boundary and load condiions. The following conclusions are illusraed in his work. 1. The hree hyperelasic consiuive model odgen, neo-hookean and mooney-rivlin are used for he analysis of russ problem, plae wih hole problem and pressurized cylinder problem. 2. Only maerial non-lineariy is considered as he program is srucured using Updaed lagrangian formulaion. 3. The resuls depic ha he maerial is highly nonlinear elasic. 4. The non-linear snap hrough behaviour is obained in russ problem 5. In plae wih hole problem i is ha inensiy of sresses are high near he hole because of he sress concenraion in his region whereas he sresses are minimum on he edge of he plae because forces are evenly disribued here. This work can be exended o viscoelasic maerials and elaso-plasic maerials. The sofware on oal lagrangian mehod can be developed and resuls compared wih he updaed lagrangean mehod. REFRENCES [1] J.N. Reddy., (28). An Inroducion o Coninuum Mechanics, firs-ediion, Cambridge universiy press, New York. [2] Klaus Hackl., Mehdi Goodarzi., (21). An Inroducion o linear Coninuum Mechanics, lecure noes, Ruhr Universiy Press, Bochum (Germany). 622 P a g e

7 [3] Javier Bone., Richard D. Wood., (1997). Non-Linear Coninuum Mechanics for Finie Elemen Analysis, Cambridge Universiy Press, New York. [4] Moron E. Gurin., (1982). An Inroducion o Coninuum Mechanics, volume 158 firs- Ediion, Academic Press Inc, London. [5] J. Tinsley Oden., (26). Finie Elemen of Non-Linear Coninua, Dover Publicaion Inc, New York [6] Klaus-Jurgen Bahe., Edward L. Wilson., (1975). Finie Elemen Formulaions for Large Srain Deformaion Dynamic Analysis, Inernaional Journal for Numerical Mehod in Engineering, Vol:9, [7] Rubber Indusry Repor (214), hp:// 623 P a g e

Finite Element Analysis of Structures

Finite Element Analysis of Structures KAIT OE5 Finie Elemen Analysis of rucures Mid-erm Exam, Fall 9 (p) m. As shown in Fig., we model a russ srucure of uniform area (lengh, Area Am ) subjeced o a uniform body force ( f B e x N / m ) using

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finie elemen mehod for srucural dynamic and sabiliy analyses Module- Nonlinear FE Models Lecure-39 Toal and updaed Lagrangian formulaions Prof C Manohar Deparmen of Civil Engineering IIc, Bangalore 56

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Finite Element Formulation. for Large Displacement Analysis

Finite Element Formulation. for Large Displacement Analysis Finie Elemen Formulaion for Large Displacemen Analysis Mario Gomez Boero Deparmen of Mechanical Engineering EAFIT Universiy March 16, 009 Conens 1 Inroducion o he Variaional Formulaion 9 1.1 Minimum Toal

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Lecture 10: Wave equation, solution by spherical means

Lecture 10: Wave equation, solution by spherical means Lecure : Wave equaion, soluion by spherical means Physical modeling eample: Elasodynamics u (; ) displacemen vecor in elasic body occupying a domain U R n, U, The posiion of he maerial poin siing a U in

More information

ANALYSIS OF REINFORCED CONCRETE BUILDINGS IN FIRE

ANALYSIS OF REINFORCED CONCRETE BUILDINGS IN FIRE ANALYSIS OF REINFORCED CONCRETE BUILDINGS IN FIRE Dr Zhaohui Huang Universiy of Sheffield 6 May 2005 1 VULCAN layered slab elemens: connecion o beam elemens Plae Elemen Slab nodes y x Reference Plane h

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Single and Double Pendulum Models

Single and Double Pendulum Models Single and Double Pendulum Models Mah 596 Projec Summary Spring 2016 Jarod Har 1 Overview Differen ypes of pendulums are used o model many phenomena in various disciplines. In paricular, single and double

More information

Analytic nonlinear elasto-viscosity of two types of BN and PI rubbers at large deformations

Analytic nonlinear elasto-viscosity of two types of BN and PI rubbers at large deformations Bulgarian Chemical Communicaions, Volume 48, Special Issue E (pp. 59-64) 016 Analyic nonlinear elaso-viscosiy of wo ypes of BN and PI rubbers a large deformaions K. B. Hadjov, A. S. Aleksandrov, M. P.

More information

TR/06/83 September 1983 LOCAL AND GLOBAL BIFURCATION PHENOMENA IN PLANE STRAIN FINITE ELASTICITY R. W. OGDEN

TR/06/83 September 1983 LOCAL AND GLOBAL BIFURCATION PHENOMENA IN PLANE STRAIN FINITE ELASTICITY R. W. OGDEN TR/06/8 Sepember 98 LOCAL AND GLOBAL BIFURCATION PHENOMENA IN PLANE STRAIN FINITE ELASTICITY by R W OGDEN w95987x Local and global bifurcaion phenomena in plane srain finie elasiciy By RW OGDEN Deparmen

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress concenraion facor; experimenal and heoreical mehods.

