The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified.

Size: px
Start display at page:

Download "The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified."

Transcription

1 The acceleration due to gravity g, which varies with latitude and height, will be approximated to 101m1s 2, unless otherwise specified. F1 (a) The fulcrum in this case is the horizontal axis, perpendicular to the page, passing through the elbow joint at B. (b) Figure 18 shows the forces on an idealized diagram. R is the reaction at the elbow joint, T is the tension in the biceps muscle, W is the weight of the arm and L is the weight of the object. Without the force R, it would be impossible to achieve rotational equilibrium. This is seen most easily by taking moments about the centre of mass of the arm. The forces T and L from the biceps muscle and the x z B R T Figure 183See Answer F1. a b A W = 1 101N c L = 2 101N object both promote clockwise rotation. This can only be balanced if there is a downwards force R at the elbow joint. Since none of the other forces have horizontal components the force R must act vertically downwards in order to ensure translational equilibrium. y

2 (c) For translational equilibrium: z T R W L = 0 For rotational equilibrium, taking moments about the elbow (point B0), and taking anticlockwise moments to be positive: at bw c0l = 0 (d) Suppose a = 41cm, b = 161cm, c = 321cm and the weight of the forearm W = 1 101N, where the magnitude of the acceleration due to gravity is rounded up to 101m1s 2. We have L = mg = 2 101N and the translational equilibrium condition becomes: x B a R T Figure 183See Answer F1. T R = 301N The rotational equilibrium condition about B does not involve R and becomes: T (0.041m) = 101N (0.161m) + 201N (0.321m) = 8.01N1m b A W = 1 101N c L = 2 101N y

3 i.e. T = 8.01N1m/(0.041m) = 2001N z Substituting for T in the first equation then gives R = 1701N. (e) Figure 18 shows a right-handed Cartesian coordinate system with origin at the elbow. The general expression for the G torque of a force F applied at position r G is = r1 1F. Here we need the torque from L about B. This is: = (0.321m)1j1 1(201N)( k) = (1j1 1k)1N1m G = 6.4i1N1m x B a R T Figure 183See Answer F1. b A W = 1 101N c L = 2 101N This torque vector points along the negative x-axis. This tells us that someone on the positive side of the x-axis, looking towards the origin, will see an associated clockwise sense of rotation associated with this, as expected. y

4 F2 (a) The moment of inertia of the column about the central axis is I = Mr 2 /02 = πr 2 lρ0r 2 /02 = πr0 4 lρ/02 = π(0.751m) 4 401m kg1m 3 /02 = kg1m 2. (b) Using the parallel-axis theorem I = Mr0 2 /02 + Mr 2 = 3Mr0 2 /02 = kg1m 2 (c) Figure 19 shows a side elevation of the rolling column. The G torque about the line of contact through A, due to the weight W, is = r1 1W Figure 193See Answer F2. G which has a direction out of the plane of Figure 19 (towards you) z r d A W instantaneous axis of rotation x

5 and a magnitude G G w a Γ = rw1sin1170 = r πr 2 lρ0g 1 sin1170 = πr 3 lρ0g sin1170 = π(00.751m) 3 401m kg1m 3 101m1s = N1m (d) From the basic law of rotational dynamics 10 for uni-axial motion = Ia. The magnitude of r the angular acceleration is α = Γ0/I = N1m/ kg1m 2 = 1.61rad1s 2. d A The direction of the angular acceleration vector is along (i.e. out of the page, towards you). (e) Since the angular acceleration is constant 10 W and the initial angular velocity is 0, the final angular velocity is = a0t. Thus the magnitude of the angular velocity vector is Figure 193See Answer F2. ω = 1.61rad1s 2 21s = 3.21rad1s 1 and its direction is along (out of the page, towards you). z instantaneous axis of rotation x

6 Study comment Having seen the Fast track questions you may feel that it would be wiser to follow the normal route through the module and to proceed directly to Ready to study? in Subsection 1.3. Alternatively, you may still be sufficiently comfortable with the material covered by the module to proceed directly to the Closing items. If you have completed both the Fast track questions and the Exit test, then you have finished the module and may leave it here.

