Human Friendly Control : an application to Drive by Wire

Size: px
Start display at page:

Download "Human Friendly Control : an application to Drive by Wire"

Transcription

1 Human Friendly Control : an application to Drive by Wire By Emmanuel Witrant Master Thesis, Laboratoire d Automatique de Grenoble with Carlos Canudas-de-Wit 2 Juillet 2002 Typeset by FoilTEX

2 Control Objectives safety of the driver and performance passivity and transparency, linear approximation of the plant, optimal multi-objective synthesis using Linear Matrix Inequalities (LMI). 1

3 Outline 1. System Presentation and objectives 2. Control problem expression 3. Control Synthesis 4. Simulations and testing ground 2

4 1. System Presentation and objectives M fm f h v h K fe ve M fs Fig. 1: Schematic principle of the system 3

5 The Plant f ext h + f h + + fm P fs + + fe + f ext e K H Gm Gs E v h ve Fig. 2: Typical Structure of a manipulator 4

6 Control objectives The model of Hu-Salcudean-Loewen, 95 : v h + Z h f h Z th Z d n f.fe + fe Ze + ve = v h /nv Z te Fig. 3: 2 ports representation of an ideal manipulator idéal Use K and n f, n v to shape the desired impedance of the system satisfying the control objectives. 5

7 Coupled Transparency (impedance) Defines a desired mapping between force and speed. v d h = y d (f h + n f f e ) (1) ( 1 ve d = y d f h + n ) f f e n v n v (2) minimize ṽ h. = v d h v h and ṽ e. = v d e v e with adequate filters to set the frequency domain of minimization. 6

8 Passivity Bilateral coupled passivity : < v h, F h >. = 0 v T h F h dt > β (3) < v e, F e >. = That is, Z th and Z te have to be passive. 0 v T e F e dt > β (4) 7

9 2. Control problem expression Given a desired admittance Y d (s), the goal is to find a control K such that : i. Closed loop transparency, Y t (K) = Y d. ii. Closed loop passivity of Z th (K) = Z t (K) + n f n v Z e and Z te (K) = n v n Z t (K) + n v f n Z h, where Z t (K) is the actual impedance of the f system. but it may not have a solution and Z h, Z e are unknown, relax i. and extend ii. : iii. min K Y t (K) Y d, with iv. Y t (K) : F v ESPR. 8

10 3. Control Synthesis State-space representation of the plant P and the control K : Σ P : ẋ = Ax + B w w + Bu z = C z x + D zw w + D z u y = Cx + D w w Σ K : { ζ = AK ζ + B K y u = C K ζ + D K y (5) Criterion specification : ( ) T z = T zw w = vw w Tṽw et [ A Bj C j D j ] = [ A + BD K C BC K B j + BD K F j B K C A K B K F j C j + E j D K C E j C K D j + E j D K F j ] with B j = B w R j, C j = L j C z, D j = L j D zw, E j = L j D z, F j = D w R j. Express the system into two transfer functions ; one for each objective. 9

11 LMI expression :(S.Boyd et al. 94) iii. : equivalent to Tṽw < γ, Bounded Real lemma) : AT P + PA PB 2 C T 2 B T 2 P γi D T 2 C 2 D 2 γi > 0, P > 0 (6) iv. : Positive Real Lemma : ( A T P + PA PB 1 C1 T B1 T P C 1 D1 T D 1 ) > 0, P > 0 (7) 10

12 Singularity problem D 1 singular ( A T P + PA PB 1 C T 1 B T 1 P C 1 D T 1 D 1 ) > 0, P > 0 implies to combine a LMI with a LME. To solve this problem (Khalil, 96) : Introduce a fictitious sector bound non-linearity simulating some uncertainties, use the circle criterion to design K such that the closed-loop fictitious system is SPR, conclude that the original system is SPR. 11

13 ψ w u P z y K Fig. 4: Fictitious system Where ψ is a sector bound non-linearity defined by : [ψ(t)z Q min z] T [ψ(t)z Q max z] 0, t 0, z Γ IR p (8) 12

14 The resulting fictitious system is : Ā Bw B C z Dzw Dz C Dw D = A B w Q min C z B w B (Q max Q min )C z I 0 C D w Q min C z D w 0 (9) The identity matrix in D allows for the use of the positive real lemma. 13

