# Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Size: px
Start display at page:

Download "Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback"

Transcription

1 Topic # Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1

2 Fall Combined Estimators and Regulators Can now evaluate the stability and/or performance of a controller when we design K assuming that u = Kx, but we implement u = K ˆx Assume that we have designed a closed-loop estimator with gain L ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) ŷ(t) = C ˆx(t) Then we have that the closed-loop system dynamics are given by: ẋ(t) = Ax(t)+Bu(t) ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) y(t) = Cx(t) ŷ(t) = C ˆx(t) u = K ˆx Which can be compactly written as: ẋ A BK x = ˆx LC A BK LC ˆx ẋ cl = A cl x cl This does not look too good at this point not even obvious that the closed-system is stable. λ i (A cl )=??

3 Fall Can fix this problem by introducing a new variable x = x ˆx and then converting the closed-loop system dynamics using the similarity transformation T x cl, x x Note that T = T 1 = I I I x ˆx = Tx cl Now rewrite the system dynamics in terms of the state x cl A cl TA cl T 1, Ācl Note that similarity transformations preserve the eigenvalues, so we are guaranteed that λ i (A cl ) λ i (Ā cl ) Work through the math: I A BK I Ā cl = I I LC A BK LC I I A BK I = A LC A + LC I I A BK BK = A LC Because Ā cl is block upper triangular, we know that the closed-loop poles of the system are given by det(si Ā cl ), det(si (A BK)) det(si (A LC)) =

4 Fall Observation: The closed-loop poles for this system consist of the union of the regulator poles and estimator poles. So we can just design the estimator/regulator separately and combine them at the end. Called the Separation Principle. Just keep in mind that the pole locations you are picking for these two sub-problems will also be the closed-loop pole locations. Note: the separation principle means that there will be no ambiguity or uncertainty about the stability and/or performance of the closed-loop system. The closed-loop poles will be exactly where you put them!! And we have not even said what compensator does this amazing accomplishment!!!

5 Fall The Compensator Dynamic Output Feedback Compensator is the combination of the regulator and estimator using u = K ˆx ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) = Aˆx(t) BKˆx + L(y C ˆx) ˆx(t) = (A BK LC)ˆx(t)+Ly u = K ˆx Rewrite with new state x c ˆx ẋ c = A c x c + B c y u = C c x c where the compensator dynamics are given by: A c, A BK LC, B c, L, C c, K Note that the compensator maps sensor measurements to actuator commands, as expected. Closed-loop system stable if regulator/estimator poles placed in the LHP, but compensator dynamics do not need to be stable. λ i (A BK LC) =??

6 Fall For consistency in the implementation with the classical approaches, define the compensator transfer function so that u = G c (s)y From the state-space model of the compensator: U(s) Y (s), G c(s) = C c (si A c ) 1 B c = K(sI (A BK LC)) 1 L G c (s) =C c (si A c ) 1 B c Note that it is often very easy to provide classical interpretations (such as lead/lag) for the compensator G c (s). One way to implement this compensator with a reference command r(t) is to change the feedback to be on e(t) =r(t) y(t) rather than just y(t) r e u y G c (s) G(s) u = G c (s)e = G c (s)(r y) So we still have u = G c (s)y if r =. Intuitively appealing because it is the same approach used for the classical control, but it turns out not to be the best approach. More on this later.

7 Fall Mechanics Basics: e = r y, u = G c e, y = Gu G c (s) : ẋ c = A c x c + B c e, u = C c x c G(s) : ẋ = Ax + Bu, y = Cx Loop dynamics L = G c (s)g(s) y = L(s)e ẋ = Ax +BC c x c ẋ c = +A c x c +B c e L(s) ẋ ẋ c A BCc x = A c y = C x x c x c + B c e To close the loop, note that e = r y, then µ ẋ A BCc x = + r C x ẋ c A c x c B c x c A BC = c x + r B c C A c x c B c y = C x x c A cl is not exactly the same as on page 17-1 because we have rearranged where the negative sign enters into the problem. Same result though.

