CONVERSION OF THE THERMAL HYDRAULICS COMPONENTS OF ALMARAZ NPP MODEL FROM RELAP5 INTO TRAC-M

Size: px
Start display at page:

Download "CONVERSION OF THE THERMAL HYDRAULICS COMPONENTS OF ALMARAZ NPP MODEL FROM RELAP5 INTO TRAC-M"

Transcription

1 International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, CONVERSION OF THE THERMAL HYDRAULICS COMPONENTS OF ALMARAZ NPP MODEL FROM RELAP5 INTO TRAC-M César Queral, Javier Mulas, Ignacio Collazo, Alberto Concejal, Nicolás Burbano Departamento de Sistemas Energéticos (DSE). ETSI Minas. Universidad Politécnica de Madrid (UPM). Ríos Rosas, Madrid, Spain. 1 INTRODUCTION Inés Gallego Iberdrola Ingeniería Alfredo López Lechas CC.NN. Almaraz-Trillo AIE In the scope of a joint project between the Spanish Nuclear Regulatory Commission (CSN) and the electric energy industry of Spain (UNESA) on the USNRC state-of-the-art thermal hydraulic code, TRAC-M, there is a task relating to the translation of the Spanish NPP models from other TH codes to the new one. As part of this project, our team is working on the translation of Almaraz NPP model from RELAP5/MOD3.2 to TRAC-M. At present, several portions of the input deck have been converted to TRAC-M, and the output data have also been compared with RELAP5 data. This paper refers to the translation of the following thermal hydraulic models: pressurizer, hot and cold legs (including the pumps and the injection systems), and steam generators. The comparison of the results obtained with both codes shows a good agreement. However, some difficulties have been found in the translation of some code components, like pipes, heat structures, pumps, branchs, valves and boundary conditions. In this paper, these translation problems and their solutions are described. 2 BOUNDARY CONDITIONS The relation between the boundary conditions models of RELAP5 and TRAC-M is: Velocity or mass flow boundary condition: RELAP5: Time-Dependent Volume (TDV) + Time-Dependent Junction (TDJ) TRAC-M: FILL Temperature (or quality) and pressure boundary conditions: RELAP5: Time-Dependent Volume (TDV)+ single-junction

2 TRAC-M: BREAK + single junction Velocity and temperature boundary conditions: RELAP5: Time-Dependent Volume (TDV) + Time-Dependent Junction (TDJ) TRAC-M: FILL (IFTY=10, 11) + control blocks Only one problem has been observed in the transformation from TDV to BREAK. In TDV it is usual to take the volume and the area quite large; however for the BREAK components the length (DXIN), the volume (VOLIN) and the area (VOLIN/DXIN) are usually the same than those at the last cell of the adjacent component. We have checked if these rules are applied different results between RELAP5 and TRAC-M are obtained. The solution is, 1. To take a very large area (VOLIN/DXIN) in the BREAK component. With this condition the velocity inside the BREAK is null, like in the TDV. Also, It must be taken into account that it is necessary to use the option NFF=1 to avoid the impact of area change on the pressure drop between the BREAK and the first cell of the PIPE. 2. To put a very small length (DXIN). This option avoids the existence of a gravity term inside the BREAK. With these rules we have obtained equivalent results with TDV and BREAK. The FILL component has no translation problems. 3 PIPES The translation rules that we have applied are, The areas in TRAC-M (FA) are defined at the junctions, but in RELAP5 they are defined at the cells and junctions. A possible way to convert from RELAP5 to TRAC-M is to take the junction area as the smaller area of the two volumes adjacent to the junction. Loss coefficients. If IKFAC = 1 is taken then FRIC(NCELLS+1) is the same than the K factors of RELAP5. If Reverse flow energy loss coefficient have to be included it is necessary to put NFRC1=2. In this case the dimension of FRIC is 2 (NCELLS + 1). First the forward coefficients are introduced and later the reverse coefficients. In TRAC-M there are several options for the friction model (NFF= 0, 1, -1, -100). We have checked that the option that better reproduce the RELAP5 model is NFF=-1, excluding the junctions with BREAK (NFF=1) as commented above. Gravity array. The vertical angle (ccc06nn) and the elevation change (ccc07nn) of the cells in RELAP5 can be translated into two ways:

3 x 2 2 φ R2 = 55 o x 1 1 φ T M φ R1 = 35 o Figure 1: Relation between the vertical angles of RELAP5 and the GRAV term of TRAC-M 1. In TRAC-M the cell elevation is specified by the gravity term of the GRAV array. The GRAV gravity term is defined as the ratio of the change in elevation to the length of the flow path between cell centers. The relation with the vertical angles of RELAP5 φ 1,R5 and φ 2,R5, is (Figure 1), GRAV = sin φ T M = x 1 sin φ 1,R5 + x 2 sin φ 2,R5 x 1 + x 2 (1) 2. The user select a reference elevation and all other elevations are relative to that reference elevation. The relation with the change in elevation of the cells in RELAP5 is straightforward, ELEV T M,j = 1 j 1 2 ELEV R5,0 + ELEV R5,i ELEV R5,j (2) TRAC-P takes this cell-center ELEV elevation data and internally converts it to GRAV gravity-term data for use in the calculation. The wall roughness is uniform along the pipe in TRAC-M. If the control volumes in the RELAP5 pipe have different wall roughness, several TRAC-M pipes must be defined in the input file, one for each roughness. Hydraulic diameters: RELAP5 hydraulic diameters are cell-centered, while TRAC-M ones are junction-centered. In this case it is possible to follow the strategy similar to that for the junctions areas. 4 BIFURCATIONS There are several problems in the translation of the BRANCH (RELAP5) into TEE (TRAC- M), A BRANCH (RELAP5) could have N entrances but a TEE (TRAC-M) only could have two. This problem is well known and has been commented in several papers. The solution is to transform one BRANCH with N entrances in N-1 TEE. In TRAC-M it is required that several areas of a TEE have the same value: i=1

4 The average areas (VOL/DX) of cells JCELL and JCELL±1 The junction areas of the edges of the cell JCELL. This condition was not included neither in TRAC-PF1/MOD1 nor in the first versions of TRAC-PF1/MOD2. It was included in last versions of TRAC-PF1/MOD2 and has been maintained in TRAC-M. There are different ways to solve the limitations generated by this restriction. An example is shown in Figure 2. x 1 1 BRANCH x 1 D/2 1 x 1 D/2 TEE A j x 3 3 D A j D/2 x 3 3 D D x 3 D x 2 2 x 2 D/2 2 D/2 x 2 D/2 RELAP5 TRAC M Figure 2: Transformation of a BRANCH in a TEE Gravity term evaluation in TEEs The parameter GRAV of a TEE is calculated in a similar way to a PIPE. There is only one exception in the cell-edge interface between main-tube cell JCELL and side tube cell #1, Where x JCELL is defined as, GRAV = ELEV 1,Side-tube ELEV JCELL x JCELL + x 1,Side-tube ( ) x HDJCELL 1/2 + HD JCELL+1/2 x JCELL JCELL = min, 2 sin θ T M cos θ T M (3) (4) where θ T M is the angle between the main-tube and side tube cell #1. Its relation with the vertical angles of RELAP5 is, 5 HEAT STRUCTURES θ T M = φ R5,1ST φ R5,JCELL (5) Among the different problems that we have found in the translation of heat structures there are several ones interesting to mention, The principal difference between both models is the relation between the hydraulic mesh and the heat structure mesh,

5 In RELAP5 the position of the heat structures nodes coincides with the hydraulic nodes. In a PIPE with N cells there are N heat structure nodes and therefore N wall temperatures. 2. In TRAC-M the position of the heat structure nodes coincides with the edges of the hydraulic cells. In a PIPE with N cells there are N+1 heat structures nodes and therefore N+1 wall temperatures. In RELAP5 the wall heat transfer coefficient is calculated with properties in the hydraulic nodes. On the other hand, in TRAC-M the wall heat transfer coefficient is calculated with properties in the edges of the hydraulic cells (junction properties). Therefore in RELAP5 the wall heat transfer coefficient depends on the average velocity in the hydraulic cell while in TRAC-M depends on the junction velocity. For example, in a RELAP5 model with contractions/expansions in the junctions, Figure 3(a), it will be necessary to perform two changes in the model to make a correct translation, 1. to take the junction area as the smaller area of the two volumes adjacent to the junction (in RELAP5 the junction area could be smaller than the areas of the two volumes adjacent to the junction). With this change the average cell velocity and the junction velocity are the same and therefore the wall heat transfer coefficients will be quite similar, Figure 3(b). 2. On the other hand, if we change the junction area it will be necessary to adjust the loss coefficient in the junction to obtain the same pressure drop with both codes. RELAP5/MOD3 Primary side Secundary side Heat structure TRAC M Primary side Secundary side Heat structure RELAP5/MOD3 TRAC M CONTRACTIONS/EXPANSIONS ARE ELIMINATED Primary side Secundary side Primary side Secundary side Heat structure Heat structure (a) Comparison between RELAP5 and TRAC-M (b) Transformation from RELAP5 to TRAC-M Figure 3: Heat structures In TRAC-M the option of spherical geometry is not included. This limitation forces to use a cylindrical geometry (ROD), and afterwards adjust the area relation with the parameter RDX.

