Dissipative Systems Analysis and Control

Size: px
Start display at page:

Download "Dissipative Systems Analysis and Control"

Transcription

1 Bernard Brogliato, Rogelio Lozano, Bernhard Maschke and Olav Egeland Dissipative Systems Analysis and Control Theory and Applications 2nd Edition With 94 Figures 4y Sprin er

2 1 Introduction Example 1: System with Mass Spring and Damper Example 2: RLC Circuit Example 3: A Mass with a PD Controller Example 4: Adaptive Control 6 2 Positive Real Systems Dynamical System State-space Representation Definitions Interconnections of Passive Systems Linear Systems Passivity of the PID Controllers Stability of a Passive Feedback Interconnection Mechanical Analogs for PD Controllers Multivariable Linear Systems The Scattering Formulation Impedance Matching Feedback Loop Bounded Real and Positive Real Transfer Functions Examples Mechanical Resonances Systems with Several Resonances Two Motors Driving an Elastic Load Strictly Positive Real (SPR) Systems Frequency Domain Conditions for a Transfer Function to be SPR Necessary Conditions for H{s) to be PR (SPR) Tests for SPRness Interconnection of Positive Real Systems Special Cases of Positive Real Systems Applications 62

3 viii SPR and Adaptive Control Adaptive Output Feedback Design of SPR Systems 65 3 Kaiman-Yakubovich-Popov Lemma The Positive Real Lemma PR Transfer Functions A Digression to Optimal Control Duality Positive Real Lemma for SPR Systems Descriptor Variable Systems Weakly SPR Systems and the KYP Lemma KYP Lemma for Non-minimal Systems Spectral Factors Sign-controllability State Space Decomposition A Relaxed KYP Lemma for SPR Functions with Stabilizable Realization SPR Problem with Observers The Feedback KYP Lemma Time-varying Systems Interconnection of PR Systems Positive Realness and Optimal Control General Considerations Least Squares Optimal Control The Popov Function and the KYP Lemma LMI A Recapitulating Theorem On the Design of Passive LQG Controllers Summary A Digression on Semidefinite Programming Problems The Lur'e Problem (Absolute Stability) Introduction Well-posedness of ODEs Aizerman's and Kalman's Conjectures Multivalued Nonlinearities Dissipative Evolution Variational Inequalities The Circle Criterion Loop Transformations The Popov Criterion Discrete-time Systems The KYP Lemma The Tsypkin Criterion Discretization of PR Systems 175

4 ix 4 Dissipative Systems Normed Spaces C p Norms Relationships Between C\, 2 and L^ Spaces Review of Some Properties of C p Signals Example of Applications of the Properties of p Functions in Adaptive Control Linear Maps Induced Norms Properties of Induced Norms Extended Spaces Gain of an Operator Small Gain Theorem Dissipative Systems Definitions The Signification of ß Storage Functions (Available, Required Supply) Examples Regularity of the Storage Functions Nonlinear KYP Lemma A Particular Case Nonlinear KYP Lemma in the General Case Time-varying Systems Nonlinear-in-the-input Systems Dissipative Systems and Partial Differential Inequalities The linear invariant case The Nonlinear Case y = h(x) The Nonlinear Case y = h(x) + j(x)u Recapitulation Inverse Optimal Control Nonlinear Discrete-time Systems PR tangent System and dissipativity Infinite-dimensional Systems An Extension of the KYP Lemma The Wave Equation The Heat Equation Further Results Stability of Dissipative Systems Passivity Theorems One-channel Results Two-channel Results Lossless and WSPR Blocks Interconnection Large-scale Systems Positive Definiteness of Storage Functions 266

