Multi-objective Controller Design:

Size: px
Start display at page:

Download "Multi-objective Controller Design:"

Transcription

1 Multi-objective Controller Design: Evolutionary algorithms and Bilinear Matrix Inequalities for a passive suspension A. Molina-Cristobal*, C. Papageorgiou**, G. T. Parks*, M. C. Smith**, P. J. Clarkson* *Engineering Design Centre **Control Group Department of Engineering, University of Cambridge IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 1/2

2 Contents Introduction: Linear Matrix Inequalities Convex Optimisation Multi-objective Control Design Multi-objective Optimisation Design of passive vehicle suspensions Quarter-car model - Inerter Multiobjective optimisation using MOGA and BMIs Conclusions IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 2/2

3 Linear Matrix Inequalities A linear matrix inequality (LMI) is an expression, (x) = 0 + x x n n > 0 i = T i are real symmetric matrices, The inequality means that (x) is positive definite matrix LMI example problem: ¾ ¾ ¾ (x 1, x 2 ) = x x > this is equivalent to (x 1, x 2 ) = ¾ 2 x 1 (x 1 + x 2 ) 0 (x 1 + x 2 ) 5 x 2 x 2 0 x 2 x 1 > 0 IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 3/2

4 Geometry of LMIs (Convexity) (x 1, x 2 ) = ¾ 2 x 1 (x 1 + x 2 ) 0 (x 1 + x 2 ) 5 x 2 x 2 0 x 2 x 1 > 0 easible iff all principal minors are nonnegative polynomial inequalities f i (x) > 0 f 1 (x) = 2 x 1 > 0, f 2 (x) = 5 x 2 > 0, f 3 (x) = x 1 > 0, f 4 (x) = (2 x 1 )(5 x 2 ) (x 1 + x 2 ) 2 > 0, f 5 (x) = x 1 (2 x 1 ) > 0, f 6 (x) = x 1 (5 x 2 ) x 2 2 > 0, f 7 (x) = x 1 ((2 x 1 )(5 x 2 ) (x 1 + x 2 ) 2 ) x 2 2 (2 x 1) > 0 IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 4/2

5 Intersection of LMIs If (x) and G(x) are LMIs, the intersection has the form H(x) = > 0 0 G(x) ¾ (x) 0 Example of intersections (x) = ¾ 2 x 1 (x 1 + x 2 ) 0 (x 1 + x 2 ) 5 x 2 x 2 0 x 2 x 1 > 0 G(x) = > 0 0 3x 1 + x 2 20 ¾ 3x 1 + x IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 5/2

6 Convex optimisation over Linear Matrix Inequalities (LMIs) / Semidefinite Programming (SDP) An SDP is an optimisation problem with linear objective and semidefinite constraints or LMI constraints. min x Ψ subject c T to x ( x) m = O + i= 1 x i i > 0 In 1994, the LMI solvers became widely available. i.e. Projective Algorithm of Nesterov and Nemirovski (interior-point methods), available in the LMI Control toolbox. In control theory, the idea is to reduce a multiobjective control problem into a convex optimisation or SDP problem.

7 Lyapunov s Inequality (1892) x & = Ax The system is asymptotically stable if there exist a matrix P>0 (positive definite) that satisfied the Lyapunov inequality A T P + PA < 0, T p p p p p p p p < 0 2 Henrion, 2003

8 Bilinear Matrix Inequalities A bilinear matrix inequality (BMI) is an expression, BMI example (Henrion,2005): (x) = 0 + i x i i + i j x i x j ij < 0 Nonconvex! (x) = ¾ x ¾ ¾ x x ¾ 1x < IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 6/2

9 Mixed H 2 /H Control State-feedback close-loop system with two performance channels ẋ = (A + B w K)x + B w w z = (C + D u K)x + D w w z 2 = (C 2 + D 2u K)x and mixed performance specification T w z < γ and T w z2 2 < γ 2, BMIs for the H norm constraint AX + B u KX + ( ) + B w Bw T C X + D u KX + D w Bw T D w D w T γ2 < 0, X I > 0 ¾ BMIs for the H 2 norm constraint ¾ AX 2 + B u KX 2 + ( ) B w < 0, I W C 2X 2 + D 2u KX 2 > 0, tr(w) < γ2 X 2 ¾ Two terms KX and KX 2 cannot be linearized simultaneously, Remedy X = X = X 2, then Y = KX as change of variable to recover convexity, this leads to conservative results. IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 7/2