7 R1 Since the arc of a circle = radius angle in radians, the distance moved by the mountain is rθ = ( m) 2 π/0180 = m. If the angular speed is ω and the period of the Earth s rotation is T = 241hr, then ω = 2π/Τ = 2π/( )1s = rad1s 1 and the speed is v = rω = m rad1s 1 = 4641m1s 1

8 R2 The component of a force along a given direction is given by the product of the magnitude of the force and the cosine of the angle between the force and the direction concerned. From Figure 2, the force is at an angle of 30 to the positive x-direction and 60 to the negative z-direction. The x-component of F F x = F1cos130 = (121N) cos130 = 10.41N The z-component of F is F z = (121N) cos160 = 6.01N Newton s second law of motion is F = ma, which leads to a x = F x 0/m = 10.41N/3.01kg = 3.51m1s 2 and a z = F z /m = 6.01N/3.01kg = 2.01m1s 2 z A 60 F = 121N O Figure 23See Question R2. x

9 R3 We solve this problem by subtracting a smaller from a larger imaginary solid pipe, having the given inner and outer radii, respectively. Since mass = density volume, it is necessary first to calculate the volumes of these solids. Do not forget to divide the diameter by 2 in order to calculate the radius. The volume of a cylindrical solid = cross-sectional area height = πr 2 h. The volume of the larger pipe is, therefore, π(0.401m) 2 241m. The volume of the smaller pipe is π(0.371m) 2 241m. The mass of the hollow pipe is, therefore, density volume = kg m 3 ( )1m 2 241m π = kg The weight of the pipe acts downwards and has magnitude mg = kg 101m1s 2 = N

10 T1 Suppose your weight is 7001N and that this is just sufficient to loosen the nut when you stand on a spanner of length 0.41m, fitted horizontally. The size of the torque due to your weight is: Γ = 7001N 0.401m = 2801N1m. This must also be the maximum frictional torque on the nut.

11 T2 The friction of the ground acting on the tyre prevents the wheel from slipping. As you begin to jack up the wheel the maximum friction available reduces and the wheel is more likely to slip1 1this is why the wheel nuts should be loosened slightly before the wheel and tyre are lifted off the ground.

12 T3 Figure 20 shows the tension force, T, and one of the tie cords, PQ, in side elevation. Using Equation 1, torque magnitude33γ = r1f1sin1θ = Fd (Eqn 1) the magnitude of the torque about O is: Γ = Td = rt1sin1θ = 1201N 41m [81m/( ) 1/02 1m] = 4291N1m x z P 4 m O θ d T 8 m Figure 203See Answers T3, T4, T7 and T8. This shows a mast with one of its tie cords. Q y

13 T4 We can refer again to Figure 20. (a) If the fulcrum is taken to be on the mast 11m above the ground, then it is 31m below the point of attachment of the cord at P. The torque about this fulcrum is calculated as in Answer T3, but with 31m replacing the 41m in that calculation (θ is the same): Γ00 = Td0 = r Tsinθ = 1201N 31m [81m/( ) 1/02 1m] = 3221N1m (b) If the fulcrum is taken to be coincident with the point of attachment of the cord at P then the distance of the line of action of the force from the fulcrum is zero and so the torque is zero. x z P 4 m O θ d T 8 m Figure 203See Answers T3, T4, T7 and T8. This shows a mast with one of its tie cords. Q y

14 T5 Equation 2b W = Γ11 1φ1 (Eqn 2b) gives the work done as the average torque multiplied by the angle (in radians). The angle turned through is one revolution (2π radians) and the average torque Γ = 2801N1m/4 = 70.01N1m. So, W = 701N1m 2π = 4401J. If this is completed in 51s, the average power is given by Equation 3 P = W t = Γ φ t as P = W/ t = 4401J/51s = 88.01W. = Γω (Eqn 3)