5 x 5.3 WSPR Does not Imply OSP Stabilization by Output Feedback Autonomous Systems Time-varying Nonlinear Systems Evolution Variational Inequalities Equivalence to a Passive System Cascaded Systems Input-to-State Stability (ISS) and Dissipativity Passivity of Linear Delay Systems Systems with State Delay Interconnection of Passive Systems Extension to a System with Distributed State Delay Absolute Stability Nonlinear Hoo Control Introduction Closed-loop Synthesis: Static State Feedback Closed-loop Synthesis: PR Dynamic Feedback Nonlinear H^ More on Finite-power-gain Systems Popov's Hyperstability Dissipative Physical Systems Lagrangian Control Systems Definition and Properties Simple Mechanical Systems Hamiltonian Control Systems Input-output Hamiltonian Systems Port Controlled Hamiltonian Systems Rigid Joint-Rigid Link Manipulators The Available Storage The Required Supply Flexible Joint-Rigid Link Manipulators The Available Storage The Required Supply A Bouncing System Including Actuator Dynamics Armature-controlled DC Motors Field-controlled DC Motors Passive Environment Systems with Holonomic Constraints Compliant Environment Nonsmooth Lagrangian Systems Systems with C Solutions Systems with BV Solutions 365

6 xi 7 Passivity-based Control Brief Historical Survey The Lagrange-Dirichlet Theorem Lyapunov Stability Asymptotic Lyapunov Stability Invertibility of the Lagrange-Dirichlet Theorem The Lagrange-Dirichlet Theorem for Nonsmooth Lagrangian Systems (BV Solutions) The Lagrange-Dirichlet Theorem for Nonsmooth Lagrangian Systems (C Solutions) Conclusion Rigid Joint-Rigid Link Systems: State Feedback PD Control PID Control More about Lyapunov Functions and the Passivity Theorem Extensions of the PD Controller for the Tracking Case Other Types of State Feedback Controllers Rigid Joint-Rigid Link: Position Feedback P + Observer Control The Paden and Panja + Observer Controller The Slotine and Li + Observer Controller Flexible Joint-Rigid Link: State Feedback Passivity-based Controller: The Lozano and Brogliato Scheme Other Globally Tracking Feedback Controllers Flexible Joint-Rigid Link: Output Feedback PD Control Motor Position Feedback Including Actuator Dynamics Armature-controlled DC Motors Field-controlled DC Motors Constrained Mechanical Systems Regulation with a Position PD Controller Holonomic Constraints Nonsmooth Lagrangian Systems Controlled Lagrangians Adaptive Control Lagrangian Systems Rigid Joint-Rigid Link Manipulators Flexible Joint-Rigid Link Manipulators: The Adaptive Lozano and Brogliato Algorithm Flexible Joint-Rigid Link Manipulators: The Backstepping Algorithm 452

7 xii 8.2 Linear Invariant Systems A Scalar Example Systems with Relative Degree r = Systems with Relative Degree r = Systems with Relative Degree r > Experimental Results Flexible Joint Manipulators Introduction Controller Design The Experimental Devices Experimental Results Conclusions Stabilization of the Inverted Pendulum Introduction System's Dynamics Stabilizing Control Law Simulation Results Experimental Results Conclusions 504 A Background Material 507 A.l Lyapunov Stability 507 A.l.l Autonomous Systems 507 A.l.2 Non-autonomous Systems 511 A.2 Differential Geometry Theory 515 A.2.1 Normal Form 517 A.2.2 Feedback Linearization 518 A.2.3 Stabilization of Feedback Linearizable Systems 519 A.2.4 Further Reading 520 A.3 Viscosity Solutions 520 A.4 Algebraic Riccati Equations 523 A.4.1 Reduced Riccati Equation for WSPR Systems 525 A.5 Some Useful Matrix Algebra 531 A.5.1 Results Useful for the KYP Lemma LMI 531 A.5.2 Inverse of Matrices 533 A.5.3 Jordan Chain 534 A.5.4 Auxiliary Lemmas for the KYP Lemma Proof 534 A.6 Well-posedness Results for State Delay Systems 537 References 539 Index 571

Passivity-based Control of Euler-Lagrange Systems

Passivity-based Control of Euler-Lagrange Systems Romeo Ortega, Antonio Loria, Per Johan Nicklasson and Hebertt Sira-Ramfrez Passivity-based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications Springer Contents

More information

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR Dissipativity M. Sami Fadali EBME Dept., UNR 1 Outline Differential storage functions. QSR Dissipativity. Algebraic conditions for dissipativity. Stability of dissipative systems. Feedback Interconnections