15 Optimal multi-objective synthesis using LMI (Scherer-Gahinet- Chilali, 97) Two LMIs to solve simultaneously, with P > 0, a linearizing change of variables to include the closed-loop expression, A, B et C real and fictitious have to be the same Q min = 0, a unique control K can be found, its order is the same as the system, two parameters still need to be fixed : γ et Q max. Analysis tools passivity : Nyquist plot (SPR), transparency : H norm and Bode plot, 14

16 4. Simulations and testing ground G m (s) was given by : G m (s) = 1 a m s + b m = 1 0, 0222s + 0, 0042 (10) The desired admittance was chosen as : y d = 1 0, 1s + 1 (11) Some good values for the remaining parameters : γ = 0.7, qh max = and qe max =

17 The Control obtained has the form : K = 1 D [ ] K11 K 12 K 13 K 14 K 21 K 22 K 23 K 24 (12) with D and K ii some 4 th order polynomials. 16

18 Passivité vue par le conducteur (fh vh) Imaginary Axis Real Axis Fig. 5: Passivity of the closed-loop system 17

19 0 (vh vhd)/vhd erreur (%) fréquence (rad/sec) Fig. 6: Minimized criterion ṽ 18

20 5 n v = Amplitude temps (s) Fig. 7: v h and v e with a speed factor n v = 1, 5 (input force = sinusoïde + noise) 19

21 Fig. 8: Testing ground 20

22 Conclusions Different approaches were explored for the transparency, the control has been obtained with some tuning parameters, allowing for the freedom of the user, the simulations results are satisfying and the procedure is validated, experimental results were also obtained. 21

Robust Multivariable Control

Robust Multivariable Control Lecture 2 Anders Helmersson anders.helmersson@liu.se ISY/Reglerteknik Linköpings universitet Today s topics Today s topics Norms Today s topics Norms Representation of dynamic systems Today s topics Norms

More information

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller

Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Design of hybrid control systems for continuous-time plants: from the Clegg integrator to the hybrid H controller Luca Zaccarian LAAS-CNRS, Toulouse and University of Trento University of Oxford November

More information

Riccati Equations and Inequalities in Robust Control

Riccati Equations and Inequalities in Robust Control Riccati Equations and Inequalities in Robust Control Lianhao Yin Gabriel Ingesson Martin Karlsson Optimal Control LP4 2014 June 10, 2014 Lianhao Yin Gabriel Ingesson Martin Karlsson (LTH) H control problem

More information

An LMI Approach to the Control of a Compact Disc Player. Marco Dettori SC Solutions Inc. Santa Clara, California

An LMI Approach to the Control of a Compact Disc Player. Marco Dettori SC Solutions Inc. Santa Clara, California An LMI Approach to the Control of a Compact Disc Player Marco Dettori SC Solutions Inc. Santa Clara, California IEEE SCV Control Systems Society Santa Clara University March 15, 2001 Overview of my Ph.D.

More information

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Matrix Inequalities A linear matrix inequality (LMI)

More information

The norms can also be characterized in terms of Riccati inequalities.

The norms can also be characterized in terms of Riccati inequalities. 9 Analysis of stability and H norms Consider the causal, linear, time-invariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements

More information

Introduction to Nonlinear Control Lecture # 4 Passivity

Introduction to Nonlinear Control Lecture # 4 Passivity p. 1/6 Introduction to Nonlinear Control Lecture # 4 Passivity È p. 2/6 Memoryless Functions ¹ y È Ý Ù È È È È u (b) µ power inflow = uy Resistor is passive if uy 0 p. 3/6 y y y u u u (a) (b) (c) Passive

More information

Stability of Parameter Adaptation Algorithms. Big picture

Stability of Parameter Adaptation Algorithms. Big picture ME5895, UConn, Fall 215 Prof. Xu Chen Big picture For ˆθ (k + 1) = ˆθ (k) + [correction term] we haven t talked about whether ˆθ(k) will converge to the true value θ if k. We haven t even talked about

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

Outline. Linear Matrix Inequalities in Control. Outline. System Interconnection. j _jst. ]Bt Bjj. Generalized plant framework

Outline. Linear Matrix Inequalities in Control. Outline. System Interconnection. j _jst. ]Bt Bjj. Generalized plant framework Outline Linear Matrix Inequalities in Control Carsten Scherer and Siep Weiland 7th Elgersburg School on Mathematical Systems heory Class 3 1 Single-Objective Synthesis Setup State-Feedback Output-Feedback