6 VALVES In TRAC-M this kind of component is compound by cells (like the PIPE component). However, in RELAP5 the VALVE component has no volume: therefore it is necessary to give a volume to the VALVE of RELAP5. For example, if we have a valve in the middle of a pipe, it is possible to take a portion of the length and volume of the PIPE (RELAP5) and assign it to the VALVE component of TRAC-M. There are other more complex cases, like in the regulation valves of spray lines, which transformation is shown in Figure 4. RELAP5 VALVE BRANCH BRANCH 1 2 x1 x2 VALVE x1 x2 TRAC M VALVE TEE TEE x1 x2 Figure 4: Transformation of a VALVE in a bifurcation Apart from this, we have found no difficulty to perform the transformation of the different kinds of valves from RELAP5 to TRAC-M. 7 PUMPS We have found two difficulties in the translation of this kind of component, In the second cell edge of the PUMP-TM component the elevation change across the interface and the frictional losses (both wall friction and additive losses) are considered to be identically zero regardless of the input values for GRAV(2) or ELEV(2), FRIC(2) or KFAC(2), and NFF(2). Due to this model, it is necessary to transform the PUMP-R5 model as is shown in Figure 5. Also the whole transformation of the loop is shown in the same figure. TRAC-M has a different coastdown model than RELAP5. In TRAC-M and RELAP5 the model of the friction torque is, Ω Ω Ω Ω 3 T f = C 0 + C 1 + C 2 + C Ω R Ω 2 3 R Ω 3 R (6) where Ω angular velocity; Ω R reference angular velocity; C 0, C 1, C 2 and C 3 input constants.

7 TDV TDJ PUMP SJ TDV PUMP 1m 325 FILL BREAK 1m Figure 5: Transformation of the loop 3 from RELAP5 to TRAC-M In TRAC-M if the pump-impeller angular velocity (pump speed) drops below the input specified value (TFRB), then a second set of constants are used to determine T f, T f = C 0 + C 1 Ω + C Ω Ω 2 Ω R Ω 2 R + C 3 Ω 3 Ω 3 R (7) where C 0, C 1, C 2 and C 3 are input constants. When the pump speed drops to 1/10 of the rated speed (Ω 10% ), C 0 and C 0 decrease in a linear way, Ω C 0 C 0 C 0 C Ω 0 (8) Ω 10% Ω 10% In order to obtain the same coastdown with both codes we have take TFRB = Ω 10%. Therefore, if Ω > Ω 10% the expression of T f is the same in both codes, but when Ω < Ω 10% the expressions for each code are different, Ω Ω Ω Ω 3 T f,r5 = C 0 + C 1 + C 2 + C Ω R Ω 2 3 R Ω 3 R T f,t M = C 0 Ω + C Ω 1 + C Ω Ω 2 + C Ω 10% Ω R Ω 2 3 R Ω 3 Ω 3 R (9) We have imposed that T f,r5 = T f,t M for three values Ω = Ω 10%, Ω 5%, Ω 1%. With this adjustment we have obtained a quite similar coastdown with both codes.

8 PRESSURIZER SPRAY In TRAC-M, the flow area of the entrance of the spray inside the pressurizer must be sized so that the liquid velocity at the PRIZER-component top cell edge exceeds 4.0 m ft ( ). s s This will ensure that the condensation model in the PRIZER component is activated to provide a more accurate pressure response during spraying. With this in mind it is necessary to change the area of the TRAC-M model and to adjust the pressure drop in the spray line line model to maintain the same mass flow than in RELAP5 model, Figure PZR HEAD 1m 1m FIRST: ADJUST THE AREA SECOND: ADJUST THE LOSS COEFFICIENTS 153 Figure 6: Transformation of the spray line 9 CONCLUSIONS The difficulties that we have found in the translation of some code components, like pipes, heat structures, pumps, branchs, valves and boundary conditions have been solved. The rules to make the translations are very easy in the majority of the cases, only a few of them have a little difficulty. In the next months the translation of Almaraz NPP model from RELAP5/MOD3.2 to TRAC-M will be finished and the validation with plant transients will be performed. It has been necessary to use the original data base document to perform in the steam generator model. 10 REFERENCES 1. C. Queral et al., TRAC-M Almaraz NPP Model Translation from RELAP5 to TRAC-M, Final Report, CTC/CSN-DSE Project, December TRAC-P User s Guide, Vol. II, Los Alamos National Laboratory, November 1996.

ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS

ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS ANALYSIS OF THE OECD MSLB BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE RELAP5/PARCS T. Kozlowski, R. M. Miller, T. Downar School of Nuclear Engineering Purdue University United States

More information

Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP5/PARCS v2.7

Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP5/PARCS v2.7 Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.10-18 (011) ARTICLE Instability Analysis in Peach Bottom NPP Using a Whole Core Thermalhydraulic-Neutronic Model with RELAP/PARCS v. Agustín ABARCA,

More information

Experiences of TRAC-P code at INS/NUPEC

Experiences of TRAC-P code at INS/NUPEC Exploratory Meeting of Experts on BE Calculations and Uncertainty Analysis in Aix en Provence, May 13-14, 2002 Experiences of TRAC-P code at INS/NUPEC Fumio KASAHARA (E-mail : kasahara@nupec or jp) Institute

More information

Department of Engineering and System Science, National Tsing Hua University,

Department of Engineering and System Science, National Tsing Hua University, 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) The Establishment and Application of TRACE/CFD Model for Maanshan PWR Nuclear Power Plant Yu-Ting

More information

RELAP5 to TRACE model conversion for a Pressurized Water Reactor

RELAP5 to TRACE model conversion for a Pressurized Water Reactor RELAP5 to TRACE model conversion for a Pressurized Water Reactor Master s thesis Federico López-Cerón Nieto Department of Physics Division of Subatomic and Plasma Physics Chalmers University of Technology

More information

Presenters: E.Keim/Dr.R.Trewin (AREVA GmbH) WP6.9 Task leader: Sébastien Blasset (AREVA-G) NUGENIA+ Final Seminar, Helsinki August, 2016

Presenters: E.Keim/Dr.R.Trewin (AREVA GmbH) WP6.9 Task leader: Sébastien Blasset (AREVA-G) NUGENIA+ Final Seminar, Helsinki August, 2016 NUGENIA+ WP6.9 DEFI-PROSAFE DEFInition of reference case studies for harmonized PRObabilistic evaluation of SAFEty margins in integrity assessment for LTO of RPV/DEFI-PROSAFE Presenters: E.Keim/Dr.R.Trewin

More information

English text only NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

English text only NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS Unclassified NEA/CSNI/R(2008)6/VOL2 NEA/CSNI/R(2008)6/VOL2 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 26-Nov-2008 English

More information

Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction

Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction Loads on RPV Internals in a PWR due to Loss-of-Coolant Accident considering Fluid-Structure Interaction Dr. P. Akimov, Dr. M. Hartmann, L. Obereisenbuchner Fluid Dynamics Stuttgart, May 24, 2012 Content

More information

Transient Reactor Test Loop (TRTL) Model Development

Transient Reactor Test Loop (TRTL) Model Development Transient Reactor Test Loop (TRTL) Model Development Emory Brown WORKING GROUP MEETING FLL 2016 TSK 2 BREKOUT SESSION BOSTON, M Outline Task Description Current Model Status With model projections Preliminary

More information

A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE (3), J.R. JONES (1) ABSTRACT

A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE (3), J.R. JONES (1) ABSTRACT FR0200515 9 lh International Conference on Nuclear Engineering, ICONE-9 8-12 April 2001, Nice, France A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE

More information

Calculation of Pipe Friction Loss

Calculation of Pipe Friction Loss Doc.No. 6122-F3T071 rev.2 Calculation of Pipe Friction Loss Engineering Management Group Development Planning Department Standard Pump Business Division EBARA corporation October 16th, 2013 1 / 33 2 /

More information

FINITE ELEMENT COUPLED THERMO-MECHANICAL ANALYSIS OF THERMAL STRATIFICATION OF A NPP STEAM GENERATOR INJECTION NOZZLE

FINITE ELEMENT COUPLED THERMO-MECHANICAL ANALYSIS OF THERMAL STRATIFICATION OF A NPP STEAM GENERATOR INJECTION NOZZLE Proceedings of COBEM 2007 Copyright 2007 by ABCM 19th International Congress of Mechanical Engineering November 5-9, 2007, Brasília, DF FINITE ELEMENT COUPLED THERMO-MECHANICAL ANALYSIS OF THERMAL STRATIFICATION

More information

THERMAL STRATIFICATION MONITORING OF ANGRA 2 STEAM GENERATOR MAIN FEEDWATER NOZZLES

THERMAL STRATIFICATION MONITORING OF ANGRA 2 STEAM GENERATOR MAIN FEEDWATER NOZZLES 2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 THERMAL STRATIFICATION

More information

Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities.

Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities. Stratification issues in the primary system. Review of available validation experiments and State-of-the-Art in modelling capabilities. (StratRev) NKS seminar, Armémuseum, 2009-03-26 Johan Westin and Mats

More information

ANALYSIS OF METASTABLE REGIMES IN A PARALLEL CHANNEL SINGLE PHASE NATURAL CIRCULATION SYSTEM WITH RELAP5/ MOD 3.2

ANALYSIS OF METASTABLE REGIMES IN A PARALLEL CHANNEL SINGLE PHASE NATURAL CIRCULATION SYSTEM WITH RELAP5/ MOD 3.2 13 th International Conference on Nuclear Engineering Beijing, China, May 16-20, 2005 ICONE13-50213 ANALYSIS OF METASTABLE REGIMES IN A PARALLEL CHANNEL SINGLE PHASE NATURAL CIRCULATION SYSTEM WITH RELAP5/

More information

Steam Condensation Induced Water Hammer Phenomena, a theoretical study

Steam Condensation Induced Water Hammer Phenomena, a theoretical study Steam Condensation Induced Water Hammer Phenomena, a theoretical study Imre Ferenc Barna and György Ézsöl Hungarian Academy of Sciences, KFKI Atomic Energy Research Institute(AEKI) Thermohydraulic Laboratory

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Guidelines for the Installation of SYGEF Pipes, Fittings and Valves

Guidelines for the Installation of SYGEF Pipes, Fittings and Valves Guidelines for the Installation of SYGEF Pipes, Fittings and Valves Calculation of Length Changes Length changes which occur in SYGEF can be calculated in the usual manner, taking into consideration the

More information

Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels

Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels Application of System Codes to Void Fraction Prediction in Heated Vertical Subchannels Taewan Kim Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea. Orcid: 0000-0001-9449-7502

More information

WATER DISTRIBUTION NETWORKS

WATER DISTRIBUTION NETWORKS WATER DISTRIBUTION NETWORKS CE 370 1 Components of Water Supply System 2 1 Water Distribution System Water distribution systems are designed to adequately satisfy the water requirements for a combinations

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS

QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS QUALIFICATION OF A CFD CODE FOR REACTOR APPLICATIONS Ulrich BIEDER whole TrioCFD Team DEN-STMF, CEA, UNIVERSITÉ PARIS-SACLAY www.cea.fr SÉMINAIRE ARISTOTE, NOVEMBER 8, 2016 PAGE 1 Outline Obective: analysis

More information

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg SADE Project SADE produces more reliable answers to safety requirements

More information

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices. Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

An Integrated Approach for Characterization of Uncertainty in Complex Best Estimate Safety Assessment

An Integrated Approach for Characterization of Uncertainty in Complex Best Estimate Safety Assessment An Integrated Approach for Characterization of Uncertainty in Complex Best Estimate Safety Assessment Presented By Mohammad Modarres Professor of Nuclear Engineering Department of Mechanical Engineering

More information

Pipe Flow. Lecture 17

Pipe Flow. Lecture 17 Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

More information

Fluids Engineering. Pipeline Systems 2. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

Fluids Engineering. Pipeline Systems 2. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 423 Fluids Engineering Pipeline Systems 2 Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 SERIES PIPE FLOW WITH PUMP(S) 2 3 4 Colebrook-

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit ABSTRACT Peter Hermansky, Marian Krajčovič VUJE, Inc. Okružná

More information

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS Michel GONNET and Michel CANAC FRAMATOME Tour Framatome. Cedex 16, Paris-La

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015

Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Rigid body physics Particle system Most simple instance of a physics system Each object (body) is a particle Each particle

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Physics 111 Lecture 22 (Walker: 11.1-3) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Lecture 22 1/26 Torque (τ) We define a quantity called torque which is a measure of twisting effort.

More information

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

More information

ATLAS Facility Description Report

ATLAS Facility Description Report KAERI/TR-3754/2009 기술보고서 ATLAS Facility Description Report ATLAS 실험장치기술보고서 한국원자력연구원 제출문 한국원자력연구원장귀하 본보고서를 2009 연도 APR1400/OPR1000 핵심사고열수력종합 효과실험 과제의기술보고서로제출합니다. 2009. 4. 주저자 : 강경호공저자 : 문상기박현식조석최기용 ATLAS

More information

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E.

Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright Diane L. Peters, Ph.D., P.E. Modeling of Dynamic Systems: Notes on Bond Graphs Version 1.0 Copyright 2015 Diane L. Peters, Ph.D., P.E. Spring 2015 2 Contents 1 Overview of Dynamic Modeling 5 2 Bond Graph Basics 7 2.1 Causality.............................