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

More information

Communications and Control Engineering

Communications and Control Engineering Communications and Control Engineering Published titles include: Stability and Stabilization of Infinite Dimensional Systems with Applications Zheng-Hua Luo, Bao-Zhu Guo and Omer Morgul Nonsmooth Mechanics

More information

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach

NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach NONLINEAR AND ADAPTIVE (INTELLIGENT) SYSTEMS MODELING, DESIGN, & CONTROL A Building Block Approach P.A. (Rama) Ramamoorthy Electrical & Computer Engineering and Comp. Science Dept., M.L. 30, University

More information

Mathematical Theory of Control Systems Design

Mathematical Theory of Control Systems Design Mathematical Theory of Control Systems Design by V. N. Afarias'ev, V. B. Kolmanovskii and V. R. Nosov Moscow University of Electronics and Mathematics, Moscow, Russia KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

Analysis and Control of Multi-Robot Systems. Elements of Port-Hamiltonian Modeling

Analysis and Control of Multi-Robot Systems. Elements of Port-Hamiltonian Modeling Elective in Robotics 2014/2015 Analysis and Control of Multi-Robot Systems Elements of Port-Hamiltonian Modeling Dr. Paolo Robuffo Giordano CNRS, Irisa/Inria! Rennes, France Introduction to Port-Hamiltonian

More information

Mathematics for Control Theory

Mathematics for Control Theory Mathematics for Control Theory Outline of Dissipativity and Passivity Hanz Richter Mechanical Engineering Department Cleveland State University Reading materials Only as a reference: Charles A. Desoer

More information

Analysis and Synthesis of Single-Input Single-Output Control Systems

Analysis and Synthesis of Single-Input Single-Output Control Systems Lino Guzzella Analysis and Synthesis of Single-Input Single-Output Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Applied Nonlinear Control

Applied Nonlinear Control Applied Nonlinear Control JEAN-JACQUES E. SLOTINE Massachusetts Institute of Technology WEIPING LI Massachusetts Institute of Technology Pearson Education Prentice Hall International Inc. Upper Saddle

More information

João P. Hespanha. January 16, 2009

João P. Hespanha. January 16, 2009 LINEAR SYSTEMS THEORY João P. Hespanha January 16, 2009 Disclaimer: This is a draft and probably contains a few typos. Comments and information about typos are welcome. Please contact the author at hespanha@ece.ucsb.edu.

More information

Stability of Parameter Adaptation Algorithms. Big picture

Stability of Parameter Adaptation Algorithms. Big picture ME5895, UConn, Fall 215 Prof. Xu Chen Big picture For ˆθ (k + 1) = ˆθ (k) + [correction term] we haven t talked about whether ˆθ(k) will converge to the true value θ if k. We haven t even talked about

More information

IMPLICATIONS OF DISSIPATIVITY AND PASSIVITY IN THE DISCRETE-TIME SETTING. E.M. Navarro-López D. Cortés E. Fossas-Colet

IMPLICATIONS OF DISSIPATIVITY AND PASSIVITY IN THE DISCRETE-TIME SETTING. E.M. Navarro-López D. Cortés E. Fossas-Colet IMPLICATIONS OF DISSIPATIVITY AND PASSIVITY IN THE DISCRETE-TIME SETTING E.M. Navarro-López D. Cortés E. Fossas-Colet Universitat Politècnica de Catalunya, Institut d Organització i Control, Avda. Diagonal

More information

Neural Network Control of Robot Manipulators and Nonlinear Systems

Neural Network Control of Robot Manipulators and Nonlinear Systems Neural Network Control of Robot Manipulators and Nonlinear Systems F.L. LEWIS Automation and Robotics Research Institute The University of Texas at Arlington S. JAG ANNATHAN Systems and Controls Research

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Copyrighted Material. 1.1 Large-Scale Interconnected Dynamical Systems

Copyrighted Material. 1.1 Large-Scale Interconnected Dynamical Systems Chapter One Introduction 1.1 Large-Scale Interconnected Dynamical Systems Modern complex dynamical systems 1 are highly interconnected and mutually interdependent, both physically and through a multitude

More information

Semidefinite Programming Duality and Linear Time-invariant Systems

Semidefinite Programming Duality and Linear Time-invariant Systems Semidefinite Programming Duality and Linear Time-invariant Systems Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 2 July 2004 Workshop on Linear Matrix Inequalities in Control LAAS-CNRS,

More information

Balancing of Lossless and Passive Systems

Balancing of Lossless and Passive Systems Balancing of Lossless and Passive Systems Arjan van der Schaft Abstract Different balancing techniques are applied to lossless nonlinear systems, with open-loop balancing applied to their scattering representation.

