Carrier and Timing Synchronization in Digital Modems

Size: px
Start display at page:

Download "Carrier and Timing Synchronization in Digital Modems"

Transcription

1 Carrier and Timing Synchronization in Digital Modems Synchronization-3 Carrier Phase Lock fred harris June, 218

2 Locking to Carrier of Modulated Signal with Suppressed Carrier 2

3 How Can One Lock to a Carrier That s Not There? Phase Jump f f Frequency Jump 3 f Non Linea rity Forms Line f f f

4 Estimate Modulation and Remove it from Modulated Waveform. m( t) x( t) j y( t) R( t) exp( j ( t)) Baseband Modulation signal s( t) [ x( t) j y( t)] exp( j t) R( t) exp( j ( t)) exp( j t) v( t) s( t) exp( j( t )) R( t) exp( j ( t)) exp( j t) exp( j( ˆ t )) mˆ ( t) slice [ v( t)] slice [ R( t) exp( j ( t)) exp( j )] Rˆ ( t) exp( j ˆ ( t)) R( t) exp( j ( t)) exp( j ) ( ) ˆ ( ) ( ) exp( ( )) exp( ) ˆ( ) exp( ˆ( )) * v t m t R t j t j R t j t 4 Up-Converted Signal, Modulation Signal On Carrier R( t) Rˆ ( t) exp( j( ( t) ˆ ( t))) exp( j ) Estimate of Modulated Signal Component R( t) Rˆ( t) exp( j )exp( j ) R( t) Rˆ( t) exp( j( )) is Phase Error Due to Additive Noise Down-Convert Received Signal With Phase Error in Local Oscillator Remove Estimated Modulated Signal Component from Down Converted Signal

5 Computation Are Performed in Cartesian Coordinates not Polar Coordinates ( ) ˆ ( ) ( ) exp( ( )) exp( ) ˆ ( ) exp( ˆ( )) * v t m t R t j t j R t j t R exp( j ) exp( j ) R exp( j ) R R exp( j( )) exp( j ) R R exp( j ) exp( j ) 1 2 R R exp( j( )) 1 2 R R [cos( ) j sin( )] 1 2 is Phase Error Due to Additive Noise * v t () mˆ ( t) [ x ( t) j y ( t)] [ x ( t) j y ( t)] [ x j y ] [ x j y ] [ x x y y ] j [ x y x y ] [ x y x y ] R R sin( )

6 Phase Measurement with Modulated Signal Constellation Points Noise Cloud s(n) Noise cloud N(n) Rotated Data Decision Boundaries s(n) e j r(n)= s(n) e j + N(n) r(n) Slic er s(n) * d(n) 6

7 Angle Varianc e Due to Noise Cloud for Small Signal Decision Aided Acquisition Noise Cloud Angle Varianc e Due to Noise Cloud for Large Signal r(n) e j (n) Matc hed Filter Equalizer Filter r(n) Detector (Slic er) s(n) (n) * -j (n) e DDS Loop Filter SNR ATAN d(n) 7

8 Decision Aided Acquisition Angle Varianc e Due to Noise Cloud for Small Signal Noise Cloud Angle Varianc e Due to Noise Cloud for Large Signal r(n) e j (n) Phase Detector, Estimates Modulation and Removes it Matc hed Filter Equalizer Filter r(n) Detector (Slic er) s(n) (n) * -j (n) e DDS Loop Filter SNR ATAN d(n) 8 Water Pistol Cleverly Disguised as a PLL Phase Detector

9 BPSK Phase Error y A sin( ) A exp(j ) x A cos( ) Consider x(n) y(n) x n y n A 2 ( )* ( ) cos( )*sin( ) A 2 2 sin(2 ) 9

10 BPSK Phase Error Option 1: x(n) y(n) x n y n A 2 ( )* ( ) cos( )*sin( ) A 2 2 sin(2 ) A sin( ) y Phase Error Down Converted Modulation Component With Carrier Phase Error A cos( ) A exp(j ) x BPSK Slicer Output. Estimate of Modulation Component Option 2: sgn(x(n)) y(n) x + j y Estimated Constellation point = A sgn(x ) = A sgn(cos( )) x + j y Observed Constellation point = A cos( )+ j A sin( ) [ x1 y2 x2 y1] A sgn(cos( )) A sin( ) A sgn(cos( )) sin( ) 1