10 Mechanical network: vehicle suspension quarter-car model ront suspension s m s z s k s K(s) m u z u k t z r IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 8/2

11 Mechanical networks A mechanical network is a rigid interconnection of mechanical elements (springs, masses, dampers and levers). A mechanical one-port network with force-velocity pair (, v) is defined to be passive if, T 0 (t)v(t)dt 0. one port mechanical network v 1 v 2 Impedance is defined as a positive-real function Z(s) = across variable through variable = ˆvˆ Admittance is defined as a positive-real function Y (s) = 1 Z(s) = ˆ ˆv. IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 9/2

12 orce-current analogy Mechanical Electrical v 2 v 1 d dt = k(v 2 v 1 ) Y (s) = k s spring i v 2 v 1 di dt = 1 L (v 2 v 1 ) i Y (s) = 1 Ls inductor v 2 = b d(v 2 v 1 ) dt Y (s) = bs i i v 2 v 1 v 1 mass? i = C d(v 2 v 1 ) dt Y (s) = Cs capacitor v 2 v 1 = c(v 2 v 1 ) Y (s) = c damper i v 2 v 1 i i = 1 R (v 2 v 1 ) Y (s) = 1 R resistor IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 10/2

13 The Inerter Concept: A mechanical two-terminal device such that the relative acceleration between the terminals is proportional to the force applied at the terminals. M. C. Smith, Synthesis of Mechanical Networks: The Inerter, IEEE Transactions on Automatic Control, 47(10), , 2002 IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 11/2

14 The Inerter Concept: A mechanical two-terminal device such that the relative acceleration between the terminals is proportional to the force applied at the terminals. Theory: v 2 v 1 = b( v 2 v 1 ) b : inertance Practice: Can one build an inerter? Rack-and-pinion inerter, mass 2 kg, inertance = kg, travel = 80 mm IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 11/2

15 Suspension for the quarter-car model s sprung and unsprung mass k s m s K(s) z s z s = s m s m s k s m s (z s z u ), z u = m u + k s m u (z s z u ) + k t m u (z r z u ), m u z u suspension k t ˆ = K(s)(sẑ s sẑ u ), z r Ride comfort: J 1 := 2π(V κ) (1/2) stẑr ẑ s 2 RMS body vertical acceleration in response to road disturbances IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 12/2

16 Suspension for the quarter-car model s sprung and unsprung mass k s m s K(s) z s z s = s m s m s k s m s (z s z u ), z u = m u + k s m u (z s z u ) + k t m u (z r z u ), m u z u suspension k t ˆ = K(s)(sẑ s sẑ u ), z r Tyre grip: J 3 := 2π(V κ) 1/2 1 s T ẑ r k t (ẑ u ẑ r ) 2 RMS dynamic tyre load in response to road disturbances IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 12/2

17 Suspension for the quarter-car model s sprung and unsprung mass k s m s K(s) z s z s = s m s m s k s m s (z s z u ), z u = m u + k s m u (z s z u ) + k t m u (z r z u ), m u z u suspension k t ˆ = K(s)(sẑ s sẑ u ), z r Rejection of external loads: J 5 := T ˆ s ẑ s IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 12/2

18 Control problem formulation Objective: Synthesize a positive real admittance Y (s) to improve performance criterions. ormulation: Optimize a vector of T w z over positive real controllers K(s). z G(s) w v 2 v 1 velocity K(s) force Solution: Characterize and solve the problem using Linear Matrix Inequalities IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 13/2

19 LMI ormulation Characterize H and H 2 performances (Scherer et al., 1997), T w z 2 2 = Tr(CXCT ), X solves a Lyapunov equation... Bounded real lemma of T w z = sup w L2 z 2 w 2... Positive Real Lemma (Boyd et al., 1994): Given that K(s) positive real, X > 0, AT X + XA XB C T 0 B T X C D T D IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 14/2

20 multi-objective controller design Simultaneous J 1 and J 3 minimization, min K(s) positive real T ẑ r ˆż s 2 and Tẑr Ê (ẑ u ẑ r ) 2 Positive real constraint bilinear matrix inequality with respect to Lyapunov matrices X cl, X k and controller matrix K(s) The approach taken here is to minimise (1 λ) J2 1 Ĵ λ J2 3 Ĵ 3 2, for 0 < λ < 1 Solved locally with iterative convex optimization methods IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 15/2