15 T6 Figure 21 shows an idealized version of the balance. Suppose the point of support is at a distance p (in metres) from the line of action of the larger weight. The 201kg mass has a weight of 201kg 101m1s 2 = 2001N. Similarly the weight of the 31kg mass is 301N. The magnitude of the moment of the 2001N weight about the point of support is (200p)1N1m and since this moment promotes an anticlockwise rotation we take it to be positive. The magnitude of the moment of the 301N weight is 301N [1.5 (0.3 + p) 0.1]1m = 30 (1.1 p)1n1m 0.3 m 2001N Figure 213See Answer T6. Since this moment promotes a clockwise rotation we take it to be negative. Rotational equilibrium requires that the resultant moment be zero so (200p)1N1m [30 (1.1 p)]1n1m = 0. Hence p = 331N1m/0(2301N) = 0.141m. Hence the point of support is 0.141m from the line of action of the larger weight. p 1.5 m 301N 0.1 m

16 T7 z From Figure 20 we see that the tension T lies in the y-z plane, with no x-component. The y-component is T1sin1θ and the z-component is T1cos1θ. In terms of unit vectors we have: T = T1sin1θ1 j T1cos1θ 1k, where T is 1201N and θ is 63.43, so this gives: T = (107.31j k)1N. x P 4 m O θ d T 8 m Q y Figure 203See Answers T3, T4, T7 and T8. This shows a mast with one of its tie cords.

17 T8 (a) The coordinate axes are those shown in Figure 20; the position vector r of the point P of attachment of the cord to the mast is: r = 4k1m. (b) The torque is then: ( )Nm = r T = 4k j G 53.67k = 429( k j)nm = 429i Nm This confirms that the torque is along the negative x-axis, as expected from the corkscrew rule or the right hand rule, with a size as given in Answer T3. (i.e. 4291N1m) x z P 4 m O θ d T 8 m Figure 203See Answers T3, T4, T7 and T8. This shows a mast with one of its tie cords. Q y

18 T9 In each revolution of a wheel the distance travelled by the car is 2πr, where r is the radius of the wheel. The speed of the car is m/36001s = 27.81m1s 1. (a) This speed of 27.81m1s 1 must also be the speed of a point on the circumference. (b) The point on the wheel which is in momentary contact with the ground is being carried forward with the overall speed of the vehicle but has an opposite motion due to its rotation1 1so it is momentarily at rest relative to the road. You may find this surprising, but the tyres would soon wear out if it weren t true! (c) We use v = rω to find ω = v/r = 27.81m1s 1 /0.351m = 79.41rad1s 1. (d) Figure 12 can be used to represent the situation, with the circular path becoming the wheel. Since w is along the z-axis, we have w = 79.41k1rad1s 1. y r θ Figure 123A particle moving in a circle. The (x, y) plane forms the plane of rotation and the z-axis points towards you. Looking down onto the (x, y) plane from the positive z-axis, the angle θ increases for anticlockwise rotations. P x

19 T10 (a) Since the wheel rotates about the z-axis we write the equations of uniform angular acceleration with z subscripts. Using θ z = (µ0 z + ω0 z )t/02 we obtain θ z = ( )1rad1s 1 31s = 2381rad (b) The kinematic equation ω z = µ z + α0 z t applies because the acceleration is uniform. Clearly ω z = 0 and µ z = 79.41rad1s 1 from Answer T9. So α0 z = 79.41rad1s 1 /6 s = 13.21rad1s 2. The magnitude of the angular acceleration is therefore 13.21rad1s 2. (c) To find the angular speed after 31s we can use the equation: ω z = µ0 z + α0 z t = 79.41rad1s rad1s 2 31s = 39.81rad1s 1.