More information

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Quadratic Gaussian The state space

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

Multi-objective Controller Design:

Multi-objective Controller Design: Multi-objective Controller Design: Evolutionary algorithms and Bilinear Matrix Inequalities for a passive suspension A. Molina-Cristobal*, C. Papageorgiou**, G. T. Parks*, M. C. Smith**, P. J. Clarkson*

More information

Analysis of Bilateral Teleoperation Systems under Communication Time-Delay

Analysis of Bilateral Teleoperation Systems under Communication Time-Delay Analysis of Bilateral Teleoperation Systems under Communication Time-Delay Anas FATTOUH and Olivier SENAME 1 Abstract In this article, bilateral teleoperation systems under communication time-delay are

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

2006 Fall. G(s) y = Cx + Du

2006 Fall. G(s) y = Cx + Du 1 Class Handout: Chapter 7 Frequency Domain Analysis of Feedback Systems 2006 Fall Frequency domain analysis of a dynamic system is very useful because it provides much physical insight, has graphical

More information

Lecture 15: H Control Synthesis

Lecture 15: H Control Synthesis c A. Shiriaev/L. Freidovich. March 12, 2010. Optimal Control for Linear Systems: Lecture 15 p. 1/14 Lecture 15: H Control Synthesis Example c A. Shiriaev/L. Freidovich. March 12, 2010. Optimal Control

More information

MAE 143B - Homework 9

MAE 143B - Homework 9 MAE 143B - Homework 9 7.1 a) We have stable first-order poles at p 1 = 1 and p 2 = 1. For small values of ω, we recover the DC gain K = lim ω G(jω) = 1 1 = 2dB. Having this finite limit, our straight-line

More information

1.6 Lecture 2: Conjugation and inequalities

1.6 Lecture 2: Conjugation and inequalities 1.6. LECTURE 2: CONJUGATION AND INEQUALITIES 21 Lastly, we have the exceptional case αβ = 2δ and α 2 β 2 < 4γ. In this case, z = 1 [ ( α + i β ± )] β 2 2 α 2 + 4γ. As can be seen clearly from this exercise,

More information

CDS 101/110a: Lecture 10-1 Robust Performance

CDS 101/110a: Lecture 10-1 Robust Performance CDS 11/11a: Lecture 1-1 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty

More information

Robust Anti-Windup Compensation for PID Controllers

Robust Anti-Windup Compensation for PID Controllers Robust Anti-Windup Compensation for PID Controllers ADDISON RIOS-BOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVAS-ECHEVERRIA Universidad de Los Andes Av. Tulio Febres,

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 19: Stabilization via LMIs Optimization Optimization can be posed in functional form: min x F objective function : inequality constraints

More information

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Adaptive fuzzy observer and robust controller for a 2-DOF robot arm S. Bindiganavile Nagesh Zs. Lendek A. A. Khalate R. Babuška Delft University of Technology, Technical University of Cluj-Napoca FUZZ-IEEE-2012

More information

Engineering Tripos Part IIB Nonlinear Systems and Control. Handout 4: Circle and Popov Criteria

Engineering Tripos Part IIB Nonlinear Systems and Control. Handout 4: Circle and Popov Criteria Engineering Tripos Part IIB Module 4F2 Nonlinear Systems and Control Handout 4: Circle and Popov Criteria 1 Introduction The stability criteria discussed in these notes are reminiscent of the Nyquist criterion

More information

Output Stabilization of Time-Varying Input Delay System using Interval Observer Technique

Output Stabilization of Time-Varying Input Delay System using Interval Observer Technique Output Stabilization of Time-Varying Input Delay System using Interval Observer Technique Andrey Polyakov a, Denis Efimov a, Wilfrid Perruquetti a,b and Jean-Pierre Richard a,b a - NON-A, INRIA Lille Nord-Europe

More information

From the multivariable Nyquist plot, if 1/k < or 1/k > 5.36, or 0.19 < k < 2.7, then the closed loop system is stable.