21 Multi-objetive optimisation with BMIs 600 BMI Pareto front J J 1 Lolcal Search: Relies on the intuitive choice of a feasible starting point IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 16/2

22 MOGA-based method Parameter encoding:the decision variables controller Optimise simultaneously: K(s) = bs + c s2 + a 1 s + a 2 s 2 + b 1 s + b 2 Ride comfort J 1 := 2π(V κ) (1/2) stẑr ẑ s 2 Tyre grip J 3 := 2π(V κ) 1/2 1 s T ẑ r k t (ẑ u ẑ r ) 2 subject to K(s) been positive real (constraint) IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 17/2

23 Multi-objetive optimisation with GAs 580 BMI Pareto front MOGA1 Pareto front J J 1 Converge to a Local Pareto optimum Deceptive problem: often the entire search favors the non-global optimum IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 18/2

24 Multi-objetive optimisation with GAs 580 BMI Pareto front MOGA1 Pareto front MOGA2 Pareto front J J 1 Remedy: Increase the population size (from 200 to 600 individuals) IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 19/2

25 MOGA-based method:three objectives Parameter encoding:the decision variables controller Optimise simultaneously: K(s) = bs + c s2 + a 1 s + a 2 s 2 + b 1 s + b 2 Ride comfort: J 1 := 2π(V κ) (1/2) stẑr ẑ s 2 Tyre grip: J 3 := 2π(V κ) 1/2 1 s T ẑ r k t (ẑ u ẑ r ) 2 Rejection to external roads: J 5 := T ˆs ẑ s subject to K(s) been positive real (constraint) IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 20/2

26 Three-objective optimisation J J J J J J 5 J J 3 J 1 IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 21/2

27 3D Pareto front J J J IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 22/2

28 3D Pareto front J J 1 J 3 IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 22/2

29 Realisation of the "best" suspension Cost J_1 J_3 J_5 Objective 361 kg N/m 3496 Ns/m 2871 Ns/m 12 kg IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 23/2

30 Conclusions BMI optimisation over positive real controllers has been shown to be effective for two-objective optimisation problem. However, the design of a single controller requires several attempts. MOGA-base method- The Pareto-front can be investigated in a single optimisation run. More than two objectives can be included straightforwardly Thusm the designer engineer has a choice from among the Pareto-optimal set. A Possible disadvantage of using MOGA is that some experience may be needed to choose appropriate parameter values, such as the population size. IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 24/2

31 The end Thank you, Reference: A Molina-Cristobal, C Papageorgiou, G T Parks, M C Smith, P J Clarkson. Multi-objective Controller Design: Evolutionary Algorithms and Bilinear Matrix Inequalities for a Passive Suspension Proceedings of the IAC Workshop on Control Applications of Optimization, Cachan, rance, April 2006 IEEE Colloquium on Optimisation for Control, Sheffield, 24 April 2006 p. 25/2

The Inerter Concept and Its Application. Malcolm C. Smith Department of Engineering University of Cambridge U.K.

The Inerter Concept and Its Application. Malcolm C. Smith Department of Engineering University of Cambridge U.K. Department of Engineering University of Cambridge U.K. Society of Instrument and Control Engineers (SICE) Annual Conference Fukui, Japan 4 August 2003 Plenary Lecture 1 Motivating Example Vehicle Suspension

More information

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis

Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Multiobjective Optimization Applied to Robust H 2 /H State-feedback Control Synthesis Eduardo N. Gonçalves, Reinaldo M. Palhares, and Ricardo H. C. Takahashi Abstract This paper presents an algorithm for

More information

H Approach Control for Regulation of Active Car Suspension

H Approach Control for Regulation of Active Car Suspension 1 H Approach Control for Regulation of Active Car Suspension Jamal Ezzine, Francesco Tedesco Abstract There are many types of car suspensions control. H control of vehicle suspension is studied in the

More information

Journal of System Design and Dynamics

Journal of System Design and Dynamics Fixed-Order Output Feedback Control and Anti-Windup Compensation for Active Suspension Systems Unggul WASIWITONO and Masami SAEKI Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama,

More information

Fixed Order H Controller for Quarter Car Active Suspension System

Fixed Order H Controller for Quarter Car Active Suspension System Fixed Order H Controller for Quarter Car Active Suspension System B. Erol, A. Delibaşı Abstract This paper presents an LMI based fixed-order controller design for quarter car active suspension system in