20 T11 Observation 3 is inconsistent with the claimed equation. It tells us that the angular acceleration of the rod depends on the direction in which the torque acts, relative to the long axis of the rod. This does not agree with the suggested equation, which gives an acceleration of magnitude Γ/m irrespective of the direction of the torque.

21 T12 (a) Using Equation 12 = Ia = I dw G (Eqn 12) dt and taking the magnitudes only we have Γ = Iα and so I = Γ0/α. In terms of base quantities, the dimensions of torque Γ are those of force distance = [M][L][T 2 ] [L] = [M][L 2 ][T 2 ]. The dimensions of angular acceleration α are [T 2 ] since angular measure is dimensionless. Finally, the dimensions of moment of inertia I are [M][L 2 ][T 2 ]/[T 2 ] = [M][L 2 ]. (b) Suppose that the roulette wheel is initially spinning so that its angular velocity vector points along the upward z-axis. The initial angular velocity is then µ z = 2πf = 2π/02 = π1rad1s 1 and the final angular velocity is ω z = 0. The angular acceleration can be found using ω z = µ0 z + α0 z t which gives α0 z = µ0 z /t = π1rad1s 1 /121s = rad1s 2 Finally, the retarding torque is given by Γ z = Iα0 z = 251kg1m rad1s 2 = 6.551N1m. The magnitude of the torque is therefore 6.551N1m.

22 T13 (a) Since v = rω the kinetic energy is E kin = 1 2 mv2 = 1 2 mr2 1ω 2. The rate of change of kinetic energy is found by differentiating this expression with respect to time. Since m and r are constant and dω/dt = α, this gives de kin /dt = mr 2 ω α (b) The rate of change of kinetic energy must equal the power input so Equation 3 P = W t = Γ φ t = Γω (Eqn 3) gives de kin /dt = mr 2 ωα = Γω. Thus, Γ = mr0 2 α and comparing this with Equation 12 dt allows us to identify the moment of inertia as I = mr 2. G = Ia = I dw (Eqn 12)

23 T14 (a) Suppose the wheel has mass M and radius a and that I cm is its moment of inertia about the central axle. Using the parallel-axis theorem we then find I contact = I cm + Ma2 = Ma 2 /02 + Ma2 = 3Ma 2 /02 which gives I contact = 3Ma 2 /02 = 3 121kg (0.31m) 2 /02 = 1.621kg1m 2 (b) The radius of gyration k is defined by: I = Mk 2 = 1.621kg1m 2 and so k = (I/M) 1/02 = (1.621kg1m 2 /121kg) 1/02 = m. The moment of inertia of the wheel about the line of contact of the wheel on the ground is the same as if the mass of the wheel were concentrated m from this axis. (c) The total kinetic energy (i.e. rotational motion about the contact axis or the sum of translational centre of mass motion and rotational motion about the centre of mass) is given by: E kin = I contact ω 2 /02 = Mk 2 ω 2 /02. The angular speed is ω = 2πf = rad1s 1 so the kinetic energy is: E kin = Mk 2 ω0 2 /02 = 121kg (0.3671m) 2 (18.851rad1s 1 ) 2 /02 = 2871J

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

Physics 4A Solutions to Chapter 10 Homework

Physics 4A Solutions to Chapter 10 Homework Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 0-4 (a) positive (b) zero (c) negative (d) negative Q 0-6

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2

b) 2/3 MR 2 c) 3/4MR 2 d) 2/5MR 2 Rotational Motion 1) The diameter of a flywheel increases by 1%. What will be percentage increase in moment of inertia about axis of symmetry a) 2% b) 4% c) 1% d) 0.5% 2) Two rings of the same radius and

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

DYNAMICS MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA DYNAMICS MOMENT OF INERTIA S TO SELF ASSESSMENT EXERCISE No.1 1. A cylinder has a mass of 1 kg, outer radius of 0.05 m and radius of gyration 0.03 m. It is allowed to roll down an inclined plane until