11 I-Q Product Phase Detectors for Modulated BPSK Inputs to Product Detector Inputs to Product Detector sgn(cosine) cosine S-Curve Product detector x*y S-Curve Product Detector sign(x)*y No Multiplies in sgn(x) y -

12 12 I-Q Product Phase Detectors for Modulated BPSK

13 I-Q Product Phase Detectors for Modulated QPSK Inputs to Phase Detector y(n)*sign(x(n-1))-x(n)*sign(y(n-1)) and y(n-1)*sign(x(n))-x(n-1)*sign(y(n)) S-Curve Product Phase Detector: sign(x)*y-sign(y)*x [y(n)*sign(x(n-1))-x(n)*sign(y(n-1))]- [y(n-1)*sign(x(n))-x(n-1)*sign(y(n))] Quadricorrelator (Frequency Estimator) No Multiplies in sgn(x) y-sgn(y) x No Multiplies in Frequency Estimator

14 I-Q Product Phase Detectors for Modulated QPSK Det ( 4 ) sgn( I( )) Q( ) sgn( Q( )) I( ) Det ( ) 3 2 [ I( ) Q( )] [ I( ) Q( )] I( ) Q( ) 14

15 Tanh( SNR I( )) Q( ) Tanh( SNR Q( )) I( ) QPSK S-Curves for Range of SNR 15

16 Non Data Aided BPSK Low SNR TIME SYNCH r(t) T ( ) dt cos( t + ) SAMPLE Output I k Quadrature VCO sin( t + ) T ( ) dt LOOP FILTER SAMPLE e(t) TIME SYNCH 16

17 Non Data Aided BPSK High SNR TIME SYNCH T ( ) dt SAMPLE Output I k r(t) cos( t + ) SIGN Quadrature VCO sin( t + ) LOOP FILTER e(t) T ( ) dt SAMPLE TIME SYNCH 17

18 Costas Loop PLL r(t) T ( ) dt cos( t + ) Quadrature VCO sin( t + ) T ( ) dt LOOP FILTER e(t) Output S(t) 18

19 Digital PLL for Sinusoid r(n) cos( + ) FIR LPF Down Sam ple x(n) ATAN k P Loop Filter -Sin( + ) FIR LPF Y(n) K I Z -1 Sin-Cos Table Z -1 Direc t Digital Synthesizer If we replace ATAN with a product, we have a Costas Loop! 19

20 QPSK PLL I(n)+ jq(n) (n) Loops Differ in Phase Detectors That Change Slicers to Match Constellation r(n) cos( + ) FIR LPF x(n) x(n)+ jy(n) I(n) + -Sin( + ) FIR LPF y(n) Q(n) - DDS Loop Filter I(n)y(n)-Q(n)x(n) ~ sin( (n)) 2 Direc t Digital Synthesizer

21 QPSK PLL-II r(n) cos( + ) FIR LPF x(n) SNR I(n) Tanh(-) + -Sin( + ) Trig Table FIR LPF Loop Filter y(n) Direc t Digital Synthesizer SNR Tanh(-) Q(n) I(n)y(n)-Q(n)x(n) ~ sin( (n)) -

22 I(n)+ jq(n) (n) x(n)+ jy(n) 16-QAM PLL r(n) -sin( + ) DDS cos( + ) FIR LPF FIR LPF Loop Filter x(n) y(n) 2-D Slic er + - I(n) Q(n) Gain Det Loops Differ in Phase Detectors That Change Slicers to Match Constellation Slicer Boundaries 22

Carrier Synchronization

Carrier Synchronization Chapter 8 Carrier Synchronization Marvin K. Simon and Jon Hamkins Traditionally, carrier synchronization (sync) techniques have been developed assuming that the modulation format and signal constellation

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Residual Versus Suppressed-Carrier Coherent Communications