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 19: Stabilization via LMIs Optimization Optimization can be posed in functional form: min x F objective function : inequality constraints

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

A State-Space Approach to Control of Interconnected Systems

A State-Space Approach to Control of Interconnected Systems A State-Space Approach to Control of Interconnected Systems Part II: General Interconnections Cédric Langbort Center for the Mathematics of Information CALIFORNIA INSTITUTE OF TECHNOLOGY clangbort@ist.caltech.edu

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

An LMI Optimization Approach for Structured Linear Controllers

An LMI Optimization Approach for Structured Linear Controllers An LMI Optimization Approach for Structured Linear Controllers Jeongheon Han* and Robert E. Skelton Structural Systems and Control Laboratory Department of Mechanical & Aerospace Engineering University

More information

Takagi-Sugeno fuzzy control scheme for electrohydraulic active suspensions

Takagi-Sugeno fuzzy control scheme for electrohydraulic active suspensions Control and Cybernetics vol. 39 (21) No. 4 Takagi-Sugeno fuzzy control scheme for electrohydraulic active suspensions by Haiping Du 1 and Nong Zhang 2 1 School of Electrical, Computer and Telecommunications

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

Robust Anti-Windup Compensation for PID Controllers

Robust Anti-Windup Compensation for PID Controllers Robust Anti-Windup Compensation for PID Controllers ADDISON RIOS-BOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVAS-ECHEVERRIA Universidad de Los Andes Av. Tulio Febres,

More information

EE363 homework 8 solutions

EE363 homework 8 solutions EE363 Prof. S. Boyd EE363 homework 8 solutions 1. Lyapunov condition for passivity. The system described by ẋ = f(x, u), y = g(x), x() =, with u(t), y(t) R m, is said to be passive if t u(τ) T y(τ) dτ

More information

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR Dissipativity M. Sami Fadali EBME Dept., UNR 1 Outline Differential storage functions. QSR Dissipativity. Algebraic conditions for dissipativity. Stability of dissipative systems. Feedback Interconnections

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING TW32 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) AUTOMOTIVE PERFORMANCE ENGINEERING and BSC (HONS) MOTORSPORT TECHNOLOGY EXAMINATION SEMESTER 2-2015/2016 VEHICLE DYNAMICS AND ADVANCED ELECTRONICS

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Introduction to linear matrix inequalities Wojciech Paszke

Introduction to linear matrix inequalities Wojciech Paszke Introduction to linear matrix inequalities Wojciech Paszke Institute of Control and Computation Engineering, University of Zielona Góra, Poland e-mail: W.Paszke@issi.uz.zgora.pl Outline Introduction to

More information

Dissipative Systems Analysis and Control

Dissipative Systems Analysis and Control Bernard Brogliato, Rogelio Lozano, Bernhard Maschke and Olav Egeland Dissipative Systems Analysis and Control Theory and Applications 2nd Edition With 94 Figures 4y Sprin er 1 Introduction 1 1.1 Example

More information

Analytical Validation Tools for Safety Critical Systems

Analytical Validation Tools for Safety Critical Systems Analytical Validation Tools for Safety Critical Systems Peter Seiler and Gary Balas Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN, 55455, USA Andrew Packard

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Linear Matrix Inequality (LMI)

Linear Matrix Inequality (LMI) Linear Matrix Inequality (LMI) A linear matrix inequality is an expression of the form where F (x) F 0 + x 1 F 1 + + x m F m > 0 (1) x = (x 1,, x m ) R m, F 0,, F m are real symmetric matrices, and the

More information

Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis

Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis 1 Algorithmic Construction of Lyapunov Functions for Power System Stability Analysis M. Anghel, F. Milano, Senior Member, IEEE, and A. Papachristodoulou, Member, IEEE Abstract We present a methodology

More information

Integrated seat and suspension control for a quarter car with driver model

Integrated seat and suspension control for a quarter car with driver model University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 212 Integrated seat and suspension control for

More information

Semidefinite Programming Duality and Linear Time-invariant Systems

Semidefinite Programming Duality and Linear Time-invariant Systems Semidefinite Programming Duality and Linear Time-invariant Systems Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 2 July 2004 Workshop on Linear Matrix Inequalities in Control LAAS-CNRS,