More information

Optimal Path Planning for Flexible Redundant Robot Manipulators

Optimal Path Planning for Flexible Redundant Robot Manipulators 25 WSEAS In. Conf. on DYNAMICAL SYSEMS and CONROL, Venice, Ialy, November 2-4, 25 (pp363-368) Opimal Pah Planning for Flexible Redundan Robo Manipulaors H. HOMAEI, M. KESHMIRI Deparmen of Mechanical Engineering

More information

4.1.1 Mindlin plates: Bending theory and variational formulation

4.1.1 Mindlin plates: Bending theory and variational formulation Chaper 4 soropic fla shell elemens n his chaper, fia shell elemens are formulaed hrough he assembly of membrane and plae elemens. The exac soluion of a shell approximaed by fia faces compared o he exac

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Shells with membrane behavior

Shells with membrane behavior Chaper 3 Shells wih membrane behavior In he presen Chaper he sress saic response of membrane shells will be addressed. In Secion 3.1 an inroducory example emphasizing he difference beween bending and membrane

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.7. PLANE LINEAR ELASTICITY Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Plane Linear Elasici Theor Plane Sress Simplifing Hpohesis Srain Field Consiuive Equaion Displacemen Field The Linear

More information

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3 The The rd rd Inernaional Conference on on Design Engineering and Science, ICDES 14 Pilsen, Czech Pilsen, Republic, Czech Augus Republic, 1 Sepember 1-, 14 In-plane and Ou-of-plane Deflecion of J-shaped

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Combined Bending with Induced or Applied Torsion of FRP I-Section Beams

Combined Bending with Induced or Applied Torsion of FRP I-Section Beams Combined Bending wih Induced or Applied Torsion of FRP I-Secion Beams MOJTABA B. SIRJANI School of Science and Technology Norfolk Sae Universiy Norfolk, Virginia 34504 USA sirjani@nsu.edu STEA B. BONDI

More information

Ch1: Introduction and Review

Ch1: Introduction and Review //6 Ch: Inroducion and Review. Soli and flui; Coninuum hypohesis; Transpor phenomena (i) Solid vs. Fluid No exernal force : An elemen of solid has a preferred shape; fluid does no. Under he acion of a

More information

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1 SZG Macro 2011 Lecure 3: Dynamic Programming SZG macro 2011 lecure 3 1 Background Our previous discussion of opimal consumpion over ime and of opimal capial accumulaion sugges sudying he general decision

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification IOP Conference Series: Maerials Science and Engineering PAPE OPEN ACCESS New effecive moduli of isoropic viscoelasic composies. Par I. Theoreical jusificaion To cie his aricle: A A Sveashkov and A A akurov

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

MECHANICS OF MATERIALS Poisson s Ratio

MECHANICS OF MATERIALS Poisson s Ratio Poisson s Raio For a slender bar subjeced o axial loading: ε x x y 0 The elongaion in he x-direcion i is accompanied by a conracion in he oher direcions. Assuming ha he maerial is isoropic (no direcional

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis TRANSPORTATION RESEARCH RECORD 155 35 Curling Sress Equaion for Transverse Join Edge of a Concree Pavemen Slab Based on Finie-Elemen Mehod Analysis TATSUO NISHIZAWA, TADASHI FUKUDA, SABURO MATSUNO, AND

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

Two- and Three Dimensional Solid Elements; Plane Stress, Plane Strain, and Axisymmetric Conditions

Two- and Three Dimensional Solid Elements; Plane Stress, Plane Strain, and Axisymmetric Conditions Topic 7 Two- and Three Dimensional Solid Elemens; Plane Sress, Plane Srain, and Axisymmeric Condiions Conens: soparameric inerpolaions of coordinaes and displacemens Consisency beween coordinae and displacemen

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

A Fixed Grid method for hyperelastic models in large strain analysis using the Level Set Method

A Fixed Grid method for hyperelastic models in large strain analysis using the Level Set Method A Fixed Grid mehod for hyperelasic models in large srain analysis using he Level Se Mehod William Ramírez Beniez Manuel J Garcia. Grupo de Invesigación Mecánica Aplicada, universidad EAFIT, Medellín, Colombia

More information

NEW ALGORITHMS FOR THE SIMULATION OF THE SEQUENTIAL TUNNEL EXCAVATION WITH THE BOUNDARY ELEMENT METHOD (EURO:TUN 2007)