More information

AP Physics 1: Rotational Motion & Dynamics: Problem Set

AP Physics 1: Rotational Motion & Dynamics: Problem Set AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are

More information

11-2 A General Method, and Rolling without Slipping

11-2 A General Method, and Rolling without Slipping 11-2 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration

More information

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

31 ROTATIONAL KINEMATICS

31 ROTATIONAL KINEMATICS 31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: TOPIC : Rotational motion Date : Marks : 120 mks Time : ½ hr 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: a) zero velocity b) constantt velocity c)

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

More information

Unit 8 Notetaking Guide Torque and Rotational Motion

Unit 8 Notetaking Guide Torque and Rotational Motion Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C105 TUTORIAL 13 - MOMENT OF INERTIA

ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C105 TUTORIAL 13 - MOMENT OF INERTIA ENGINEERING COUNCIL CERTIFICATE LEVEL MECHANICAL AND STRUCTURAL ENGINEERING C15 TUTORIAL 1 - MOMENT OF INERTIA This tutorial covers essential material for this exam. On completion of this tutorial you

More information

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1

Phys101 Third Major-161 Zero Version Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Coordinator: Dr. Ayman S. El-Said Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,

More information

Angular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter

Angular Displacement. θ i. 1rev = 360 = 2π rads. = angular displacement Δθ = θ f. π = circumference. diameter Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 4 MOMENT OF INERTIA. On completion of this tutorial you should be able to

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 4 MOMENT OF INERTIA. On completion of this tutorial you should be able to ENGINEEING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTOIAL 4 MOMENT OF INETIA On completion of this tutorial you should be able to evise angular motion. Define and derive the moment of inertia of a body.

More information

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia

Rotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How

More information

Chapter 10. Rotation of a Rigid Object about a Fixed Axis

Chapter 10. Rotation of a Rigid Object about a Fixed Axis Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Rotational Motion About a Fixed Axis

Rotational Motion About a Fixed Axis Rotational Motion About a Fixed Axis Vocabulary rigid body axis of rotation radian average angular velocity instantaneous angular average angular Instantaneous angular frequency velocity acceleration acceleration

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1 Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

More information

Mechanics Topic D (Rotation) - 1 David Apsley

Mechanics Topic D (Rotation) - 1 David Apsley TOPIC D: ROTATION SPRING 2019 1. Angular kinematics 1.1 Angular velocity and angular acceleration 1.2 Constant-angular-acceleration formulae 1.3 Displacement, velocity and acceleration in circular motion

More information

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4

A) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4 1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)

More information

第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Rotational Motion and Torque

Rotational Motion and Torque Rotational Motion and Torque Introduction to Angular Quantities Sections 8- to 8-2 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is

More information

Slide 1 / 37. Rotational Motion

Slide 1 / 37. Rotational Motion Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Class XI Chapter 7- System of Particles and Rotational Motion Physics

Class XI Chapter 7- System of Particles and Rotational Motion Physics Page 178 Question 7.1: Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Advanced Higher Physics. Rotational Motion

Advanced Higher Physics. Rotational Motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational Motion Solutions AH Physics: Rotational Motion Problems Solutions Page 1 013 TUTORIAL 1.0 Equations of motion 1. (a) v = ds, ds

More information

In your answer, you should use appropriate technical terms, spelled correctly [1]

In your answer, you should use appropriate technical terms, spelled correctly [1] 1 (a) Define moment of a force. In your answer, you should use appropriate technical terms, spelled correctly.... [1] (b) State the two conditions that apply when an object is in equilibrium. 1.... 2....