Residual Versus Suppressed-Carrier Coherent Communications TDA Progress Report -7 November 5, 996 Residual Versus Suppressed-Carrier Coherent Communications M. K. Simon and S. Million Communications and Systems Research Section This article addresses the issue

More information

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness Digital Communications: A Discrete-Time Approach M. Rice Errata Foreword Page xiii, first paragraph, bare witness should be bear witness Page xxi, last paragraph, You know who you. should be You know who

More information

A First Course in Digital Communications

A First Course in Digital Communications A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk February 9 A First Course in Digital Communications 1/46 Introduction There are benefits to be gained when M-ary (M = 4 signaling methods

More information

Digital Communications

Digital Communications Digital Communications Chapter 5 Carrier and Symbol Synchronization Po-Ning Chen, Professor Institute of Communications Engineering National Chiao-Tung University, Taiwan Digital Communications Ver 218.7.26

More information

Mapper & De-Mapper System Document

Mapper & De-Mapper System Document Mapper & De-Mapper System Document Mapper / De-Mapper Table of Contents. High Level System and Function Block. Mapper description 2. Demodulator Function block 2. Decoder block 2.. De-Mapper 2..2 Implementation

More information

Symbol Synchronization

Symbol Synchronization Chapter 10 Symbol Synchronization Marvin K. Simon As we have seen in other chapters, the operation and performance of various receiver functions can be quite sensitive to knowledge of the timing data transition

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

Analog Electronics 2 ICS905

Analog Electronics 2 ICS905 Analog Electronics 2 ICS905 G. Rodriguez-Guisantes Dépt. COMELEC http://perso.telecom-paristech.fr/ rodrigez/ens/cycle_master/ November 2016 2/ 67 Schedule Radio channel characteristics ; Analysis and

More information

Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference

Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference TMO Progress Report 4-139 November 15, 1999 Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference M. K. Simon 1 The bit-error probability performance

More information

LECTURE 3 CMOS PHASE LOCKED LOOPS

LECTURE 3 CMOS PHASE LOCKED LOOPS Lecture 03 (8/9/18) Page 3-1 LECTURE 3 CMOS PHASE LOCKED LOOPS Topics The acquisition process unlocked state Noise in linear PLLs Organization: Systems Perspective Types of PLLs and PLL Measurements PLL

More information

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. Digital Modulation and Coding Tutorial-1 1. Consider the signal set shown below in Fig.1 a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics. b) What is the minimum Euclidean

More information

Tutorial on Dynamic Analysis of the Costas Loop. 12

Tutorial on Dynamic Analysis of the Costas Loop. 12 Tutorial on Dynamic Analysis of the Costas Loop. 12 Best R.E. a, Kuznetsov N.V. b,c, Leonov G.A. b,d, Yuldashev M.V. b, Yuldashev R.V. b a Best Engineering, Oberwil, Switzerland b Saint-Petersburg State

More information

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Clemson University TigerPrints All Theses Theses 1-015 The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals Allison Manhard Clemson University,

More information

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0 Problem 6.15 : he received signal-plus-noise vector at the output of the matched filter may be represented as (see (5-2-63) for example) : r n = E s e j(θn φ) + N n where θ n =0,π/2,π,3π/2 for QPSK, and

More information

Summary II: Modulation and Demodulation

Summary II: Modulation and Demodulation Summary II: Modulation and Demodulation Instructor : Jun Chen Department of Electrical and Computer Engineering, McMaster University Room: ITB A1, ext. 0163 Email: junchen@mail.ece.mcmaster.ca Website:

More information

Tracking of Spread Spectrum Signals

Tracking of Spread Spectrum Signals Chapter 7 Tracking of Spread Spectrum Signals 7. Introduction As discussed in the last chapter, there are two parts to the synchronization process. The first stage is often termed acquisition and typically

More information

8 PAM BER/SER Monte Carlo Simulation

8 PAM BER/SER Monte Carlo Simulation xercise.1 8 PAM BR/SR Monte Carlo Simulation - Simulate a 8 level PAM communication system and calculate bit and symbol error ratios (BR/SR). - Plot the calculated and simulated SR and BR curves. - Plot

More information

Direct-Sequence Spread-Spectrum

Direct-Sequence Spread-Spectrum Chapter 3 Direct-Sequence Spread-Spectrum In this chapter we consider direct-sequence spread-spectrum systems. Unlike frequency-hopping, a direct-sequence signal occupies the entire bandwidth continuously.

