Electrical and current self-induction

Size: px
Start display at page:

Download "Electrical and current self-induction"

Transcription

1 Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of self-inducion should be carried hose laws, which describe he reacion of such elemens of radio-echnical chains as capaciy, inducance and resisance wih he galvanic connecion o hem of he sources of curren or volage. These laws are he basis of he heory of elecrical chains. The resuls of his heory can be posponed also by he elecrodynamics of maerial media, since. such media can be represened in he form equivalen diagrams wih he use of such elemens. he moion of charges in any chain, which force hem o change heir posiion, is conneced wih he energy consumpion from he power sources. The processes of ineracion of he power sources wih such srucures are regulaed by he laws of self-inducion. Again le us refine very concep of self-inducion. By self-inducion we will undersand he reacion of maerial srucures wih he consan parameers o he connecion o hem of he sources of volage or curren. o he self-inducion le us carry also ha case, when is parameers can change wih he presence of he conneced power source or he energy accumulaed in he sysem. This self-inducion we will call parameric [].

2 Subsequenly we will use hese conceps: as curren generaor and he volage generaor. By ideal volage generaor we will undersand such source, which ensures on any load he lumped volage, inernal resisance in his generaor equal o zero. By ideal curren generaor we will undersand such source, which ensures in any load he assigned curren, inernal resisance in his generaor equally o infiniy. The ideal curren generaors and volage in naure here does no exis, since boh he curren generaors and he volage generaors have heir inernal resisance, which limis heir possibiliies. If we o one or he oher nework elemen connec he curren generaor or volage, hen opposiion o a change in is iniial sae is he response reacion of his elemen and his opposiion is always equal o he applied acion, which corresponds o hird Newon's law. if a our disposal is locaed he capaciy, and his capaciy is charged o a poenial difference, hen he charge Q, accumulaed in he capaciy, is deermined by he relaionship: Q, =. (.) The charge Q,, depending on he capaciance values of capacior and from a volage drop across i, we will call sill he flow of elecrical selfinducion. When he discussion deals wih a change in he charge, deermined by relaionship (.), hen his value can change wih he mehod of changing he poenial difference wih a consan capaciy, eiher wih a change in capaciy iself wih a consan poenial difference, or and ha and oher parameer simulaneously. If capaciance value or volage drop across i depend on ime, hen he curren srengh is deermined by he relaionship: dq d., I = = +

3 This expression deermines he law of elecrical self-inducion. Thus, curren in he circui, which conains capacior, can be obained by wo mehods, changing volage across capacior wih is consan capaciy eiher changing capaciy iself wih consan volage across capacior, or o produce change in boh parameers simulaneously. For he case, when he capaciy С is consan, we obain known expression for he curren, which flows hrough he capaciy: I =. (.) When capaciy wih he consan sress on i changes, we have: I =. (.3) This case o relae o he parameric elecrical self-inducion, since he presence of curren is conneced wih a change in his parameer as capaciy. Le us examine he consequences, which escape from relaionship (.). If we o he capaciy connec he direc-curren generaor I, hen sress on i will change according o he law: I =. (.4) Thus, he capaciy, conneced o he source of direc curren, presens for i he effecive resisance R =, (.5) which linearly depends on ime. The i should be noed ha obained resul is compleely obvious; however, such properies of capaciy, which cusomary o assume by reacive elemen hey were for he firs ime noed in he work []. 3

4 This is undersandable from a physical poin of view, since in order o charge capaciy, source mus expend energy. The power, oupu by curren source, is deermined in his case by he relaionship: P I =. (.6) The energy, accumulaed by capaciy in he ime, we will obain, afer inegraing relaionship (.6) wih respec o he ime: W I =. Subsiuing here he value of curren from relaionship (.4), we obain he dependence of he value of he accumulaed in he capaciy energy from he insananeous value of sress on i: W =. sing for he case examined a concep of he flow of he elecrical inducion Ф = = Q (.7) and using relaionship (.), obain: I dф Q = = d, (.8) i.e., if we o a consan capaciy connec he source of direc curren, hen he curren srengh will be equal o he derivaive of he flow of capaciive inducion on he ime. 4