More information

NONLINEAR BACKSTEPPING DESIGN OF ANTI-LOCK BRAKING SYSTEMS WITH ASSISTANCE OF ACTIVE SUSPENSIONS

NONLINEAR BACKSTEPPING DESIGN OF ANTI-LOCK BRAKING SYSTEMS WITH ASSISTANCE OF ACTIVE SUSPENSIONS NONLINEA BACKSTEPPING DESIGN OF ANTI-LOCK BAKING SYSTEMS WITH ASSISTANCE OF ACTIVE SUSPENSIONS Wei-En Ting and Jung-Shan Lin 1 Department of Electrical Engineering National Chi Nan University 31 University

More information

Active Suspension Control to Improve Vehicle Ride and Steady-State Handling

Active Suspension Control to Improve Vehicle Ride and Steady-State Handling Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 5 Seville, Spain, December 1-15, 5 MoIC18.1 Active Suspension Control to Improve Vehicle Ride and Steady-State

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs Martyn Durrant, Herbert Werner, Keith Abbott Control Institute, TUHH, Hamburg Germany; m.durrant@tu-harburg.de; Fax:

More information

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

A FLUID INERTER WITH VARIABLE INERTANCE PROPERTIES

A FLUID INERTER WITH VARIABLE INERTANCE PROPERTIES A FLUID INERTER WITH VARIABLE INERTANCE PROPERTIES Smith, N. D. J. 1 & Wagg, D. J. 1 1 Department of Mechanical Engineering, University of Sheffield, Sheffield, S1 3JD, UK. David.Wagg@sheffield.ac.uk ABSTRACT.

More information

From Convex Optimization to Linear Matrix Inequalities

From Convex Optimization to Linear Matrix Inequalities Dep. of Information Engineering University of Pisa (Italy) From Convex Optimization to Linear Matrix Inequalities eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain

More information

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2 journal of optimization theory and applications: Vol. 127 No. 2 pp. 411 423 November 2005 ( 2005) DOI: 10.1007/s10957-005-6552-7 Convex Optimization Approach to Dynamic Output Feedback Control for Delay

More information

NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD

NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD NONLINEAR CONTROLLER DESIGN FOR ACTIVE SUSPENSION SYSTEMS USING THE IMMERSION AND INVARIANCE METHOD Ponesit Santhanapipatkul Watcharapong Khovidhungij Abstract: We present a controller design based on

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

Riccati Equations and Inequalities in Robust Control

Riccati Equations and Inequalities in Robust Control Riccati Equations and Inequalities in Robust Control Lianhao Yin Gabriel Ingesson Martin Karlsson Optimal Control LP4 2014 June 10, 2014 Lianhao Yin Gabriel Ingesson Martin Karlsson (LTH) H control problem

More information

Sliding Mode Control for Active Suspension System Using ICA Evolutionary Algorithm

Sliding Mode Control for Active Suspension System Using ICA Evolutionary Algorithm Life Science Journal 213;1(3s) Sliding Mode Control for Active Suspension System Using ICA Evolutionary Algorithm Mohammad Faraji sarir 1, Jafar Ghafouri 2, Larisa Khodadadi 3 1- Department of Mechatronic

More information

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec DAS-CTC-UFSC P.O. Box 476, 88040-900 Florianópolis, SC,

More information

Analysis and Control of Nonlinear Actuator Dynamics Based on the Sum of Squares Programming Method

Analysis and Control of Nonlinear Actuator Dynamics Based on the Sum of Squares Programming Method Analysis and Control of Nonlinear Actuator Dynamics Based on the Sum of Squares Programming Method Balázs Németh and Péter Gáspár Abstract The paper analyses the reachability characteristics of the brake

More information

Human Friendly Control : an application to Drive by Wire

Human Friendly Control : an application to Drive by Wire Human Friendly Control : an application to Drive by Wire By Emmanuel Witrant Master Thesis, 2001-2002 Laboratoire d Automatique de Grenoble with Carlos Canudas-de-Wit 2 Juillet 2002 Typeset by FoilTEX

More information

Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties

Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties A NEW PROPOSAL FOR H NORM CHARACTERIZATION AND THE OPTIMAL H CONTROL OF NONLINEAR SSTEMS WITH TIME-VARING UNCERTAINTIES WITH KNOWN NORM BOUND AND EXOGENOUS DISTURBANCES Marcus Pantoja da Silva 1 and Celso

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION CHAPTER 3 DYNAMIC RESPONSE OF 2 DOF QUARTER CAR PASSIVE SUSPENSION SYSTEM (QC-PSS) AND 2 DOF QUARTER CAR ELECTROHYDRAULIC ACTIVE SUSPENSION SYSTEM (QC-EH-ASS) 3.1 INTRODUCTION In this chapter, the dynamic