8 Fall Simple Example Let G(s) =1/s 2 with state-space model given by: 1 A =, B =, C = 1, D = 1 Design the regulator to place the poles at s = 4 ± 4j λ i (A BK) = 4 ± 4j K = 32 8 Time constant of regulator poles τ c =1/ζω n 1/4 =.25 sec Put estimator poles so that the time constant is faster τ e 1/1 Userealpoles,soΦ e (s) =(s + 1) 2 1 C L = Φ e (A) CA 1 Ã = = = 1 1 1!

9 Fall Compensator: A c = A BK LC 1 2 = = B c = L = 2 1 C c = K = Compensator transfer function: G c (s) = C c (si A c ) 1 B c, U E s = 144 s 2 +28s Note that the compensator has a low frequency real zero and two higher frequency poles. Thus it looks like a lead compensator.

10 Fall Compensator Gc Compensator Gc Phase (deg) Figure 1: Plant is pretty simple and the compensator looks like a lead 2 1 rads/sec. 1 2 Loop L Phase (deg) Figure 2: Loop transfer function L(s) shows the slope change near ω c = 5 rad/sec. Note that we have a large PM and GM.

11 Fall Imag Axis Real Axis Figure 3: Freeze the compensator poles and zeros and look at the root locus of closed-loop poles versus an additional loop gain α (nominally α =1.) 1 2 closed loop Gcl Figure 4: Closed-loop transfer function.

12 Fall Figure 5: Example #1: G(s) = (s+8)(s+14)(s+2) Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm=1.978 db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

13 Fall Figure 6: Example #1: G(s) = (s+8)(s+14)(s+2) Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

14 Fall Two compensator zeros at ±6.63j draw the two lower frequency plant poles further into the LHP. Compensator poles are at much higher frequency. Looks like a lead compensator.

15 Fall Figure 7: Example #2: G(s) =.94 s Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

16 Fall Figure 8: Example #2: G(s) =.94 s Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

17 Fall Compensator zero at draws the two lower frequency plant poles further into the LHP. Compensator poles are at much higher frequency. Looks like a lead compensator.

18 Fall Figure 9: Example #3: G(s) = (s 8)(s 14)(s 2) Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm=.942 db (at rad/sec), Pm=6.674 deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

19 Fall Figure 1: Example #3: G(s) = (s 8)(s 14)(s 2) Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

20 Fall Compensator zeros at 3.72±8.3j draw the two higher frequency plant poles further into the LHP. Lowest frequency one heads into the LHP on its own. Compensator poles are at much higher frequency. Note sure what this looks like.

21 Fall Figure 11: Example #4: G(s) = Compensator Gc 1 2 (s 1) (s+1)(s 3) closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

22 Fall Figure 12: Example #4: G(s) = (s 1) (s+1)(s 3) Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

23 Fall Compensator zero at -1 cancels the plant pole. Note the very unstable compensator pole at s =9!! Needed to get the RHP plant pole to branch off thereallineand head into the LHP. Other compensator pole is at much higher frequency. Note sure what this looks like. Separation principle gives a very powerful and simple way to develop a dynamic output feedback controller Note that the designer now focuses on selecting the appropriate regulator and estimator pole locations. Once those are set, the closed-loop response is specified. Canalmostconsiderthecompensatortobeaby-product. These examples show that the design process is extremely simple.

### Topic # Feedback Control Systems

Topic #16 16.31 Feedback Control Systems State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Fall 2007 16.31 16 1 Combined Estimators and Regulators

### Topic # /31 Feedback Control Systems. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic #15 16.3/31 Feedback Control Systems State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Reading: FPE 7.6 Fall 21 16.3/31 15 2 Combined

### Topic # Feedback Control

Topic #5 6.3 Feedback Control State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear

### D(s) G(s) A control system design definition

R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

### POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

### State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

### Topic # /31 Feedback Control Systems

Topic #16 16.30/31 Feedback Control Systems Add reference inputs for the DOFB case Reading: FPE 7.8, 7.9 Fall 2010 16.30/31 16 2 Reference Input - II On page 15-6, compensator implemented with reference

### EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

### CONTROL DESIGN FOR SET POINT TRACKING

Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

### Topic # Feedback Control Systems

Topic #15 16.31 Feedback Control Systems State-Space Systems Open-loop Estimators Closed-loop Estimators Observer Theory (no noise) Luenberger IEEE TAC Vol 16, No. 6, pp. 596 602, December 1971. Estimation

### Topic # Feedback Control Systems

Topic #20 16.31 Feedback Control Systems Closed-loop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control

### 5. Observer-based Controller Design

EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

### EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

### EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

### Intro. Computer Control Systems: F9

Intro. Computer Control Systems: F9 State-feedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se

### Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

### EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 81-11 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12

### Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC426 SC426 Fall 2, dr A Abate, DCSC, TU Delft Lecture 5 Controllable Canonical and Observable Canonical Forms Stabilization by State Feedback State Estimation, Observer Design

### 1 (30 pts) Dominant Pole

EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

### Topic # Feedback Control Systems

Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

### Synthesis via State Space Methods

Chapter 18 Synthesis via State Space Methods Here, we will give a state space interpretation to many of the results described earlier. In a sense, this will duplicate the earlier work. Our reason for doing

### Outline. Classical Control. Lecture 1

Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

### Linear State Feedback Controller Design

Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

### MAE 143B - Homework 8 Solutions

MAE 43B - Homework 8 Solutions P6.4 b) With this system, the root locus simply starts at the pole and ends at the zero. Sketches by hand and matlab are in Figure. In matlab, use zpk to build the system

### Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### 6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

### Control Systems Design

ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

### Control System Design

ELEC ENG 4CL4: Control System Design Notes for Lecture #11 Wednesday, January 28, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Relative Stability: Stability

### ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

### EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

### Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

Spectral Properties of Linear- Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of single-input/singleoutput (SISO) systems! Characterizations

### Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Lecture 6. Loop analysis of feedback systems 1. Motivation 2. Graphical representation of frequency response: Bode and Nyquist curves 3. Nyquist stability theorem 4. Stability margins Frequency methods

### Classify a transfer function to see which order or ramp it can follow and with which expected error.

Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

### Topic # Feedback Control

Topic #4 16.31 Feedback Control Stability in the Frequency Domain Nyquist Stability Theorem Examples Appendix (details) This is the basis of future robustness tests. Fall 2007 16.31 4 2 Frequency Stability

### ECEEN 5448 Fall 2011 Homework #4 Solutions

ECEEN 5448 Fall 2 Homework #4 Solutions Professor David G. Meyer Novemeber 29, 2. The state-space realization is A = [ [ ; b = ; c = [ which describes, of course, a free mass (in normalized units) with

### Module 5: Design of Sampled Data Control Systems Lecture Note 8

Module 5: Design of Sampled Data Control Systems Lecture Note 8 Lag-lead Compensator When a single lead or lag compensator cannot guarantee the specified design criteria, a laglead compensator is used.

### Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

### Topic # Feedback Control Systems

Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19

### Pole placement control: state space and polynomial approaches Lecture 2

: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

### Control Systems. Design of State Feedback Control.

Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

### Analysis of SISO Control Loops

Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

### ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

### SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

### CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER Exercise 54 Consider the system: ẍ aẋ bx u where u is the input and x the output signal (a): Determine a state space realization (b): Is the

### CDS 101/110a: Lecture 10-2 Control Systems Implementation

CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -

### Control System Design

ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

### Exam. 135 minutes, 15 minutes reading time

Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

### ME 132, Fall 2017, UC Berkeley, A. Packard 334 # 6 # 7 # 13 # 15 # 14

ME 132, Fall 2017, UC Berkeley, A. Packard 334 30.3 Fall 2017 Final # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 NAME 20 15 20 15 15 18 15 20 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 18 12 12 15 12 20 18 15 Facts: 1.