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS OPTION B-1A: ROTATIONAL DYNAMICS Essential Idea: The basic laws of mechanics have an extension when equivalent principles are applied to rotation. Actual

More information

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates

More information

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133 Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

Rolling, Torque & Angular Momentum

Rolling, Torque & Angular Momentum PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

[1] (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light

[1] (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light 1 (a) Define the newton... [1] (b) State why the equation F = ma cannot be applied to particles travelling at speeds very close to the speed of light... [1] (c) Fig. 3.1 shows the horizontal forces acting

More information

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

More information

ROTATORY MOTION. ii) iii) iv) W = v) Power = vi) Torque ( vii) Angular momentum (L) = Iω similar to P = mv 1 Iω. similar to F = ma

ROTATORY MOTION. ii) iii) iv) W = v) Power = vi) Torque ( vii) Angular momentum (L) = Iω similar to P = mv 1 Iω. similar to F = ma OTATOY MOTION Synopsis : CICULA MOTION :. In translatory motion, every particle travels the same distance along parallel paths, which may be straight or curved. Every particle of the body has the same

More information

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

3. If you drag a rip-cord 2.0m across a wheel and it turns 10rad, what is the radius of the wheel? a. 0.1m b. 0.2m c. 0.4m d.

3. If you drag a rip-cord 2.0m across a wheel and it turns 10rad, what is the radius of the wheel? a. 0.1m b. 0.2m c. 0.4m d. 1. Two spheres are rolled across the floor the same distance at the same speed. Which will have the greater angular velocity? a. the smaller sphere b. the larger sphere c. the angular velocities will be

More information

Chapter Rotational Motion

Chapter Rotational Motion 26 Chapter Rotational Motion 1. Initial angular velocity of a circular disc of mass M is ω 1. Then two small spheres of mass m are attached gently to diametrically opposite points on the edge of the disc.

More information

Rotation Quiz II, review part A

Rotation Quiz II, review part A Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the

More information

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant.

Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Circular Motion:- Uniform Circular Motion:-Circular motion is said to the uniform if the speed of the particle (along the circular path) remains constant. Angular Displacement:- Scalar form:-?s = r?θ Vector

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass? NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Dynamics of Rotation

Dynamics of Rotation Dynamics of Rotation 1 Dynamic of Rotation Angular velocity and acceleration are denoted ω and α respectively and have units of rad/s and rad/s. Relationship between Linear and Angular Motions We can show

More information

Topic 1: Newtonian Mechanics Energy & Momentum

Topic 1: Newtonian Mechanics Energy & Momentum Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Lesson 8. Luis Anchordoqui. Physics 168. Thursday, October 11, 18

Lesson 8. Luis Anchordoqui. Physics 168. Thursday, October 11, 18 Lesson 8 Physics 168 1 Rolling 2 Intuitive Question Why is it that when a body is rolling on a plane without slipping the point of contact with the plane does not move? A simple answer to this question

More information

Chapter 10 Solutions

Chapter 10 Solutions Chapter 0 Solutions 0. (a) α ω ω i t.0 rad/s 4.00 rad/s 3.00 s θ ω i t + αt (4.00 rad/s )(3.00 s) 8.0 rad 0. (a) ω ω π rad 365 days π rad 7.3 days *0.3 ω i 000 rad/s α 80.0 rad/s day 4 h day 4 h h 3600

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF

More information

AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

Work and kinetic Energy

Work and kinetic Energy Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Rotational Dynamics, Moment of Inertia and Angular Momentum

Rotational Dynamics, Moment of Inertia and Angular Momentum Rotational Dynamics, Moment of Inertia and Angular Momentum Now that we have examined rotational kinematics and torque we will look at applying the concepts of angular motion to Newton s first and second

More information

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the

More information

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the

More information

Balancing of Masses. 1. Balancing of a Single Rotating Mass By a Single Mass Rotating in the Same Plane

Balancing of Masses. 1. Balancing of a Single Rotating Mass By a Single Mass Rotating in the Same Plane lecture - 1 Balancing of Masses Theory of Machine Balancing of Masses A car assembly line. In this chapter we shall discuss the balancing of unbalanced forces caused by rotating masses, in order to minimize

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Two-Dimensional Rotational Kinematics

Two-Dimensional Rotational Kinematics Two-Dimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are non-rigid

More information