More information

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software and Second-Order Cone Program () and Algorithms for Optimization Software Jared Erickson JaredErickson2012@u.northwestern.edu Robert 4er@northwestern.edu Northwestern University INFORMS Annual Meeting,

More information

On Bounded Real Matrix Inequality Dilation

On Bounded Real Matrix Inequality Dilation On Bounded Real Matrix Inequality Dilation Solmaz Sajjadi-Kia and Faryar Jabbari Abstract We discuss a variation of dilated matrix inequalities for the conventional Bounded Real matrix inequality, and

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

Didier HENRION henrion

Didier HENRION   henrion POLYNOMIAL METHODS FOR ROBUST CONTROL Didier HENRION www.laas.fr/ henrion henrion@laas.fr Laboratoire d Analyse et d Architecture des Systèmes Centre National de la Recherche Scientifique Université de

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Discrete-Time Static Output-Feedback H Controller Design for Vehicle Suspensions

Discrete-Time Static Output-Feedback H Controller Design for Vehicle Suspensions Discrete-Time Static Output-Feedback H Controller Design for Vehicle Suspensions Francisco Palacios-Quiñonero Josep Rubió-Massegú and Josep M. Rossell Department of Applied Mathematics III Universitat

More information

Multi-objective optimization by genetic algorithms in H /LPV control of semi-active suspension

Multi-objective optimization by genetic algorithms in H /LPV control of semi-active suspension Multi-objective optimization by genetic algorithms in H /LPV control of semi-active suspension A. L. Do, O. Sename, L. Dugard and B. Soualmi GIPSA-lab, Control Systems Dept, CNRS-Grenoble INP, ENSE3, BP

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Complexity Reduction for Parameter-Dependent Linear Systems

Complexity Reduction for Parameter-Dependent Linear Systems Complexity Reduction for Parameter-Dependent Linear Systems Farhad Farokhi Henrik Sandberg and Karl H. Johansson Abstract We present a complexity reduction algorithm for a family of parameter-dependent

More information

Fuzzy Logic Control for Half Car Suspension System Using Matlab

Fuzzy Logic Control for Half Car Suspension System Using Matlab Fuzzy Logic Control for Half Car Suspension System Using Matlab Mirji Sairaj Gururaj 1, Arockia Selvakumar A 2 1,2 School of Mechanical and Building Sciences, VIT Chennai, Tamilnadu, India Abstract- To

More information

Outline. Linear Matrix Inequalities in Control. Outline. System Interconnection. j _jst. ]Bt Bjj. Generalized plant framework

Outline. Linear Matrix Inequalities in Control. Outline. System Interconnection. j _jst. ]Bt Bjj. Generalized plant framework Outline Linear Matrix Inequalities in Control Carsten Scherer and Siep Weiland 7th Elgersburg School on Mathematical Systems heory Class 3 1 Single-Objective Synthesis Setup State-Feedback Output-Feedback

More information

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP)

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP) Agenda 1 Cone programming 2 Convex cones 3 Generalized inequalities 4 Linear programming (LP) 5 Second-order cone programming (SOCP) 6 Semidefinite programming (SDP) 7 Examples Optimization problem in

More information

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering System Modeling Lecture-2 Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com 1 Types of Systems Static System: If a system does not change with time, it is called a static

More information

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about Rank-one LMIs and Lyapunov's Inequality Didier Henrion 1;; Gjerrit Meinsma Abstract We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix

More information

IMPROVED MPC DESIGN BASED ON SATURATING CONTROL LAWS

IMPROVED MPC DESIGN BASED ON SATURATING CONTROL LAWS IMPROVED MPC DESIGN BASED ON SATURATING CONTROL LAWS D. Limon, J.M. Gomes da Silva Jr., T. Alamo and E.F. Camacho Dpto. de Ingenieria de Sistemas y Automática. Universidad de Sevilla Camino de los Descubrimientos

More information

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Matrix Inequalities A linear matrix inequality (LMI)

More information

Lecture 6 Verification of Hybrid Systems

Lecture 6 Verification of Hybrid Systems Lecture 6 Verification of Hybrid Systems Ufuk Topcu Nok Wongpiromsarn Richard M. Murray AFRL, 25 April 2012 Outline: A hybrid system model Finite-state abstractions and use of model checking Deductive