More information

Chapter 4 Code Tracking Loops

Chapter 4 Code Tracking Loops Chapter 4 Code Tracking Loops 4- Optimum Tracking of Wideband Signals A tracking loop making use of this optimum discriminator is illustrated in Figure 4-1. 4- Optimum Tracking of Wideband Signals 4.3

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 What is Phase-Locked Loop? The phase-locked loop (PLL) is an electronic system which has numerous important applications. It consists of three elements forming a feedback loop:

More information

Behavior of Phase-Locked Loops

Behavior of Phase-Locked Loops Phase-Locked Loops Behavior of Phase-Locked Loops Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Mathematical Model of VCOs 6- Phase of Signals V0 = Vmsin 0t V = Vmsin

More information

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components TUTORIAL ON DIGITAL MODULATIONS Part 3: 4-PSK [2--26] Roberto Garello, Politecnico di Torino Free download (for personal use only) at: www.tlc.polito.it/garello Quadrature modulation Consider a 2-D constellation,

More information

Quantization Noise Conditioning Techniques for Digital Delta-Sigma Modulators

Quantization Noise Conditioning Techniques for Digital Delta-Sigma Modulators Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems MTNS 2010 5 9 July, 2010 Budapest, Hungary Quantization Noise Conditioning Techniques for Digital Delta-Sigma

More information

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems Department of Electrical Engineering, College of Engineering, Basrah University Basrah Iraq,

More information

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf Reading: Ch. 5 in Kay-II. (Part of) Ch. III.B in Poor. EE 527, Detection and Estimation Theory, # 5c Detecting Parametric Signals in Noise

More information

Chapter 2 Random Processes

Chapter 2 Random Processes Chapter 2 Random Processes 21 Introduction We saw in Section 111 on page 10 that many systems are best studied using the concept of random variables where the outcome of a random experiment was associated

More information

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet EE538 Digital Signal Processing I Session 3 Exam Live: Wed., Sept. 8, 00 Cover Sheet Test Duration: 50 minutes. Coverage: Sessions -0. Open Book but Closed Notes. Calculators not allowed. This test contains

More information

Carrier Transmission. The transmitted signal is y(t) = k a kh(t kt ). What is the bandwidth? More generally, what is its Fourier transform?

Carrier Transmission. The transmitted signal is y(t) = k a kh(t kt ). What is the bandwidth? More generally, what is its Fourier transform? The transmitted signal is y(t) = k a kh(t kt ). What is the bandwidth? More generally, what is its Fourier transform? The baseband signal is y(t) = k a kh(t kt ). The power spectral density of the transmission

More information

Rapport technique #INRS-EMT Exact Expression for the BER of Rectangular QAM with Arbitrary Constellation Mapping

Rapport technique #INRS-EMT Exact Expression for the BER of Rectangular QAM with Arbitrary Constellation Mapping Rapport technique #INRS-EMT-010-0604 Exact Expression for the BER of Rectangular QAM with Arbitrary Constellation Mapping Leszek Szczeciński, Cristian González, Sonia Aïssa Institut National de la Recherche

More information

Homework 8 Solutions

Homework 8 Solutions EECS Signals & Systems University of California, Berkeley: Fall 7 Ramchandran November, 7 Homework 8 Solutions Problem OWN 8.47 (Effects from loss of synchronization.) In this problem we assume that c

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

Representation of Signals & Systems

Representation of Signals & Systems Representation of Signals & Systems Reference: Chapter 2,Communication Systems, Simon Haykin. Hilbert Transform Fourier transform frequency content of a signal (frequency selectivity designing frequency-selective

More information

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL T F T I G E O R G A I N S T I T U T E O H E O F E A L P R O G R ESS S A N D 1 8 8 5 S E R V L O G Y I C E E C H N O Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL Aravind R. Nayak

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Computing Probability of Symbol Error

Computing Probability of Symbol Error Computing Probability of Symbol Error I When decision boundaries intersect at right angles, then it is possible to compute the error probability exactly in closed form. I The result will be in terms of

More information

On VDSL Performance and Hardware Implications for Single Carrier Modulation Transceivers

On VDSL Performance and Hardware Implications for Single Carrier Modulation Transceivers On VDSL Performance and ardware Implications for Single Carrier Modulation Transceivers S. AAR, R.ZUKUNFT, T.MAGESACER Institute for Integrated Circuits - BRIDGELAB Munich University of Technology Arcisstr.