NEW ALGORITHMS FOR THE SIMULATION OF THE SEQUENTIAL TUNNEL EXCAVATION WITH THE BOUNDARY ELEMENT METHOD (EURO:TUN 2007) ECCOMAS Themaic Conference on Compuaional Mehods in Tunnelling (EURO:TUN 2007) J. Eberhardseiner e.al. (eds.) Vienna, Ausria, Augus 27-29, 2007 NEW ALGORITHMS FOR THE SIMULATION OF THE SEQUENTIAL TUNNEL

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Indusrial Robos Kinemaics 1 Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

BU Macro BU Macro Fall 2008, Lecture 4

BU Macro BU Macro Fall 2008, Lecture 4 Dynamic Programming BU Macro 2008 Lecure 4 1 Ouline 1. Cerainy opimizaion problem used o illusrae: a. Resricions on exogenous variables b. Value funcion c. Policy funcion d. The Bellman equaion and an

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

G. =, etc.

G. =, etc. Maerial Models υ υ3 0 0 0 υ υ 3 0 0 0 υ3 υ3 0 0 0 = 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 l (9..4) he subscris denoe he maerial axes, i.e., υ = υ and = (9..5) i j xi xj ii xi Since l is symmeric υ υ =, ec.

More information

Turbulent Flows. Computational Modelling of Turbulent Flows. Overview. Turbulent Eddies and Scales

Turbulent Flows. Computational Modelling of Turbulent Flows. Overview. Turbulent Eddies and Scales School of Mechanical Aerospace and Civil Engineering Turbulen Flows As noed above, using he mehods described in earlier lecures, he Navier-Sokes equaions can be discreized and solved numerically on complex

More information

Dynamic Model of a Compliant Link with Large Deflection and Shear Deformation

Dynamic Model of a Compliant Link with Large Deflection and Shear Deformation Proceedings of he 5 IEEE/ASME Inernaional Conference on Advanced Inelligen Mecharonics Monerey, California, USA, 4-8 July, 5 TB-3 Dynamic Model of a Complian in wih arge Deflecion and Shear Deformaion

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Numerical Analysis of Cable Structures

Numerical Analysis of Cable Structures Paper 240 Numerical Analysis of Cable Srucures Civil-Comp Press, 2012 Proceedings of he Elevenh Inernaional Conference on Compuaional Srucures Technology, B.H.V. Topping, (Edior), Civil-Comp Press, Sirlingshire,

More information

ES240 Solid Mechanics Fall 2007

ES240 Solid Mechanics Fall 2007 ES4 Solid Mechanics Fall 7 Viscoelasiciy References NG McCrum, CP Buckley, and CB Bucknall, Principles of Polymer Engineering, nd ediion, Oxford Universiy Press, 997 A good balance of heory and applicaion

More information

Computer-Aided Analysis of Electronic Circuits Course Notes 3

Computer-Aided Analysis of Electronic Circuits Course Notes 3 Gheorghe Asachi Technical Universiy of Iasi Faculy of Elecronics, Telecommunicaions and Informaion Technologies Compuer-Aided Analysis of Elecronic Circuis Course Noes 3 Bachelor: Telecommunicaion Technologies

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

CH.5. BALANCE PRINCIPLES. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.5. BALANCE PRINCIPLES. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.5. BALANCE PRINCIPLES Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Balance Principles Convecive Flux or Flux by Mass Transpor Local and Maerial Derivaive of a olume Inegral Conservaion

More information

Comparative study between two models of a linear oscillating tubular motor

Comparative study between two models of a linear oscillating tubular motor IOSR Journal of Elecrical and Elecronics Engineering (IOSR-JEEE) e-issn: 78-676,p-ISSN: 3-333, Volume 9, Issue Ver. IV (Feb. 4), PP 77-83 Comparaive sudy beween wo models of a linear oscillaing ubular

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7].

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7]. Chaper Numerical Tess We here collec a few numerical ess, in order o pu ino evidence he poenialiies of HBVMs [4, 6, 7]. Tes problem Le us consider he problem characerized by he polynomial Hamilonian (4.)

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Formulation of the Stress Distribution Due to a Concentrated Force Acting on the Boundary of Viscoelastic Half-Space

Formulation of the Stress Distribution Due to a Concentrated Force Acting on the Boundary of Viscoelastic Half-Space Formulaion of he Sress Disribuion Due o a Concenraed Force Acing on he Boundar of Viscoelasic Half-Space Yun eng and Debao Zhou Deparmen of Mechanical and Indusrial Engineering Universi of Minnesoa, Duluh

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

NUMERICAL CODE FOR SEISMIC ANALYSIS OF STRUCTURES INCORPORATING ENERGY DISSIPATING DEVICES

NUMERICAL CODE FOR SEISMIC ANALYSIS OF STRUCTURES INCORPORATING ENERGY DISSIPATING DEVICES Firs European Conference on Earhquake Engineering and Seismology (a join even of he 3 h ECEE & 30 h General Assembly of he ESC) Geneva, Swizerland, 3-8 Sepember 2006 Paper Number: NUMERICAL CODE FOR SEISMIC