More information

EML5311 Lyapunov Stability & Robust Control Design

EML5311 Lyapunov Stability & Robust Control Design EML5311 Lyapunov Stability & Robust Control Design 1 Lyapunov Stability criterion In Robust control design of nonlinear uncertain systems, stability theory plays an important role in engineering systems.

More information

Introduction to Nonlinear Control Lecture # 4 Passivity

Introduction to Nonlinear Control Lecture # 4 Passivity p. 1/6 Introduction to Nonlinear Control Lecture # 4 Passivity È p. 2/6 Memoryless Functions ¹ y È Ý Ù È È È È u (b) µ power inflow = uy Resistor is passive if uy 0 p. 3/6 y y y u u u (a) (b) (c) Passive

More information

Digital Control Engineering Analysis and Design

Digital Control Engineering Analysis and Design Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is

More information

Dissipative Systems Analysis and Control, Theory and Applications: Addendum/Erratum

Dissipative Systems Analysis and Control, Theory and Applications: Addendum/Erratum Dissipative Systems Analysis and Control, Theory and Applications: Addendum/Erratum Bernard Brogliato To cite this version: Bernard Brogliato. Dissipative Systems Analysis and Control, Theory and Applications:

More information

Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein

Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein Matrix Mathematics Theory, Facts, and Formulas with Application to Linear Systems Theory Dennis S. Bernstein PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Contents Special Symbols xv Conventions, Notation,

More information

Control Systems. LMIs in. Guang-Ren Duan. Analysis, Design and Applications. Hai-Hua Yu. CRC Press. Taylor & Francis Croup

Control Systems. LMIs in. Guang-Ren Duan. Analysis, Design and Applications. Hai-Hua Yu. CRC Press. Taylor & Francis Croup LMIs in Control Systems Analysis, Design and Applications Guang-Ren Duan Hai-Hua Yu CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Model-based Fault Diagnosis Techniques Design Schemes, Algorithms, and Tools

Model-based Fault Diagnosis Techniques Design Schemes, Algorithms, and Tools Steven X. Ding Model-based Fault Diagnosis Techniques Design Schemes, Algorithms, and Tools Springer Notation XIX Part I Introduction, basic concepts and preliminaries 1 Introduction 3 1.1 Basic concepts

More information

Control of Robotic Manipulators with Input/Output Delays

Control of Robotic Manipulators with Input/Output Delays 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009 WeC20.5 Control of Robotic Manipulators with Input/Output Delays Nikhil Chopra Abstract Input/output delays

More information

We are devoted to advance in the study of the behaviour of nonlinear discrete-time systems by means of its energy properties.

We are devoted to advance in the study of the behaviour of nonlinear discrete-time systems by means of its energy properties. Chapter 1 Introduction In this chapter, the reasons for the dissipativity and passivity-related properties to be studied in nonlinear discrete-time systems will be described. The new contributions and

More information

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach Dynamic Systems Modeling and Analysis Hung V. Vu California State University, Long Beach Ramin S. Esfandiari California State University, Long Beach THE McGRAW-HILL COMPANIES, INC. New York St. Louis San

More information

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster. Lecture 8 Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture

More information

Predictive Control - Computer Exercise 1

Predictive Control - Computer Exercise 1 Predictive Control - Computer Exercise 1 Marcus Greiff January 22, 2018 This is a simulation exercise in FRTN15 Predictive Control. It should give you an introduction to adaptive control, in particular

More information

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

More information

Outline. Input to state Stability. Nonlinear Realization. Recall: _ Space. _ Space: Space of all piecewise continuous functions