More information

CHANNEL CAPACITY CALCULATIONS FOR M ARY N DIMENSIONAL SIGNAL SETS

CHANNEL CAPACITY CALCULATIONS FOR M ARY N DIMENSIONAL SIGNAL SETS THE UNIVERSITY OF SOUTH AUSTRALIA SCHOOL OF ELECTRONIC ENGINEERING CHANNEL CAPACITY CALCULATIONS FOR M ARY N DIMENSIONAL SIGNAL SETS Philip Edward McIllree, B.Eng. A thesis submitted in fulfilment of the

More information

1. Band-pass modulations. 2. 2D signal set. 3. Basis signals p(t)cos(2πf 0 t) e p(t)sin(2πf 0 t) 4. Costellation = m signals, equidistant on a circle

1. Band-pass modulations. 2. 2D signal set. 3. Basis signals p(t)cos(2πf 0 t) e p(t)sin(2πf 0 t) 4. Costellation = m signals, equidistant on a circle TUTORIAL ON DIGITAL MODULATIONS Part 14: m-psk [last modified: 2010-11-25] Roerto Garello, Politecnico di Torino Free download at: www.tlc.polito.it/garello (personal use only) 1 m-psk modulations 1. Band-pass

More information

Determining the Optimal Decision Delay Parameter for a Linear Equalizer

Determining the Optimal Decision Delay Parameter for a Linear Equalizer International Journal of Automation and Computing 1 (2005) 20-24 Determining the Optimal Decision Delay Parameter for a Linear Equalizer Eng Siong Chng School of Computer Engineering, Nanyang Technological

More information

Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D.

Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D. Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D. abuhajar@digitavid.net Presentation Outline What is Phase Locked Loop (PLL) Basic PLL System Problem of Lock Acquisition Phase/Frequency

More information

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Carrier frequency estimation. ELEC-E5410 Signal processing for communications Carrier frequency estimation ELEC-E54 Signal processing for communications Contents. Basic system assumptions. Data-aided DA: Maximum-lielihood ML estimation of carrier frequency 3. Data-aided: Practical

More information

ECE 564/645 - Digital Communications, Spring 2018 Midterm Exam #1 March 22nd, 7:00-9:00pm Marston 220

ECE 564/645 - Digital Communications, Spring 2018 Midterm Exam #1 March 22nd, 7:00-9:00pm Marston 220 ECE 564/645 - Digital Communications, Spring 08 Midterm Exam # March nd, 7:00-9:00pm Marston 0 Overview The exam consists of four problems for 0 points (ECE 564) or 5 points (ECE 645). The points for each

More information

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1 Wireless : Wireless Advanced Digital Communications (EQ2410) 1 Thursday, Feb. 11, 2016 10:00-12:00, B24 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Wireless Lecture 1-6 Equalization

More information

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz. CHAPTER 4 Problem 4. : Based on the info about the scattering function we know that the multipath spread is T m =ms, and the Doppler spread is B d =. Hz. (a) (i) T m = 3 sec (ii) B d =. Hz (iii) ( t) c

More information

representation of speech

representation of speech Digital Speech Processing Lectures 7-8 Time Domain Methods in Speech Processing 1 General Synthesis Model voiced sound amplitude Log Areas, Reflection Coefficients, Formants, Vocal Tract Polynomial, l

More information

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques EE6604 Personal & Mobile Communications Week 13 Multi-antenna Techniques 1 Diversity Methods Diversity combats fading by providing the receiver with multiple uncorrelated replicas of the same information