More information

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University H 2 Optimal State Feedback Control Synthesis Raktim Bhattacharya Aerospace Engineering, Texas A&M University Motivation Motivation w(t) u(t) G K y(t) z(t) w(t) are exogenous signals reference, process

More information

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION henrion

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION  henrion GRADUATE COURSE ON POLYNOMIAL METHODS FOR ROBUST CONTROL PART IV.1 ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES Didier HENRION www.laas.fr/ henrion henrion@laas.fr Airbus assembly

More information

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 11, NO 2, APRIL 2003 271 H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions Doo Jin Choi and PooGyeon

More information

Reduced-order modelling and parameter estimation for a quarter-car suspension system

Reduced-order modelling and parameter estimation for a quarter-car suspension system 81 Reduced-order modelling and parameter estimation for a quarter-car suspension system C Kim and PIRo* Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North

More information

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Preprints of the 19th World Congress The International Federation of Automatic Control Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Eric Peterson Harry G.

More information

Integrated damping parameter and control design in structural systems for H 2 and H specifications

Integrated damping parameter and control design in structural systems for H 2 and H specifications Struct Multidisc Optim (9) 38:377 387 DOI 1.17/s158-8-84-x RESEARCH PAPER Integrated damping parameter and control design in structural systems for H and H specifications Javad Mohammadpour Velni Mona

More information

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Graph and Controller Design for Disturbance Attenuation in Consensus Networks 203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 20-23, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

On Dwell Time Minimization for Switched Delay Systems: Free-Weighting Matrices Method

On Dwell Time Minimization for Switched Delay Systems: Free-Weighting Matrices Method On Dwell Time Minimization for Switched Delay Systems: Free-Weighting Matrices Method Ahmet Taha Koru Akın Delibaşı and Hitay Özbay Abstract In this paper we present a quasi-convex minimization method

More information

A New Strategy to the Multi-Objective Control of Linear Systems

A New Strategy to the Multi-Objective Control of Linear Systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 12-15, 25 TuC8.6 A New Strategy to the Multi-Objective Control of Linear

More information

Multiobjective Robust Dynamic Output-feeback Control Synthesis based on Reference Model

Multiobjective Robust Dynamic Output-feeback Control Synthesis based on Reference Model 49th IEEE Conference on Decision and Control December 5-7, 2 Hilton Atlanta Hotel, Atlanta, GA, USA Multiobjective Robust Dynamic Output-feeback Control Synthesis based on Reference Model Wagner Eustáquio

More information

On Connections between the Cauchy Index, the Sylvester Matrix, Continued Fraction Expansions, and Circuit Synthesis

On Connections between the Cauchy Index, the Sylvester Matrix, Continued Fraction Expansions, and Circuit Synthesis 2st International Symposium on Mathematical Theory of Networks Systems July 7-, 24 On Connections between the Cauchy Index, the Sylvester Matrix, Continued Fraction Expansions, Circuit Synthesis Timothy

More information

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function ECE7850: Hybrid Systems:Theory and Applications Lecture Note 7: Switching Stabilization via Control-Lyapunov Function Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio

More information

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Quadratic Gaussian The state space

More information

Chapter 2 Optimal Control Problem

Chapter 2 Optimal Control Problem Chapter 2 Optimal Control Problem Optimal control of any process can be achieved either in open or closed loop. In the following two chapters we concentrate mainly on the first class. The first chapter

More information

Robust Observer for Uncertain T S model of a Synchronous Machine

Robust Observer for Uncertain T S model of a Synchronous Machine Recent Advances in Circuits Communications Signal Processing Robust Observer for Uncertain T S model of a Synchronous Machine OUAALINE Najat ELALAMI Noureddine Laboratory of Automation Computer Engineering

More information

Complexity Reduction for Parameter-Dependent Linear Systems

Complexity Reduction for Parameter-Dependent Linear Systems 213 American Control Conference (ACC) Washington DC USA June 17-19 213 Complexity Reduction for Parameter-Dependent Linear Systems Farhad Farokhi Henrik Sandberg and Karl H. Johansson Abstract We present

More information

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting

Robust Anti-Windup Controller Synthesis: A Mixed H 2 /H Setting Robust Anti-Windup Controller Synthesis: A Mixed H /H Setting ADDISON RIOS-BOLIVAR Departamento de Sistemas de Control Universidad de Los Andes Av. ulio Febres, Mérida 511 VENEZUELA SOLBEN GODOY Postgrado