Outline. Input to state Stability. Nonlinear Realization. Recall: _ Space. _ Space: Space of all piecewise continuous functions Outline Input to state Stability Motivation for Input to State Stability (ISS) ISS Lyapunov function. Stability theorems. M. Sami Fadali Professor EBME University of Nevada, Reno 1 2 Recall: _ Space _

More information

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402 Georgia Institute of Technology Nonlinear Controls Theory Primer ME 640 Ajeya Karajgikar April 6, 011 Definition Stability (Lyapunov): The equilibrium state x = 0 is said to be stable if, for any R > 0,

More information

Antiwindup for Stable Linear Systems With Input Saturation: An LMI-Based Synthesis

Antiwindup for Stable Linear Systems With Input Saturation: An LMI-Based Synthesis IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 9, SEPTEMBER 2003 1509 Antiwindup for Stable Linear Systems With Input Saturation: An LMI-Based Synthesis Gene Grimm, Member, IEEE, Jay Hatfield, Ian

More information

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Passivity: Memoryless Functions y y y u u u (a) (b) (c) Passive Passive Not passive y = h(t,u), h [0, ] Vector case: y = h(t,u), h T =

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

Modeling and Simulation for Automatic Control

Modeling and Simulation for Automatic Control Modeling and Simulation for Automatic Control Olav Egeland and Jan Tommy Gravdahl Norwegian University of Science and Technology Trondheim, Norway MARINE CYBERNETICS Г~Т.! " " http://www.mannecybemetics.com

More information

Lecture 5 Input output stability

Lecture 5 Input output stability Lecture 5 Input output stability or How to make a circle out of the point 1+0i, and different ways to stay away from it... k 2 yf(y) r G(s) y k 1 y y 1 k 1 1 k 2 f( ) G(iω) Course Outline Lecture 1-3 Lecture

More information

Chapter One. Introduction

Chapter One. Introduction Chapter One Introduction A system is a combination of components or parts that is perceived as a single entity. The parts making up the system may be clearly or vaguely defined. These parts are related

More information

Stabilization and Passivity-Based Control

Stabilization and Passivity-Based Control DISC Systems and Control Theory of Nonlinear Systems, 2010 1 Stabilization and Passivity-Based Control Lecture 8 Nonlinear Dynamical Control Systems, Chapter 10, plus handout from R. Sepulchre, Constructive

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007 Robotics & Automation Lecture 25 Dynamics of Constrained Systems, Dynamic Control John T. Wen April 26, 2007 Last Time Order N Forward Dynamics (3-sweep algorithm) Factorization perspective: causal-anticausal

More information

On Positive Real Lemma for Non-minimal Realization Systems

On Positive Real Lemma for Non-minimal Realization Systems Proceedings of the 17th World Congress The International Federation of Automatic Control On Positive Real Lemma for Non-minimal Realization Systems Sadaaki Kunimatsu Kim Sang-Hoon Takao Fujii Mitsuaki

More information

MCE493/593 and EEC492/592 Prosthesis Design and Control

MCE493/593 and EEC492/592 Prosthesis Design and Control MCE493/593 and EEC492/592 Prosthesis Design and Control Control Systems Part 3 Hanz Richter Department of Mechanical Engineering 2014 1 / 25 Electrical Impedance Electrical impedance: generalization of

More information

Engineering Tripos Part IIB Nonlinear Systems and Control. Handout 4: Circle and Popov Criteria

Engineering Tripos Part IIB Nonlinear Systems and Control. Handout 4: Circle and Popov Criteria Engineering Tripos Part IIB Module 4F2 Nonlinear Systems and Control Handout 4: Circle and Popov Criteria 1 Introduction The stability criteria discussed in these notes are reminiscent of the Nyquist criterion

More information

CONTENTS. Preface Preliminaries 1

CONTENTS. Preface Preliminaries 1 Preface xi Preliminaries 1 1 TOOLS FOR ANALYSIS 5 1.1 The Completeness Axiom and Some of Its Consequences 5 1.2 The Distribution of the Integers and the Rational Numbers 12 1.3 Inequalities and Identities

More information

Passivity-Based Control of an Overhead Travelling Crane

Passivity-Based Control of an Overhead Travelling Crane Proceedings of the 17th World Congress The International Federation of Automatic Control Passivity-Based Control of an Overhead Travelling Crane Harald Aschemann Chair of Mechatronics University of Rostock