5 Now we will suppor a he capaciy consan sress, and change capaciy iself, hen I =. (.9) I is eviden ha he value R = (.) plays he role of he effecive resisance []. This resul is also physically inelligible. This resul is also physically inelligible, since. wih an increase in he capaciance increases he energy accumulaed in i, and hus, capaciy exracs in he volage source energy, presening for i resisive load. The power, expended in his case by source, is deermined by he relaionship: = P (.) from relaionship (.) is eviden ha depending on he sign of derivaive he expendable power can have differen signs. When he derived posiive, expendable power goes for he accomplishmen of exernal work. If derived negaive, hen exernal source accomplishes work, charging capaciy. Again, inroducing concep he flow of he elecrical inducion obain Ф = = Q, Ф I =. (.) Relaionships (.8) and (.) indicae ha regardless of he fac, how changes he flow of elecrical self-inducion (charge), is ime derivaive is always equal o curren. 5

6 Le us examine one addiional process, which earlier he laws of inducion did no include, however, i i falls under for our exended deerminaion of his concep. From relaionship (.7) i is eviden ha if he charge, lef consan (we will call his regime he regime of he frozen elecric flux), hen sress on he capaciy can be changed by is change. In his case he relaionship will be carried ou: = = cons, where С and - insananeous values, and and - iniial values of hese parameers. The sress on he capaciy and he energy, accumulaed in i, will be in his case deermined by he relaionships: W =, (.3) ( ) =. I is naural ha his process of self-inducion can be conneced only wih a change in capaciy iself, and herefore i falls under for he deerminaion of parameric self-inducion. Thus, are locaed hree relaionships (.8), (.) and (.3), which deermine he processes of elecrical self-inducion. We will call heir rules of he elecric flux. Relaionship (.8) deermines he elecrical selfinducion, during which here are no changes in he capaciy, and herefore his self-inducion can be named simply elecrical self-inducion. Relaionships (.3) and (.9-.) assume he presence of changes in he capaciy; herefore he processes, which correspond by hese relaionships, we will call elecrical parameric self-inducion. 6

7 . urren self-inducion Le us now move on o he examinaion of he processes, proceeding in he inducance. Le us inroduce he concep of he flow of he curren selfinducion ФL, I = LI. If inducance is shorened oued, and made from he maerial, which does no have effecive resisance, for example from he superconducor, hen Ф = L I = cons, L, I where L and I- iniial values of hese parameers, which are locaed a he momen of he shor circui of inducance wih he presence in i of curren. This regime we will call he regime of he frozen flow []. In his case he relaionship is fulfilled: I I L L =, (.) where I and L - he insananeous values of he corresponding parameers. In flow regime examined of curren inducion remains consan, however, in connecion wih he fac ha curren in he inducance i can change wih is change, his process falls under for he deerminaion of parameric self-inducion. The energy, accumulaed in he inducance, in his case will be deermined by he relaionship W L I cons L L = = L. Sress on he inducance is equal o he derivaive of he flow of curren inducion on he ime: 7

8 dф I L d. L, = I = L + I le us examine he case, when he inducance of is consan. L designaing ФI = L I, we obain (.) on he ime, we will obain: I = L. (.) dф = I. Afer inegraing expression d I =. (.3) L Thus, he capaciy, conneced o he source of direc curren, presens for i he effecive resisance which decreases inversely proporional o ime. R L =, (.4) The power, expended in his case by source, is deermined by he relaionship: P =. (.5) This power linearly depends on ime. Afer inegraing relaionship (.5) on he ime, we will obain he energy, accumulaed in he inducance of W L L L =. (.6) Afer subsiuing ino expression (.6) he value of sress from relaionship (.3), we obain: WL = L I. 8