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

Wireless Information Transmission System Lab. Channel Estimation. Institute of Communications Engineering. National Sun Yat-sen University

Wireless Information Transmission System Lab. Channel Estimation. Institute of Communications Engineering. National Sun Yat-sen University Wireless Information Transmission System Lab. Channel Estimation Institute of Communications Engineering National Sun Yat-sen University Table of Contents Introduction to Channel Estimation Generic Pilot

More information

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Department of Electrical Engineering University of Arkansas ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Introduction Fourier Transform Properties of Fourier

More information

Iterative Timing Recovery

Iterative Timing Recovery Iterative Timing Recovery John R. Barry School of Electrical and Computer Engineering, Georgia Tech Atlanta, Georgia U.S.A. barry@ece.gatech.edu 0 Outline Timing Recovery Tutorial Problem statement TED:

More information

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP 5th European Signal Processing Conference (EUSIPCO 7), Poznan, Poland, September 3-7, 7, copyright by EURASIP TWO-SIGNAL EXTENSION OF AN ADAPTIVE NOTCH FILTER FOR FREQUENCY TRACKING Yann Prudat and Jean-Marc

More information

UTA EE5362 PhD Diagnosis Exam (Spring 2011)

UTA EE5362 PhD Diagnosis Exam (Spring 2011) EE5362 Spring 2 PhD Diagnosis Exam ID: UTA EE5362 PhD Diagnosis Exam (Spring 2) Instructions: Verify that your exam contains pages (including the cover shee. Some space is provided for you to show your

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y h x y f x y x y G uv H uv F uv N uv 1 Source of noise Image acquisition (digitization) Image transmission Spatial properties of noise Statistical

More information

Fundamentals of PLLs (III)

Fundamentals of PLLs (III) Phase-Locked Loops Fundamentals of PLLs (III) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Phase transfer function in linear model i (s) Kd e (s) Open-loop transfer

More information

4/16/2012 S EVEN LESS S LESS S LESS R E MORE M O MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MO RE

4/16/2012 S EVEN LESS S LESS S LESS R E MORE M O MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MO RE 1 2 1 3 4 2 MO R E MO R E MO R E MO R E MO R E MORE MORE MORE MORE MORE MORE MORE S LESS S LESS S EVEN LESS MO RE MO R E MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE

More information

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ 27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential

More information

Trellis Coded Modulation

Trellis Coded Modulation Trellis Coded Modulation Trellis coded modulation (TCM) is a marriage between codes that live on trellises and signal designs We have already seen that trellises are the preferred way to view convolutional

More information

PY3107 Experimental Physics II

PY3107 Experimental Physics II PY3107 Experimental Physics II ock-in Amplifiers MP aughan and F Peters Related Experiments ock-in ab ignal processing and phase sensitive detection using a lock-in amplifier The problem The signal to

More information

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS PART A 1. Define 1 s complement form? In 1,s complement form the positive number is represented as in the sign magnitude form. To obtain the negative

More information

SIGNAL SPACE CONCEPTS

SIGNAL SPACE CONCEPTS SIGNAL SPACE CONCEPTS TLT-5406/0 In this section we familiarize ourselves with the representation of discrete-time and continuous-time communication signals using the concepts of vector spaces. These concepts

More information

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Matched Filter Generalized Matched Filter Signal

More information

Synchronization of Spread Spectrum Signals

Synchronization of Spread Spectrum Signals Chapter 6 Synchronization of Spread Spectrum Signals 6. Introduction All digital communication systems must perform synchronization. Synchronization is the process of aligning any locally generated reference

More information

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture) ECE 564/645 - Digital Communications, Spring 018 Homework # Due: March 19 (In Lecture) 1. Consider a binary communication system over a 1-dimensional vector channel where message m 1 is sent by signaling

More information

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters UORIAL ON DIGIAL MODULAIONS Part 7: Intersymbol interference [last modified: 200--23] Roberto Garello, Politecnico di orino Free download at: www.tlc.polito.it/garello (personal use only) Part 7: Intersymbol

More information

Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach

Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach Aseem Wadhwa, Upamanyu Madhow Department of ECE, UCSB 1/26 Modern Communication Receiver Architecture Analog Digital TX

More information

EE4440 HW#8 Solution

EE4440 HW#8 Solution EE HW#8 Solution April 3,. What frequency must be used for basis symbols φ = sin(ω c t) and φ = cos(ω c t) with a symbol period of /(96Hz) to contain 6 cycles of the sin and cos? Solution: The frequency

More information

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero.