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

Multi-objective Controller Design:

Multi-objective Controller Design: Multi-objective Controller Design: Evolutionary algorithms and Bilinear Matrix Inequalities for a passive suspension A. Molina-Cristobal*, C. Papageorgiou**, G. T. Parks*, M. C. Smith**, P. J. Clarkson*

More information

On the PDEs arising in IDA-PBC

On the PDEs arising in IDA-PBC On the PDEs arising in IDA-PBC JÁ Acosta and A Astolfi Abstract The main stumbling block of most nonlinear control methods is the necessity to solve nonlinear Partial Differential Equations In this paper

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Pierre Bigot 2 and Luiz C. G. de Souza 3

Pierre Bigot 2 and Luiz C. G. de Souza 3 INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014 Investigation of the State Dependent Riccati Equation (SDRE) adaptive control advantages for controlling non-linear

More information

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E.

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E. Stephen Boyd (E. Feron :::) System Analysis and Synthesis Control Linear Matrix Inequalities via Engineering Department, Stanford University Electrical June 1993 ACC, 1 linear matrix inequalities (LMIs)

More information

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications

The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications MAX PLANCK INSTITUTE Elgersburg Workshop Elgersburg February 11-14, 2013 The Kalman-Yakubovich-Popov Lemma for Differential-Algebraic Equations with Applications Timo Reis 1 Matthias Voigt 2 1 Department

More information

Control Design Techniques in Power Electronics Devices

Control Design Techniques in Power Electronics Devices Hebertt Sira-Ramfrez and Ramön Silva-Ortigoza Control Design Techniques in Power Electronics Devices With 202 Figures < } Spri inger g< Contents 1 Introduction 1 Part I Modelling 2 Modelling of DC-to-DC

More information

(Refer Slide Time: 00:01:30 min)

(Refer Slide Time: 00:01:30 min) Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various

More information

A new passivity property of linear RLC circuits with application to Power Shaping Stabilization

A new passivity property of linear RLC circuits with application to Power Shaping Stabilization A new passivity property of linear RLC circuits with application to Power Shaping Stabilization Eloísa García Canseco and Romeo Ortega Abstract In this paper we characterize the linear RLC networks for

More information

Exponential Controller for Robot Manipulators

Exponential Controller for Robot Manipulators Exponential Controller for Robot Manipulators Fernando Reyes Benemérita Universidad Autónoma de Puebla Grupo de Robótica de la Facultad de Ciencias de la Electrónica Apartado Postal 542, Puebla 7200, México

More information

Automatic Control Systems. -Lecture Note 15-

Automatic Control Systems. -Lecture Note 15- -Lecture Note 15- Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Cost-effective ii)

More information

Passive Control of Overhead Cranes

Passive Control of Overhead Cranes Passive Control of Overhead Cranes HASAN ALLI TARUNRAJ SINGH Mechanical and Aerospace Engineering, SUNY at Buffalo, Buffalo, New York 14260, USA (Received 18 February 1997; accepted 10 September 1997)

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

EN Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015

EN Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015 EN530.678 Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015 Prof: Marin Kobilarov 0.1 Model prerequisites Consider ẋ = f(t, x). We will make the following basic assumptions

More information

Control Systems Theory and Applications for Linear Repetitive Processes

Control Systems Theory and Applications for Linear Repetitive Processes Eric Rogers, Krzysztof Galkowski, David H. Owens Control Systems Theory and Applications for Linear Repetitive Processes Springer Contents 1 Examples and Representations 1 1.1 Examples and Control Problems

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 6 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QESTION BANK ME-Power Systems Engineering I st Year SEMESTER I IN55- SYSTEM THEORY Regulation

More information

POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS

POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS Abstract This letter discusses the differences in-between positive realness

More information

Introduction to Control of port-hamiltonian systems - Stabilization of PHS

Introduction to Control of port-hamiltonian systems - Stabilization of PHS Introduction to Control of port-hamiltonian systems - Stabilization of PHS - Doctoral course, Université Franche-Comté, Besançon, France Héctor Ramírez and Yann Le Gorrec AS2M, FEMTO-ST UMR CNRS 6174,