From the multivariable Nyquist plot, if 1/k < or 1/k > 5.36, or 0.19 < k < 2.7, then the closed loop system is stable. 1. (a) Multivariable Nyquist Plot (diagonal uncertainty case) dash=neg freq solid=pos freq 2.5 2 1.5 1.5 Im -.5-1 -1.5-2 -2.5 1 2 3 4 5 Re From the multivariable Nyquist plot, if 1/k < -.37 or 1/k > 5.36,

More information

Robust Fixed-Structure Controller Design of Electric Power Steering Systems

Robust Fixed-Structure Controller Design of Electric Power Steering Systems 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 1-1, 9 WeA13.5 Robust Fixed-Structure Controller Design of Electric Power Steering Systems Ahmed H. El-Shaer, Sumio Sugita

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

Multiobjective H 2 /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher

Multiobjective H 2 /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher Multiobjective H /H /impulse-to-peak synthesis: Application to the control of an aerospace launcher D. Arzelier, D. Peaucelle LAAS-CNRS, 7 Avenue du Colonel Roche, 3 77 Toulouse, Cedex 4, France emails:

More information

Linear Matrix Inequality (LMI)

Linear Matrix Inequality (LMI) Linear Matrix Inequality (LMI) A linear matrix inequality is an expression of the form where F (x) F 0 + x 1 F 1 + + x m F m > 0 (1) x = (x 1,, x m ) R m, F 0,, F m are real symmetric matrices, and the

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 4: LMIs for State-Space Internal Stability Solving the Equations Find the output given the input State-Space:

More information

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting Robust Anti-Windup Controller Synthesis: A Mixed H /H Setting ADDISON RIOS-BOLIVAR Departamento de Sistemas de Control Universidad de Los Andes Av. ulio Febres, Mérida 511 VENEZUELA SOLBEN GODOY Postgrado

More information

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER

CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers

More information

TWO PORT NETWORKS Introduction: A port is normally referred to a pair of terminals of a network through which we can have access to network either for a source for measuring an output We have already seen

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

More information

Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection

Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection S.C. Jugade, Debasattam Pal, Rachel K. Kalaimani and Madhu N. Belur Department of Electrical Engineering Indian Institute

More information

Problem Set 4 Solution 1

Problem Set 4 Solution 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback

More information

MCE493/593 and EEC492/592 Prosthesis Design and Control

MCE493/593 and EEC492/592 Prosthesis Design and Control MCE493/593 and EEC492/592 Prosthesis Design and Control Control Systems Part 3 Hanz Richter Department of Mechanical Engineering 2014 1 / 25 Electrical Impedance Electrical impedance: generalization of

More information

On-off Control: Audio Applications

On-off Control: Audio Applications On-off Control: Audio Applications Graham C. Goodwin Day 4: Lecture 3 16th September 2004 International Summer School Grenoble, France 1 Background In this lecture we address the issue of control when

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

Dissipative Systems Analysis and Control

Dissipative Systems Analysis and Control Bernard Brogliato, Rogelio Lozano, Bernhard Maschke and Olav Egeland Dissipative Systems Analysis and Control Theory and Applications 2nd Edition With 94 Figures 4y Sprin er 1 Introduction 1 1.1 Example

More information

LMI based output-feedback controllers: γ-optimal versus linear quadratic.

LMI based output-feedback controllers: γ-optimal versus linear quadratic. Proceedings of the 17th World Congress he International Federation of Automatic Control Seoul Korea July 6-11 28 LMI based output-feedback controllers: γ-optimal versus linear quadratic. Dmitry V. Balandin

More information

Modeling and System Identification for a DC Servo

Modeling and System Identification for a DC Servo Modeling and System Identification for a DC Servo Kevin M. Passino and Nicanor Quijano Dept. Electrical Engineering, The Ohio State University 5 Neil Avenue, Columbus, OH 3-7 March 7, Abstract First, you

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

FRICTION AND FRICTION COMPENSATION IN THE FURUTA PENDULUM

FRICTION AND FRICTION COMPENSATION IN THE FURUTA PENDULUM FRICTION AND FRICTION COMPENSATION IN THE FURUTA PENDULUM M. Gäfvert, J. Svensson and K. J. Åström Department of Automatic Control Lund Institute of Technology, Box 8, S- Lund, Sweden Fax:+4646388,E-mail:{magnus,kja}@control.lth.se

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Further Results on Model Structure Validation for Closed Loop System Identification

Further Results on Model Structure Validation for Closed Loop System Identification Advances in Wireless Communications and etworks 7; 3(5: 57-66 http://www.sciencepublishinggroup.com/j/awcn doi:.648/j.awcn.735. Further esults on Model Structure Validation for Closed Loop System Identification

More information

MAS107 Control Theory Exam Solutions 2008

MAS107 Control Theory Exam Solutions 2008 MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