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero. Problem 5.1 : The correlation of the two signals in binary FSK is: ρ = sin(π ft) π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero. Thus: ϑρ

More information

Fundamentals: Frequency & Time Generation

Fundamentals: Frequency & Time Generation Fundamentals: Frequency & Time Generation Dominik Schneuwly Oscilloquartz SA slide 1 v.1.0 24/10/12 SCDO Content 1. Fundamentals 2. Frequency Generation Atomic Cesium Clock (Cs) Rubidium Oscillator (Rb)

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi) High-Speed Serial Iterface Circuit ad Sytem Lect. 4 Phae-Locked Loop (PLL) Type 1 (Chap. 8 i Razavi) PLL Phae lockig loop A (egative-feedback) cotrol ytem that geerate a output igal whoe phae (ad frequecy)

More information

Chapter 10. Timing Recovery. March 12, 2008

Chapter 10. Timing Recovery. March 12, 2008 Chapter 10 Timing Recovery March 12, 2008 b[n] coder bit/ symbol transmit filter, pt(t) Modulator Channel, c(t) noise interference form other users LNA/ AGC Demodulator receive/matched filter, p R(t) sampler

More information

Motivation for CDR: Deserializer (1)

Motivation for CDR: Deserializer (1) Motivation for CDR: Deserializer (1) Input data 1:2 DMUX 1:2 DMUX channel 1:2 DMUX Input clock 2 2 If input data were accompanied by a well-synchronized clock, deserialization could be done directly. EECS

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have discussed all basic components of MODEM Pulse shaping Tx/Rx filter pair Modulator/demodulator Bits map symbols Discussions assume ideal channel, and for dispersive channel

More information

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut Finite Word Length Effects and Quantisation Noise 1 Finite Word Length Effects Finite register lengths and A/D converters cause errors at different levels: (i) input: Input quantisation (ii) system: Coefficient

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X

More information

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter ECE4270 Fundamentals of DSP Lecture 20 Fixed-Point Arithmetic in FIR and IIR Filters (part I) School of ECE Center for Signal and Information Processing Georgia Institute of Technology Overview of Lecture

More information

Synchronization Techniques for Burst-Mode Continuous Phase Modulation

Synchronization Techniques for Burst-Mode Continuous Phase Modulation Synchronization Techniques for Burst-Mode Continuous Phase Modulation By Seyed Mohammad Ehsan Hosseini Submitted to the graduate degree program in the Department of Electrical Engineering & Computer Science

More information

EE241 - Spring 2006 Advanced Digital Integrated Circuits

EE241 - Spring 2006 Advanced Digital Integrated Circuits EE241 - Spring 2006 Advanced Digital Integrated Circuits Lecture 20: Asynchronous & Synchronization Self-timed and Asynchronous Design Functions of clock in synchronous design 1) Acts as completion signal

More information

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test 2 SOLUTIONS 1. Find the radius of convergence of the power series Show your work. x + x2 2 + x3 3 + x4 4 + + xn

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

A New Method For Simultaneously Measuring And Analyzing PLL Transfer Function And Noise Processes

A New Method For Simultaneously Measuring And Analyzing PLL Transfer Function And Noise Processes A New Method For Simultaneouly Meauring And Analyzing PLL Tranfer Function And Noie Procee Mike Li CTO, Ph.D. Jan Wiltrup Corporate Conultant 1 Outline Introduction Phae Locked-Loop (PLL) and Noie Procee

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

EE456 Digital Communications

EE456 Digital Communications EE456 Digital Communications Professor Ha Nguyen September 5 EE456 Digital Communications Block Diagram of Binary Communication Systems m ( t { b k } b k = s( t b = s ( t k m ˆ ( t { bˆ } k r( t Bits in