More information

Sum of Squares Relaxations for Polynomial Semi-definite Programming

Sum of Squares Relaxations for Polynomial Semi-definite Programming Sum of Squares Relaxations for Polynomial Semi-definite Programming C.W.J. Hol, C.W. Scherer Delft University of Technology, Delft Center of Systems and Control (DCSC) Mekelweg 2, 2628CD Delft, The Netherlands

More information

Modelling and State Dependent Riccati Equation Control of an Active Hydro-Pneumatic Suspension System

Modelling and State Dependent Riccati Equation Control of an Active Hydro-Pneumatic Suspension System Proceedings of the International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 15-16 214 Paper No. 31 Modelling and State Dependent Riccati Equation Control of an Hydro-Pneumatic

More information

Performance Improvement of Automotive Suspension Systems using Inerters and an Adaptive Controller

Performance Improvement of Automotive Suspension Systems using Inerters and an Adaptive Controller Performance Improvement of Automotive Suspension Systems using Inerters and an Adaptive Controller by Ankur Agrawal A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Global Optimization of H problems: Application to robust control synthesis under structural constraints

Global Optimization of H problems: Application to robust control synthesis under structural constraints Global Optimization of H problems: Application to robust control synthesis under structural constraints Dominique Monnet 1, Jordan Ninin 1, and Benoit Clement 1 ENSTA-Bretagne, LabSTIC, IHSEV team, 2 rue

More information

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster. Lecture 8 Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture

More information

Fixed Order H -synthesis: Computing Optimal Values by Robust Performance Analysis

Fixed Order H -synthesis: Computing Optimal Values by Robust Performance Analysis Fixed Order H -synthesis: Computing Optimal Values by Robust Performance Analysis Camile Hol and Carsten Scherer Abstract The computation of optimal H controllers with a prescribed order is important for

More information

arzelier

arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.1 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS STABILITY ANALYSIS Didier HENRION www.laas.fr/ henrion henrion@laas.fr Denis ARZELIER www.laas.fr/

More information

Car Dynamics using Quarter Model and Passive Suspension; Part V: Frequency Response Considering Driver-seat

Car Dynamics using Quarter Model and Passive Suspension; Part V: Frequency Response Considering Driver-seat 357 Car Dynamics using Quarter Model and Passive Suspension; Part V: Frequency Response Considering Driver-seat Galal Ali Hassaan Emeritus Professor, Department of Mechanical Design & Production, Faculty

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

CHAPTER 3 QUARTER AIRCRAFT MODELING

CHAPTER 3 QUARTER AIRCRAFT MODELING 30 CHAPTER 3 QUARTER AIRCRAFT MODELING 3.1 GENERAL In this chapter, the quarter aircraft model is developed and the dynamic equations are derived. The quarter aircraft model is two degrees of freedom model

More information

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University Determinant maximization with linear matrix inequality constraints S. Boyd, L. Vandenberghe, S.-P. Wu Information Systems Laboratory Stanford University SCCM Seminar 5 February 1996 1 MAXDET problem denition

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information

Fixed-Order Robust H Controller Design with Regional Pole Assignment

Fixed-Order Robust H Controller Design with Regional Pole Assignment SUBMITTED 1 Fixed-Order Robust H Controller Design with Regional Pole Assignment Fuwen Yang, Mahbub Gani, and Didier Henrion Abstract In this paper, the problem of designing fixed-order robust H controllers

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 6 (Conic optimization) 07 Feb, 2013 Suvrit Sra Organizational Info Quiz coming up on 19th Feb. Project teams by 19th Feb Good if you can mix your research

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

The moment-lp and moment-sos approaches

The moment-lp and moment-sos approaches The moment-lp and moment-sos approaches LAAS-CNRS and Institute of Mathematics, Toulouse, France CIRM, November 2013 Semidefinite Programming Why polynomial optimization? LP- and SDP- CERTIFICATES of POSITIVITY

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions

Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions Tingshu Hu Abstract This paper presents a nonlinear control design method for robust stabilization

More information

Hybrid active and semi-active control for pantograph-catenary system of high-speed train

Hybrid active and semi-active control for pantograph-catenary system of high-speed train Hybrid active and semi-active control for pantograph-catenary system of high-speed train I.U. Khan 1, D. Wagg 1, N.D. Sims 1 1 University of Sheffield, Department of Mechanical Engineering, S1 3JD, Sheffield,

More information