Design of iterative learning control algorithms using a repetitive process setting and the generalized KYP lemma

Design of iterative learning control algorithms using a repetitive process setting and the generalized KYP lemma Design of iterative learning control algorithms using a repetitive process setting and the generalized KYP lemma 22 th July 2015, Dalian, China Wojciech Paszke Institute of Control and Computation Engineering,

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster. Lecture 8 Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

A frequency weighted approach to robust fault reconstruction

A frequency weighted approach to robust fault reconstruction A frequency weighted approach to robust fault reconstruction C.P. Tan and F. Crusca and M. Aldeen School of Engineering Monash University Malaysia 2 Jalan Kolej 4615 Petaling Jaya, Malaysia Email: tan.chee.pin@eng.monash.edu.my

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

ROBUST CONTROL OF AN A-DOUBLE WITH ACTIVE DOLLY BASED ON STATIC OUTPUT FEEDBACK AND DYNAMIC FEED-FORWARD

ROBUST CONTROL OF AN A-DOUBLE WITH ACTIVE DOLLY BASED ON STATIC OUTPUT FEEDBACK AND DYNAMIC FEED-FORWARD ROBUST CONTROL OF AN A-DOUBLE WITH ACTIVE DOLLY BASED ON STATIC OUTPUT FEEDBACK AND DYNAMIC FEED-FORWARD Maliheh Sadeghi Kati Hakan Köroğlu Jonas Fredriksson Chalmers University of Technology, Dept. Signals

More information

Lecture 9 Nonlinear Control Design

Lecture 9 Nonlinear Control Design Lecture 9 Nonlinear Control Design Exact-linearization Lyapunov-based design Lab 2 Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Course Outline

More information

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Passivity: Memoryless Functions y y y u u u (a) (b) (c) Passive Passive Not passive y = h(t,u), h [0, ] Vector case: y = h(t,u), h T =

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

THE DIFFICULTY in implementing a teleoperation system

THE DIFFICULTY in implementing a teleoperation system 776 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 4, AUGUST 2007 Quantitative Comparison of Bilateral Teleoperation Systems Using µ-synthesis Keehoon Kim, Member, IEEE, M.CenkÇavuşoğlu, Senior Member, IEEE,

More information

A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis

A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis A Riccati-Genetic Algorithms Approach To Fixed-Structure Controller Synthesis A Farag and H Werner Technical University Hamburg-Harburg, Institute of Control Engineering afarag@tu-harburgde, hwerner@tu-harburgde

More information

Iterative Learning Control Analysis and Design I

Iterative Learning Control Analysis and Design I Iterative Learning Control Analysis and Design I Electronics and Computer Science University of Southampton Southampton, SO17 1BJ, UK etar@ecs.soton.ac.uk http://www.ecs.soton.ac.uk/ Contents Basics Representations

More information

Fixed Order H Controller for Quarter Car Active Suspension System

Fixed Order H Controller for Quarter Car Active Suspension System Fixed Order H Controller for Quarter Car Active Suspension System B. Erol, A. Delibaşı Abstract This paper presents an LMI based fixed-order controller design for quarter car active suspension system in

More information

Robust Semiglobal Nonlinear Output Regulation The case of systems in triangular form

Robust Semiglobal Nonlinear Output Regulation The case of systems in triangular form Robust Semiglobal Nonlinear Output Regulation The case of systems in triangular form Andrea Serrani Department of Electrical and Computer Engineering Collaborative Center for Control Sciences The Ohio

More information

Stabilisation of network controlled systems with a predictive approach

Stabilisation of network controlled systems with a predictive approach Stabilisation of network controlled systems with a predictive approach Emmanuel Witrant with D. Georges, C. Canudas de Wit and O. Sename Laboratoire d Automatique de Grenoble, UMR CNRS 5528 ENSIEG-INPG,

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

Nyquist Stability Criteria

Nyquist Stability Criteria Nyquist Stability Criteria Dr. Bishakh Bhattacharya h Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD This Lecture Contains Introduction to

More information

MAE 143B - Homework 8 Solutions

MAE 143B - Homework 8 Solutions MAE 43B - Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system

More information

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s 321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify

More information

Lecture Note #6 (Chap.10)

Lecture Note #6 (Chap.10) System Modeling and Identification Lecture Note #6 (Chap.) CBE 7 Korea University Prof. Dae Ryook Yang Chap. Model Approximation Model approximation Simplification, approximation and order reduction of

More information

Impedance Interactions: An

Impedance Interactions: An 87 Chapter 5 Impedance Interactions: An Overview 5.1 Introduction In this chapter, interconnections among DC power distribution subsystems are analyzed, and an investigation is launched into how the performance

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 21: Optimal Output Feedback Control connection is called the (lower) star-product of P and Optimal Output Feedback ansformation (LFT).