More information

Sensitivity Analyses of the Peach Bottom Turbine Trip 2 Experiment

Sensitivity Analyses of the Peach Bottom Turbine Trip 2 Experiment International Conference Nuclear Energy for New Europe 2003 Portorož, Slovenia, September 8-11, 2003 http://www.drustvo-js.si/port2003 Sensitivity Analyses of the Peach Bottom Turbine Trip 2 Experiment

More information

THERMAL HYDRAULIC MODELING OF THE LS-VHTR

THERMAL HYDRAULIC MODELING OF THE LS-VHTR 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 THERMAL HYDRAULIC MODELING OF

More information

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow:

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow: Two-Fluid Model 41 If I have seen further it is by standing on the shoulders of giants. Isaac Newton, 1675 3 Two-Fluid Model Simple isothermal two-fluid two-phase models for stratified flow: Mass and momentum

More information

Developments and Applications of TRACE/CFD Model of. Maanshan PWR Pressure Vessel

Developments and Applications of TRACE/CFD Model of. Maanshan PWR Pressure Vessel Developments and Applications of TRACE/CFD Model of Maanshan PWR Pressure Vessel Yu-Ting Ku 1, Yung-Shin Tseng 1, Jung-Hua Yang 1 Shao-Wen Chen 2, Jong-Rong Wang 2,3, and Chunkuan Shin 2,3 1 : Department

More information

Safety Analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3

Safety Analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3 International Conference Nuclear Energy for New Europe 23 Portorož, Slovenia, September 8-11, 23 http://www.drustvo-js.si/port23 Safety Analysis of Loss of Flow Transients in a Typical Research Reactor

More information

Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry

Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry Scaling Analysis as a part of Verification and Validation of Computational Fluid Dynamics and Thermal-Hydraulics software in Nuclear Industry M. Dzodzo 1), A. Ruggles 2), B. Woods 3), U. Rohatgi 4), N.

More information

Engineers Edge, LLC PDH & Professional Training

Engineers Edge, LLC PDH & Professional Training 510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 266-6915 fax (678) 643-1758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe Flow-Friction Factor

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

THERMAL SIMULATION OF A CONCENTRATOR PIPE COMPOSED WITH NORMAL RADIATION DISTRIBUTION

THERMAL SIMULATION OF A CONCENTRATOR PIPE COMPOSED WITH NORMAL RADIATION DISTRIBUTION RIO 3 - World Climate & Energy Event, 1-5 December 003, Rio de Janeiro, Brazil 177 THERMAL SIMULATION OF A CONCENTRATOR PIPE COMPOSED WITH NORMAL RADIATION DISTRIBUTION M. Toledo V. (1), O. Nava R. (1),

More information

MELCOR Analysis of Helium/Water/Air Ingress into ITER Cryostat and Vacuum Vessel

MELCOR Analysis of Helium/Water/Air Ingress into ITER Cryostat and Vacuum Vessel TM-2926-1 MELCOR Analysis of Helium/Water/Air Ingress into ITER Cryostat and Vacuum Vessel C. H. Sheng and L. L. Spontón Studsvik Nuclear AB, SE-611 82 Nyköping, Sweden chunhong.sheng@studsvik.se Abstract

More information

LA-UR-98- TASK COMPLETION REPORT FOR UPDATE FXGRAV. Robert G. Steinke, TSA-10

LA-UR-98- TASK COMPLETION REPORT FOR UPDATE FXGRAV. Robert G. Steinke, TSA-10 LA-UR-98- TASK COMPLETION REPORT FOR UPDATE FXGRAV Robert G. Steinke, TSA-1 TASK COMPLETION REPORT FOR UPDATE FXGRAV by Robert G. Steinke September 4,1997 I-. -5 DISCLAIMER This report was prepared as

More information

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Author: Yann Périn Organisation: GRS Introduction In a nuclear reactor core, different fields of physics

More information

Head loss coefficient through sharp-edged orifices

Head loss coefficient through sharp-edged orifices Head loss coefficient through sharp-edged orifices Nicolas J. Adam, Giovanni De Cesare and Anton J. Schleiss Laboratory of Hydraulic Constructions, Ecole Polytechnique fédérale de Lausanne, Lausanne, Switzerland

More information

Pipe Flow Design 1. Results Data

Pipe Flow Design 1. Results Data Pipe Flow Design 1 Results Data Color of Pipe: Velocity in m/sec 1.9 2.2 2.4 2.7 2.9 3.2 Pipe Flow Expert Results Key f = flow in Modelling a 'Tee' fitting: The flow rate through the 'Tee' w ill be different

More information

Gas Pipeline Hydraulics: Pressure Drop

Gas Pipeline Hydraulics: Pressure Drop COURSE NUMBER: ME 423 Fluids Engineering Gas Pipeline Hydraulics: Pressure Drop Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 FLOW EQUATIONS Several equations

More information

A DIRECT STEADY-STATE INITIALIZATION METHOD FOR RELAP5

A DIRECT STEADY-STATE INITIALIZATION METHOD FOR RELAP5 A DIRECT STEADY-STATE INITIALIZATION METHOD FOR RELAP5 M. P. PAULSEN and C. E. PETERSON Computer Simulation & Analysis, Inc. P. O. Box 51596, Idaho Falls, Idaho 83405-1596 for presentation at RELAP5 International