9 This energy can be reurned from he inducance ino he exernal circui, if we open inducance from he power source and o connec effecive resisance o i. Now le us examine he case, when he curren I, which flows hrough he inducance, is consan, and inducance iself can change. In his case we obain he relaionship Thus, he value = I R L. (.7) L = (.8) plays he role of he effecive resisance []. As in he case he elecric flux, effecive resisance can be (depending on he sign of derivaive) boh posiive and negaive. This means ha he inducance can how derive energy from wihou, so also reurn i ino he exernal circuis. Inroducing he designaion ФL = LI and, aking ino accoun (.7), we obain: dф L d =. (.9) Of relaionship (.), (.6) and (.9) we will call he rules of curren self-inducion, or he flow rules of curren self-inducion. From relaionships (.6) and (.9) i is eviden ha, as in he case wih he elecric flux, he mehod of changing he flow does no influence evenual resul, and is ime derivaive is always equal o he applied poenial difference. Relaionship (.6) deermines he curren self-inducion, during which here are no changes in he inducance, and herefore i can be named simply curren self-inducion. Relaionships (.7,.8) assume he presence of 9

10 changes in he inducance; herefore we will call such processes curren parameric self-inducion.. Менде Ф. Ф. Новая электродинамика. Революция в современной физике. Харьков, НТМТ,, 7 с.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

TWO-ELEMENT DC-DRIVEN SERIES LRC CIRCUITS

TWO-ELEMENT DC-DRIVEN SERIES LRC CIRCUITS TWO-ELEMENT D-DRIVEN SERIES LR IRUITS TWO-ELEMENT D-DRIVEN SERIES LR IRUITS by K. Franlin, P. Signell, and J. Kovacs Michigan Sae Universiy 1. Inroducion.............................................. 1

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction MASSACHUSETTS INSTITUTE OF TECHNOLOY Deparmen of Physics 8.02 Spring 2005 OBJECTIVES Experimen 9: Faraday s Law of Inducion 1. To become familiar wih he conceps of changing magneic flux and induced curren

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Name: Total Points: Multiple choice questions [120 points]

Name: Total Points: Multiple choice questions [120 points] Name: Toal Poins: (Las) (Firs) Muliple choice quesions [1 poins] Answer all of he following quesions. Read each quesion carefully. Fill he correc bubble on your scanron shee. Each correc answer is worh

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

9. Alternating currents

9. Alternating currents WS 9. Alernaing currens 9.1 nroducion Besides ohmic resisors, capaciors and inducions play an imporan role in alernaing curren (AC circuis as well. n his experimen, one shall invesigae heir behaviour in

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Chapter 16: Summary. Instructor: Jean-François MILLITHALER.

Chapter 16: Summary. Instructor: Jean-François MILLITHALER. Chaper 16: Summary Insrucor: Jean-François MILLITHALER hp://faculy.uml.edu/jeanfrancois_millihaler/funelec/spring2017 Slide 1 Curren & Charge Elecric curren is he ime rae of change of charge, measured

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

EE 101 Electrical Engineering. vrect

EE 101 Electrical Engineering. vrect EE Elecrical Engineering ac heory 3. Alernaing urren heory he advanage of he alernaing waveform for elecric power is ha i can be sepped up or sepped down in poenial easily for ransmission and uilisaion.

More information

Electromagnetic Induction: The creation of an electric current by a changing magnetic field.

Electromagnetic Induction: The creation of an electric current by a changing magnetic field. Inducion 1. Inducion 1. Observaions 2. Flux 1. Inducion Elecromagneic Inducion: The creaion of an elecric curren by a changing magneic field. M. Faraday was he firs o really invesigae his phenomenon o

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics. 8/10/018 Course Insrucor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@uep.edu EE 4347 Applied Elecromagneics Topic 4a Transmission Line Equaions Transmission These Line noes

More information

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response.

first-order circuit Complete response can be regarded as the superposition of zero-input response and zero-state response. Experimen 4:he Sdies of ransiional processes of 1. Prpose firs-order circi a) Use he oscilloscope o observe he ransiional processes of firs-order circi. b) Use he oscilloscope o measre he ime consan of

More information

Comparative study between two models of a linear oscillating tubular motor

Comparative study between two models of a linear oscillating tubular motor IOSR Journal of Elecrical and Elecronics Engineering (IOSR-JEEE) e-issn: 78-676,p-ISSN: 3-333, Volume 9, Issue Ver. IV (Feb. 4), PP 77-83 Comparaive sudy beween wo models of a linear oscillaing ubular