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member Verificaion Example Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro Caegory: Isoropic Linear Elasiciy, Dynamics, Member Verificaion Example: 0104 Canilever Beam wih Periodic Exciaion 0104 Canilever Beam

More information

th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3256

th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3256 11111 1 h World Conference on Earhquake Engineering Vancouver, B.C., Canada Augus 1-6, 2004 Paper No. 256 TOUCHING ANALYSIS OF TWO BUILDINGS USING FINITE ELEMENT METHOD Mircea IEREMIA 1, Silviu GINJU 1,

More information

Dynamic Analysis of Loads Moving Over Structures

Dynamic Analysis of Loads Moving Over Structures h Inernaional ongress of roaian ociey of echanics epember, 18-, 3 Bizovac, roaia ynamic nalysis of Loads oving Over rucures Ivica Kožar, Ivana Šimac Keywords: moving load, direc acceleraion mehod 1. Inroducion

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information

ON THE BEAT PHENOMENON IN COUPLED SYSTEMS

ON THE BEAT PHENOMENON IN COUPLED SYSTEMS 8 h ASCE Specialy Conference on Probabilisic Mechanics and Srucural Reliabiliy PMC-38 ON THE BEAT PHENOMENON IN COUPLED SYSTEMS S. K. Yalla, Suden Member ASCE and A. Kareem, M. ASCE NaHaz Modeling Laboraory,

More information

Roller-Coaster Coordinate System

Roller-Coaster Coordinate System Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Trajectory planning in Cartesian space

Trajectory planning in Cartesian space Roboics 1 Trajecory planning in Caresian space Prof. Alessandro De Luca Roboics 1 1 Trajecories in Caresian space in general, he rajecory planning mehods proposed in he join space can be applied also in

More information

Sedimentation of a Sphere Near a Vertical Wall in an Oldroyd-B Fluid

Sedimentation of a Sphere Near a Vertical Wall in an Oldroyd-B Fluid Sedimenaion of a Sphere Near a Verical Wall in an Oldroyd-B Fluid P. Singh Deparmen of Mechanical Engineering New Jersey Insiue of Technology Universiy Heighs Newark, NJ 71 D.D. Joseph Deparmen of Aerospace

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

Effects of Hall Current and Rotation in Modified Couple Stress Generalized Thermoelastic Half Space due to Ramp-Type Heating

Effects of Hall Current and Rotation in Modified Couple Stress Generalized Thermoelastic Half Space due to Ramp-Type Heating Journal of Solid Mechanics Vol. 9, No. (7) pp. 57-54 Effecs of Hall Curren and Roaion in Modified Couple Sress Generalized Thermoelasic Half Space due o Ramp-Type Heaing R. Kumar, *, Sh. Devi, V. Sharma

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y

CLASS XI SET A PHYSICS. 1. If and Let. The correct order of % error in. (a) (b) x = y > z (c) x < z < y (d) x > z < y PHYSICS 1. If and Le. The correc order of % error in (a) (b) x = y > z x < z < y x > z < y. A hollow verical cylinder of radius r and heigh h has a smooh inernal surface. A small paricle is placed in conac

More information

Key points. Energy Storage. Kinetic Energy -E K orke 1/23/2018. Energy Storage and Transfer Model (ETM)

Key points. Energy Storage. Kinetic Energy -E K orke 1/23/2018. Energy Storage and Transfer Model (ETM) Key poins Energy Sorage and Transfer Model (ETM) Uni 7 Energy-a conserved, subsance-like quaniy wih he capabiliy o produce change in physical sysems I does no come in differen forms i s jus energy. I s

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Numerical Evaluation of an Add-On Vehicle Protection System

Numerical Evaluation of an Add-On Vehicle Protection System Numerical Evaluaion of an Add-On Vehicle Proecion Sysem Geneviève Toussain, Amal Bouamoul, Rober Durocher, Jacob Bélanger*, Benoî S-Jean Defence Research and Developmen Canada Valcarier 2459 Bravoure Road,

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Simulating models with heterogeneous agents

Simulating models with heterogeneous agents Simulaing models wih heerogeneous agens Wouer J. Den Haan London School of Economics c by Wouer J. Den Haan Individual agen Subjec o employmen shocks (ε i, {0, 1}) Incomplee markes only way o save is hrough

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Polymer Engineering (MM3POE)

Polymer Engineering (MM3POE) Polymer Engineering (MM3POE) VISCOELASTICITY hp://www.noingham.ac.uk/~eazacl/mm3poe Viscoelasiciy 1 Conens Wha is viscoelasiciy? Fundamenals Creep & creep recovery Sress relaxaion Modelling viscoelasic

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information