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Adaptive fuzzy observer and robust controller for a -DOF robot arm S. Bindiganavile Nagesh, Zs. Lendek, A.A. Khalate, R. Babuška Delft University of Technology, Mekelweg, 8 CD Delft, The Netherlands (email:

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

Lecture 8. Applications

Lecture 8. Applications Lecture 8. Applications Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 8, 205 / 3 Logistics hw7 due this Wed, May 20 do an easy problem or CYOA hw8 (design problem) will

More information

Stability and Robustness 1

Stability and Robustness 1 Lecture 2 Stability and Robustness This lecture discusses the role of stability in feedback design. The emphasis is notonyes/notestsforstability,butratheronhowtomeasurethedistanceto instability. The small

More information

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

EE363 homework 8 solutions

EE363 homework 8 solutions EE363 Prof. S. Boyd EE363 homework 8 solutions 1. Lyapunov condition for passivity. The system described by ẋ = f(x, u), y = g(x), x() =, with u(t), y(t) R m, is said to be passive if t u(τ) T y(τ) dτ

More information

Analysis of Discrete-Time Systems

Analysis of Discrete-Time Systems TU Berlin Discrete-Time Control Systems 1 Analysis of Discrete-Time Systems Overview Stability Sensitivity and Robustness Controllability, Reachability, Observability, and Detectabiliy TU Berlin Discrete-Time

More information

Network Synthesis Part I

Network Synthesis Part I Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n2.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE References Definition Network Functions

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Robust discrete time control

Robust discrete time control Robust discrete time control I.D. Landau Emeritus Research Director at C.N.R. Laboratoire d utomatique de Grenoble, INPG/CNR, France pril 2004, Valencia I.D. Landau course on robust discrete time control,

More information

and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs

and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs Nasser Mohamad Zadeh Electrical Engineering Department Tarbiat Modares University Tehran, Iran mohamadzadeh@ieee.org Ramin Amirifar Electrical

More information

Theory of Robust Control

Theory of Robust Control Theory of Robust Control Carsten Scherer Mathematical Systems Theory Department of Mathematics University of Stuttgart Germany Contents 1 Introduction to Basic Concepts 6 1.1 Systems and Signals..............................

More information

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2 journal of optimization theory and applications: Vol. 127 No. 2 pp. 411 423 November 2005 ( 2005) DOI: 10.1007/s10957-005-6552-7 Convex Optimization Approach to Dynamic Output Feedback Control for Delay

More information

CDS Solutions to the Midterm Exam

CDS Solutions to the Midterm Exam CDS 22 - Solutions to the Midterm Exam Instructor: Danielle C. Tarraf November 6, 27 Problem (a) Recall that the H norm of a transfer function is time-delay invariant. Hence: ( ) Ĝ(s) = s + a = sup /2

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) D. Linear Matrix Inequality D.1 Convex Optimization D.2 Linear Matrix Inequality(LMI) D.3 Control Design and LMI Formulation

More information

Lecture Note #6 (Chap.10)

Lecture Note #6 (Chap.10) System Modeling and Identification Lecture Note #6 (Chap.) CBE 7 Korea University Prof. Dae Ryoo Yang Chap. Model Approximation Model approximation Simplification, approximation and order reduction of

More information

Nonlinear Control. Nonlinear Control Lecture # 18 Stability of Feedback Systems

Nonlinear Control. Nonlinear Control Lecture # 18 Stability of Feedback Systems Nonlinear Control Lecture # 18 Stability of Feedback Systems Absolute Stability + r = 0 u y G(s) ψ( ) Definition 7.1 The system is absolutely stable if the origin is globally uniformly asymptotically stable

More information

Module 5: Design of Sampled Data Control Systems Lecture Note 8

Module 5: Design of Sampled Data Control Systems Lecture Note 8 Module 5: Design of Sampled Data Control Systems Lecture Note 8 Lag-lead Compensator When a single lead or lag compensator cannot guarantee the specified design criteria, a laglead compensator is used.

More information