More information

Linear Circuit Elements

Linear Circuit Elements 1/25/2011 inear ircui Elemens.doc 1/6 inear ircui Elemens Mos microwave devices can be described or modeled in erms of he hree sandard circui elemens: 1. ESISTANE () 2. INDUTANE () 3. APAITANE () For he

More information

Capacitors & Inductors

Capacitors & Inductors apaciors & Inducors EEE5 Elecric ircuis Anawach Sangswang Dep. of Elecrical Engineering KMUTT Elecric Field Elecric flux densiy Elecric field srengh E Elecric flux lines always exend from a posiively charged

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

Signal and System (Chapter 3. Continuous-Time Systems)

Signal and System (Chapter 3. Continuous-Time Systems) Signal and Sysem (Chaper 3. Coninuous-Time Sysems) Prof. Kwang-Chun Ho kwangho@hansung.ac.kr Tel: 0-760-453 Fax:0-760-4435 1 Dep. Elecronics and Informaion Eng. 1 Nodes, Branches, Loops A nework wih b

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

h[n] is the impulse response of the discrete-time system:

h[n] is the impulse response of the discrete-time system: Definiion Examples Properies Memory Inveribiliy Causaliy Sabiliy Time Invariance Lineariy Sysems Fundamenals Overview Definiion of a Sysem x() h() y() x[n] h[n] Sysem: a process in which inpu signals are

More information

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity

The Maxwell Equations, the Lorentz Field and the Electromagnetic Nanofield with Regard to the Question of Relativity The Maxwell Equaions, he Lorenz Field and he Elecromagneic Nanofield wih Regard o he Quesion of Relaiviy Daniele Sasso * Absrac We discuss he Elecromagneic Theory in some main respecs and specifically

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges.

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges. Chaper Soluions Secion. Inroducion. Curren source. Volage source. esisor.4 Capacior.5 Inducor Secion. Charge and Curren.6 b) The curren direcion is designaed as he direcion of he movemen of posiive charges..7

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Non Linear Op Amp Circuits.

Non Linear Op Amp Circuits. Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

θ with respect to time is

θ with respect to time is From MEC '05 Inergraing Prosheics and Medicine, Proceedings of he 005 MyoElecric Conrols/Powered Prosheics Symposium, held in Fredericon, New Brunswick, Canada, Augus 17-19, 005. A MINIMAL JERK PROSTHESIS

More information

Real Analog Chapter 6: Energy Storage Elements

Real Analog Chapter 6: Energy Storage Elements 1300 Henley C. Pullman, WA 99163 509.334.6306 www.sore.digilen.com 6 Inroducion and Chaper Objecives So far, we have considered circuis ha have been governed by algebraic relaions. These circuis have,

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu ON EQUATIONS WITH SETS AS UNKNOWNS BY PAUL ERDŐS AND S. ULAM DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER Communicaed May 27, 1968 We shall presen here a number of resuls in se heory concerning

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm

Capacitors. C d. An electrical component which stores charge. parallel plate capacitor. Scale in cm apaciors An elecrical componen which sores charge E 2 2 d A 2 parallel plae capacior Scale in cm Leyden Jars I was invened independenly by German cleric Ewald Georg von Kleis on Ocober 745 and by Duch

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

The field of mathematics has made tremendous impact on the study of

The field of mathematics has made tremendous impact on the study of A Populaion Firing Rae Model of Reverberaory Aciviy in Neuronal Neworks Zofia Koscielniak Carnegie Mellon Universiy Menor: Dr. G. Bard Ermenrou Universiy of Pisburgh Inroducion: The field of mahemaics

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD

CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD CHANGE IN THE RESISTANCE OF THE SEMICONDUCTOR IN THE VARIABLE DEFORMATION FIELD M. AHMETOGLU (AFRAILOV) 1, G. GULYAMOV 2, S. H. SHAMIRZAEV 2, A. G. GULYAMOV 2, M. G. DADAMIRZAEV 2, N. APRAILOV 2, F. KOÇAK

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information