More information

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

2006 Fall. G(s) y = Cx + Du

2006 Fall. G(s) y = Cx + Du 1 Class Handout: Chapter 7 Frequency Domain Analysis of Feedback Systems 2006 Fall Frequency domain analysis of a dynamic system is very useful because it provides much physical insight, has graphical

More information

c 2009 by Kwang Ki Kim. All rights reserved.

c 2009 by Kwang Ki Kim. All rights reserved. c 29 by Kwang Ki Kim. All rights reserved. ROBUST CONTROL FOR SYSTEMS WITH SECTOR-BOUNDED, SLOPE-RESTRICTED, AND ODD MONOTONIC NONLINEARITIES USING LINEAR MATRIX INEQUALITIES BY KWANG KI KIM B.S., Yonsei

More information

APPLIED NONLINEAR CONTROL. Jean-Jacques E Slotine WeipingLi

APPLIED NONLINEAR CONTROL. Jean-Jacques E Slotine WeipingLi APPLIED NONLINEAR CONTROL Jean-Jacques E Slotine WeipingLi Applied Nonlinear Control JEAN-JACQUES E. SLOTlNE Massachusetts Institute of Technology WEIPING LI Massachusetts Institute of Technologv Prentice

More information

Trigonometric Saturated Controller for Robot Manipulators

Trigonometric Saturated Controller for Robot Manipulators Trigonometric Saturated Controller for Robot Manipulators FERNANDO REYES, JORGE BARAHONA AND EDUARDO ESPINOSA Grupo de Robótica de la Facultad de Ciencias de la Electrónica Benemérita Universidad Autónoma

More information

u e G x = y linear convolution operator. In the time domain, the equation (2) becomes y(t) = (Ge)(t) = (G e)(t) = Z t G(t )e()d; and in either domains

u e G x = y linear convolution operator. In the time domain, the equation (2) becomes y(t) = (Ge)(t) = (G e)(t) = Z t G(t )e()d; and in either domains Input-Output Stability of Recurrent Neural Networks with Delays using Circle Criteria Jochen J. Steil and Helge Ritter, University of Bielefeld, Faculty of Technology, Neuroinformatics Group, P.O.-Box

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller

More information

Lecture «Robot Dynamics»: Dynamics and Control

Lecture «Robot Dynamics»: Dynamics and Control Lecture «Robot Dynamics»: Dynamics and Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

TTK4150 Nonlinear Control Systems Solution 6 Part 2

TTK4150 Nonlinear Control Systems Solution 6 Part 2 TTK4150 Nonlinear Control Systems Solution 6 Part 2 Department of Engineering Cybernetics Norwegian University of Science and Technology Fall 2003 Solution 1 Thesystemisgivenby φ = R (φ) ω and J 1 ω 1

More information

From Convex Optimization to Linear Matrix Inequalities

From Convex Optimization to Linear Matrix Inequalities Dep. of Information Engineering University of Pisa (Italy) From Convex Optimization to Linear Matrix Inequalities eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain

More information

THIS paper studies the input design problem in system identification.

THIS paper studies the input design problem in system identification. 1534 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 10, OCTOBER 2005 Input Design Via LMIs Admitting Frequency-Wise Model Specifications in Confidence Regions Henrik Jansson Håkan Hjalmarsson, Member,

More information

Self-Excited Vibration

Self-Excited Vibration Wenjing Ding Self-Excited Vibration Theory, Paradigms, and Research Methods With 228 figures Ö Springer Contents Chapter 1 Introduction 1 1.1 Main Features of Self-Excited Vibration 1 1.1.1 Natural Vibration

More information

Nonlinear Control Lecture 7: Passivity

Nonlinear Control Lecture 7: Passivity Nonlinear Control Lecture 7: Passivity Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Nonlinear Control Lecture 7 1/26 Passivity

More information

A Backstepping control strategy for constrained tendon driven robotic finger

A Backstepping control strategy for constrained tendon driven robotic finger A Backstepping control strategy for constrained tendon driven robotic finger Kunal Sanjay Narkhede 1, Aashay Anil Bhise 2, IA Sainul 3, Sankha Deb 4 1,2,4 Department of Mechanical Engineering, 3 Advanced