More information

Pulse-Code Modulation (PCM) :

Pulse-Code Modulation (PCM) : PCM & DPCM & DM 1 Pulse-Code Modulation (PCM) : In PCM each sample of the signal is quantized to one of the amplitude levels, where B is the number of bits used to represent each sample. The rate from

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Analysis of Receiver Quantization in Wireless Communication Systems

Analysis of Receiver Quantization in Wireless Communication Systems Analysis of Receiver Quantization in Wireless Communication Systems Theory and Implementation Gareth B. Middleton Committee: Dr. Behnaam Aazhang Dr. Ashutosh Sabharwal Dr. Joseph Cavallaro 18 April 2007

More information

Signal Processing for Digital Data Storage (11)

Signal Processing for Digital Data Storage (11) Outline Signal Processing for Digital Data Storage (11) Assist.Prof. Piya Kovintavewat, Ph.D. Data Storage Technology Research Unit Nahon Pathom Rajabhat University Partial-Response Maximum-Lielihood (PRML)

More information

Optimization of Phase-Locked Loops With Guaranteed Stability. C. M. Kwan, H. Xu, C. Lin, and L. Haynes

Optimization of Phase-Locked Loops With Guaranteed Stability. C. M. Kwan, H. Xu, C. Lin, and L. Haynes Optimization of Phase-Locked Loops With Guaranteed Stability C. M. Kwan, H. Xu, C. Lin, and L. Haynes ntelligent Automation nc. 2 Research Place Suite 202 Rockville, MD 20850 phone: (301) - 590-3155, fax:

More information

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece,

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece, Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept., Greece, yannis@csd.uoc.gr SPCC 2016 1 Speech Production 2 Modulators 3 Sinusoidal Modeling Sinusoidal Models Voiced Speech

More information

Application of Matched Filter

Application of Matched Filter Application of Matched Filter Lecture No. 12 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview This lecture will look at the following: Matched filter vs

More information

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures Contents 3 Equalization 57 3. Intersymbol Interference and Receivers for Successive Message ransmission........ 59 3.. ransmission of Successive Messages.......................... 59 3.. Bandlimited Channels..................................

More information

Performance Analysis of Spread Spectrum CDMA systems

Performance Analysis of Spread Spectrum CDMA systems 1 Performance Analysis of Spread Spectrum CDMA systems 16:33:546 Wireless Communication Technologies Spring 5 Instructor: Dr. Narayan Mandayam Summary by Liang Xiao lxiao@winlab.rutgers.edu WINLAB, Department

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Quantum Field Modelling in Optical Communication Systems

Quantum Field Modelling in Optical Communication Systems Quantum Field Modelling in Optical Communication Systems by Alwin Ming Wai Tam Submitted in total fulfilment of the requirements for the degree of Master of Engineering Science Department of Electrical

More information

that efficiently utilizes the total available channel bandwidth W.

that efficiently utilizes the total available channel bandwidth W. Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Introduction We consider the problem of signal

More information

A FAST AND ACCURATE ADAPTIVE NOTCH FILTER USING A MONOTONICALLY INCREASING GRADIENT. Yosuke SUGIURA

A FAST AND ACCURATE ADAPTIVE NOTCH FILTER USING A MONOTONICALLY INCREASING GRADIENT. Yosuke SUGIURA A FAST AND ACCURATE ADAPTIVE NOTCH FILTER USING A MONOTONICALLY INCREASING GRADIENT Yosuke SUGIURA Tokyo University of Science Faculty of Science and Technology ABSTRACT In this paper, we propose a new

More information

Signal Design for Band-Limited Channels

Signal Design for Band-Limited Channels Wireless Information Transmission System Lab. Signal Design for Band-Limited Channels Institute of Communications Engineering National Sun Yat-sen University Introduction We consider the problem of signal

More information

QPSK and OQPSK in Frequency Nonselective Fading

QPSK and OQPSK in Frequency Nonselective Fading Brigham Young University BYU ScholarsArchive All Faculty Publications 2010-09-17 QPSK and OQPSK in Frequency Nonselective Fading Michael D. Rice mdr@byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information