### TRACKING AND DISTURBANCE REJECTION

TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference

### FREQUENCY-RESPONSE DESIGN

ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

### EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

### Design Methods for Control Systems

Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

### K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

321 16. Determine the range of K for which each of the following systems is stable by making a Bode plot for K = 1 and imagining the magnitude plot sliding up or down until instability results. Verify

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

### Chapter 20 Analysis of MIMO Control Loops

Chapter 20 Analysis of MIMO Control Loops Motivational Examples All real-world systems comprise multiple interacting variables. For example, one tries to increase the flow of water in a shower by turning

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using the

### Richiami di Controlli Automatici

Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

### Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Plan of the Lecture Review: design using Root Locus; dynamic compensation; PD and lead control Today s topic: PI and lag control; introduction to frequency-response design method Goal: wrap up lead and

### Internal Model Principle

Internal Model Principle If the reference signal, or disturbance d(t) satisfy some differential equation: e.g. d n d dt n d(t)+γ n d d 1 dt n d 1 d(t)+...γ d 1 dt d(t)+γ 0d(t) =0 d n d 1 then, taking Laplace

### State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

### ECE 388 Automatic Control

Controllability and State Feedback Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage:

### Topic # Feedback Control Systems

Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

### ECE 486 Control Systems

ECE 486 Control Systems Spring 208 Midterm #2 Information Issued: April 5, 208 Updated: April 8, 208 ˆ This document is an info sheet about the second exam of ECE 486, Spring 208. ˆ Please read the following

### INTRODUCTION TO DIGITAL CONTROL

ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

### An Internal Stability Example

An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

### Chapter 6 - Solved Problems

Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal

### Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

### Lecture 7 (Weeks 13-14)

Lecture 7 (Weeks 13-14) Introduction to Multivariable Control (SP - Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 13-14) p.

### Mechanical Systems Part A: State-Space Systems Lecture AL12

AL: 436-433 Mechanical Systems Part A: State-Space Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & Emami-Naeini, Ch. 9. Requirements: accurate

### 1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant

### Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Q-Parameterization 1 This lecture introduces the so-called

### Lecture 1: Feedback Control Loop

Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

### State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 State Estimator In previous section, we have discussed the state feedback, based on the assumption that all state variables are

### MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

### Exercise 1 (A Non-minimum Phase System)

Prof. Dr. E. Frazzoli 5-59- Control Systems I (HS 25) Solution Exercise Set Loop Shaping Noele Norris, 9th December 26 Exercise (A Non-minimum Phase System) To increase the rise time of the system, we

### School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

### Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 23: Drawing The Nyquist Plot Overview In this Lecture, you will learn: Review of Nyquist Drawing the Nyquist Plot Using

### Topic # Feedback Control

Topic #11 16.31 Feedback Control State-Space Systems State-space model features Observability Controllability Minimal Realizations Copyright 21 by Jonathan How. 1 Fall 21 16.31 11 1 State-Space Model Features

### Engraving Machine Example

Engraving Machine Example MCE44 - Fall 8 Dr. Richter November 24, 28 Basic Design The X-axis of the engraving machine has the transfer function G(s) = s(s + )(s + 2) In this basic example, we use a proportional

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

### Exercise 1 (A Non-minimum Phase System)

Prof. Dr. E. Frazzoli 5-59- Control Systems I (Autumn 27) Solution Exercise Set 2 Loop Shaping clruch@ethz.ch, 8th December 27 Exercise (A Non-minimum Phase System) To decrease the rise time of the system,

### Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

### Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

### ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

### Observability and state estimation

EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time observability

### Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

### Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

### Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

### Control Systems Design

ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

### ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

### Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure

### LINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Controller design in the frequency domain Topics to be covered include: Lag controller design 2 Dr. Ali Karimpour

### Lecture 19 Observability and state estimation

EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

### EE 4343/ Control System Design Project LECTURE 10

Copyright S. Ikenaga 998 All rights reserved EE 4343/5329 - Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phase-lead and Phase-lag compensators using