More information

Observer Design for a Flexible Robot Arm with a Tip Load

Observer Design for a Flexible Robot Arm with a Tip Load 5 American Control Conference June 8-, 5. Portland, OR, USA WeC7.6 Observer Design for a Flexible Robot Arm with a Tip Load Tu Duc Nguyen and Olav Egeland Abstract In this paper, we consider the observer

More information

Control of Robotic Manipulators

Control of Robotic Manipulators Control of Robotic Manipulators Set Point Control Technique 1: Joint PD Control Joint torque Joint position error Joint velocity error Why 0? Equivalent to adding a virtual spring and damper to the joints

More information

Modeling. Transition between the TF to SS and SS to TF will also be discussed.

Modeling. Transition between the TF to SS and SS to TF will also be discussed. Modeling This lecture we will consentrate on how to do system modeling based on two commonly used techniques In frequency domain using Transfer Function (TF) representation In time domain via using State

More information

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION henrion

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION  henrion GRADUATE COURSE ON POLYNOMIAL METHODS FOR ROBUST CONTROL PART IV.1 ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES Didier HENRION www.laas.fr/ henrion henrion@laas.fr Airbus assembly

More information

Research Article Repetitive Processes Based Iterative Learning Control Designed by LMIs

Research Article Repetitive Processes Based Iterative Learning Control Designed by LMIs International Scholarly Research Network ISRN Applied Mathematics Volume 212, Article ID 365927, 18 pages doi:1.542/212/365927 Research Article Repetitive Processes Based Iterative Learning Control Designed

More information

A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators

A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators des FA 4.13 Steuerung und Regelung von Robotern A Physically-Based Fault Detection and Isolation Method and Its Uses in Robot Manipulators Alessandro De Luca Dipartimento di Informatica e Sistemistica

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 4

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 4 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 4 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 12, 2012 Andre Tkacenko

More information

AN OVERVIEW OF MODEL REDUCTION TECHNIQUES APPLIED TO LARGE-SCALE STRUCTURAL DYNAMICS AND CONTROL MOTIVATING EXAMPLE INVERTED PENDULUM

AN OVERVIEW OF MODEL REDUCTION TECHNIQUES APPLIED TO LARGE-SCALE STRUCTURAL DYNAMICS AND CONTROL MOTIVATING EXAMPLE INVERTED PENDULUM Controls Lab AN OVERVIEW OF MODEL REDUCTION TECHNIQUES APPLIED TO LARGE-SCALE STRUCTURAL DYNAMICS AND CONTROL Eduardo Gildin (UT ICES and Rice Univ.) with Thanos Antoulas (Rice ECE) Danny Sorensen (Rice

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations Martino Bardi Italo Capuzzo-Dolcetta Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations Birkhauser Boston Basel Berlin Contents Preface Basic notations xi xv Chapter I. Outline

More information

Output tracking control of a exible robot arm

Output tracking control of a exible robot arm Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 12-15, 25 WeB12.4 Output tracking control of a exible robot arm Tu Duc Nguyen

More information

Classes of Linear Operators Vol. I

Classes of Linear Operators Vol. I Classes of Linear Operators Vol. I Israel Gohberg Seymour Goldberg Marinus A. Kaashoek Birkhäuser Verlag Basel Boston Berlin TABLE OF CONTENTS VOLUME I Preface Table of Contents of Volume I Table of Contents

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION CONTENTS VOLUME VII

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION CONTENTS VOLUME VII CONTENTS VOLUME VII Control of Linear Multivariable Systems 1 Katsuhisa Furuta,Tokyo Denki University, School of Science and Engineering, Ishizaka, Hatoyama, Saitama, Japan 1. Linear Multivariable Systems

More information

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Harris McClamroch Aerospace Engineering, University of Michigan Joint work with Taeyoung Lee (George Washington University) Melvin

More information

Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control

Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control Ahmad Akrad, Mickaël Hilairet, Romeo Ortega, Demba Diallo LGEP/SPEE Labs ; CNRS UMR857 ; Supelec ; Univ Pierre

More information