More information

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Dynamic Characteristics of Double-Pipe Heat Exchangers

Dynamic Characteristics of Double-Pipe Heat Exchangers Dynamic Characteristics of Double-Pipe Heat Exchangers WILLIAM C. COHEN AND ERNEST F. JOHNSON Princeton University, Princeton, N. J. The performance of automatically controlled process plants depends on

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE

DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE Seyun Kim, Eunki Lee, Yo-Han Kim and Dong-Hyuk Lee Central Research Institute, Korea

More information

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS Deokjung Lee and Thomas J. Downar School of Nuclear Engineering

More information

Memorial University of Newfoundland Faculty of Engineering and Applied Science

Memorial University of Newfoundland Faculty of Engineering and Applied Science Memorial University of Newfoundl Faculty of Engineering Applied Science ENGI-7903, Mechanical Equipment, Spring 20 Assignment 2 Vad Talimi Attempt all questions. The assignment may be done individually

More information

SOUTHEAST TEXAS CONTINUING EDUCATION HIGH TEMPERATURE WATER HEATING SYSTEMS

SOUTHEAST TEXAS CONTINUING EDUCATION HIGH TEMPERATURE WATER HEATING SYSTEMS EXAM No. 151 HIGH TEMPERATURE WATER HEATING SYSTEMS 1. Due to pressure limitations on pipe and fittings, equipment, and accessories, what is the practical temperature limit of circulating water in district

More information

ASSESSMENT OF A TRACE/PARCS BENCHMARK AGAINST LEIBSTADT PLANT DATA DURING THE TURBINE TRIP TEST ABSTRACT

ASSESSMENT OF A TRACE/PARCS BENCHMARK AGAINST LEIBSTADT PLANT DATA DURING THE TURBINE TRIP TEST ABSTRACT ASSESSMENT OF A TRACE/PARCS BENCHMARK AGAINST LEIBSTADT PLANT DATA DURING THE TURBINE TRIP TEST P. Papadopoulos 1 and A. Sekhri 2 1 : Laboratory for Nuclear Energy Systems Swiss Federal Institute of Technology

More information

Analysis of Neutron Thermal Scattering Data Uncertainties in PWRs

Analysis of Neutron Thermal Scattering Data Uncertainties in PWRs Analysis of Neutron Thermal Scattering Data Uncertainties in PWRs O. Cabellos, E. Castro, C. Ahnert and C. Holgado Department of Nuclear Engineering Universidad Politécnica de Madrid, Spain E-mail: oscar.cabellos@upm.es

More information

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 VERIFATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL

More information

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

More information

TRACE CONTAN Model. TRACE User Problems by Jay Spore, ISL. NRC Notes

TRACE CONTAN Model. TRACE User Problems by Jay Spore, ISL. NRC Notes A Sponsored by the U.S. Nuclear Regulatory Commission dequate simulation of containment pressure and temperature responses is important for nuclear power plant safety analysis. During loss of-coolant accidents

More information

2016 Majdi Ibrahim Ahmad Radaideh. All Rights Reserved

2016 Majdi Ibrahim Ahmad Radaideh. All Rights Reserved 2016 Majdi Ibrahim Ahmad Radaideh. All Rights Reserved ANALYSIS OF REVERSE FLOW RESTRICTION DEVICE TO PREVENT FUEL DRYOUT DURING LOSS OF COOLANT AND INSTABILITY ACCIDENTS OF BOILING WATER REACTORS BY MAJDI

More information

Validation of the Monte Carlo Model Developed to Estimate the Neutron Activation of Stainless Steel in a Nuclear Reactor

Validation of the Monte Carlo Model Developed to Estimate the Neutron Activation of Stainless Steel in a Nuclear Reactor Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010) Hitotsubashi Memorial Hall, Tokyo, Japan, October 17-21, 2010 Validation of the Monte Carlo

More information

FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS

FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS Markus Eck 1, Holger Schmidt 2, Martin Eickhoff 3, Tobias Hirsch 1 1 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Homework 6. Solution 1. r ( V jet sin( θ) + ω r) ( ρ Q r) Vjet

Homework 6. Solution 1. r ( V jet sin( θ) + ω r) ( ρ Q r) Vjet Problem 1 Water enters the rotating sprinkler along the axis of rotation and leaves through three nozzles. How large is the resisting torque required to hold the rotor stationary for the angle that produces

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each.

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. NE 161 Midterm Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. 1. Which would have a higher mass flow rate out of a 1 ft 2 break, a. 200 psia subcooled water

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 7 Reading Assignment R1. Read the section Common Dimensionless Groups

More information

HOW GOOD ARE THERMAL-HYDRAULICS CODES FOR ANALYSES OF.PLANT TRANSIENTS by Stanislav Fabic

HOW GOOD ARE THERMAL-HYDRAULICS CODES FOR ANALYSES OF.PLANT TRANSIENTS by Stanislav Fabic International Conference Nuclear Option in Countries with Small and M Opatija, Croatia, 1996 HR9800074 HOW GOOD ARE THERMAL-HYDRAULICS CODES FOR ANALYSES OF.PLANT TRANSIENTS by Stanislav Fabic For presentation

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

More information

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM

First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM First Name: Last Name: Section: 1 December 20, 2004 Physics 201 FINAL EXAM Print your name and section clearly on all nine pages. (If you do not know your section number, write your TA s name.) Show all

More information

Modelling multiphase flows in the Chemical and Process Industry

Modelling multiphase flows in the Chemical and Process Industry Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase

More information

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Outline What is important? Liquid Properties Thermal Conditions Hydraulic Gradient Flow Regime in Liquids

More information

NEUTRONIC ANALYSIS STUDIES OF THE SPALLATION TARGET WINDOW FOR A GAS COOLED ADS CONCEPT.

NEUTRONIC ANALYSIS STUDIES OF THE SPALLATION TARGET WINDOW FOR A GAS COOLED ADS CONCEPT. NEUTRONIC ANALYSIS STUDIES OF THE SPALLATION TARGET WINDOW FOR A GAS COOLED ADS CONCEPT. A. Abánades, A. Blanco, A. Burgos, S. Cuesta, P.T. León, J. M. Martínez-Val, M. Perlado Universidad Politecnica

More information

VVER-1000 Coolant Transient Benchmark - Overview and Status of Phase 2

VVER-1000 Coolant Transient Benchmark - Overview and Status of Phase 2 International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 VVER-1000 Coolant Transient Benchmark - Overview and Status of Phase 2 Nikola Kolev, Nikolay Petrov Institute

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

Contents. Diaphragm in pressure pipe: Steady state head loss evolution and transient phenomena. Nicolas J. Adam Giovanni De Cesare

Contents. Diaphragm in pressure pipe: Steady state head loss evolution and transient phenomena. Nicolas J. Adam Giovanni De Cesare Diaphragm in pressure pipe: Steady state head loss evolution and transient phenomena Nicolas J. Adam Giovanni De Cesare Contents Introduction FMHL pumped-storage plant Experimental set-up Steady head losses

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Prepared By: Kwangwon Ahn Prepared For: 22.314 Prepared On: December 7 th, 2006 Comparison of Silicon Carbide and Zircaloy4 Cladding during

More information

Chapter 8. Design of Pressurizer and Plant Control

Chapter 8. Design of Pressurizer and Plant Control Nuclear Systems Design Chapter 8. Design of Pressurizer and Plant Control Prof. Hee Cheon NO 8.1 Sizing Problem of Pressurizer and Plant Control 8.1.1 Basic Plant Control Basic Control Scheme I : to maintain

More information

An overview of the Hydraulics of Water Distribution Networks

An overview of the Hydraulics of Water Distribution Networks An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline

More information

Extension of the Simulation Capabilities of the 1D System Code ATHLET by Coupling with the 3D CFD Software Package ANSYS CFX

Extension of the Simulation Capabilities of the 1D System Code ATHLET by Coupling with the 3D CFD Software Package ANSYS CFX Extension of the Simulation Capabilities of the 1D System Code ATHLET by Coupling with the 3D CFD Software Package ANSYS CFX Angel Papukchiev and Georg Lerchl Gesellschaft fuer Anlagen und Reaktorischerheit

More information

LECTURE 9. Hydraulic machines III and EM machines 2002 MIT PSDAM LAB

LECTURE 9. Hydraulic machines III and EM machines 2002 MIT PSDAM LAB LECTURE 9 Hydraulic machines III and EM machines .000 DC Permanent magnet electric motors Topics of today s lecture: Project I schedule revisions Test Bernoulli s equation Electric motors Review I x B

More information

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system The Energy Equation for Control Volumes Recall, the First Law of Thermodynamics: where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system

More information

The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified.

The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified. The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified. F1 (a) The fulcrum in this case is the horizontal axis, perpendicular

More information

Results from the Application of Uncertainty Methods in the CSNI Uncertainty Methods Study (UMS)

Results from the Application of Uncertainty Methods in the CSNI Uncertainty Methods Study (UMS) THICKET 2008 Session VI Paper 16 Results from the Application of Uncertainty Methods in the CSNI Uncertainty Methods Study (UMS) Horst Glaeser Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbh,

More information