EE123 Digital Signal Processing

Size: px
Start display at page:

Download "EE123 Digital Signal Processing"

Transcription

1 EE123 Digital Signal Processing Lecture 19 Practical ADC/DAC

2 Ideal Anti-Aliasing ADC A/D x c (t) Analog Anti-Aliasing Filter HLP(jΩ) sampler t = nt x[n] =x c (nt ) Quantizer 1 X c (j ) and s < 2 1 T X s (j ) s /2 s X c (j )H LP (j ) 1 and s < 2 1 T X s (j ) s /2 s /2 s

3 Non Ideal Anti-Aliasing X c (j )H LP (j ) 1 interference noise s /2 Problem: Hard to implement sharp analog filter Tradeoff: Crop part of the signal Suffer from noise and interference (See lab II!)

4 Oversampled ADC ADC A/D x c (t) Sharp Analog C/D x[n] =x c (nt ) Anti-Aliasing Filter HLP(jΩ) T Quantizer Oversampled ADC A/D x c (t) Simple Analog Anti-Aliasing Filter C/D T = 1 M ( ) Sharp Digital Anti-aliasing filter M M Quantizer

5 Oversampled ADC 1 X c (j )H LP (j ) s /2 1 s /2

6 Oversampled ADC 1 X c (j )H LP (j ) s /2 after oversampling x2 1/T ˆX(e j! ) aliased noise

7 Oversampled ADC after oversampling x2 1/T ˆX(e j! ) aliased noise after digital LP and decimation 1/T d ˆXd (e j! ) T d = MT

8 Sampling and Quantization ADC A/D x c (t) C/D T x[n] =x c (nt ) Quantizer ˆx[n] 2X m

9 Sampling and Quantization for 2 s complement with B+1 bits 1 apple ˆx B [n] < 1 = 2X m 2 B+1 = X m 2 B ˆx[n] =X mˆx B [n] 2X m

10 Quantization Error x[n] Quantizer ˆx[n] Model quantization error as noise In that case: x[n] + ˆx[n] =x[n]+e[n] e[n] /2 apple e[n] < /2 ( X m /2) <x[n] apple (X m /2)

11 Noise Model for Quantization Error Assumptions: Model e[n] as a sample sequence of a stationary random process e[n] is not correlated with x[n], e.g., E e[n] x[n] = 0 e[n] not correlated with e[m], e.g., E e[n] x[m] = 0 m n (white noise) e[n] ~ U[-Δ/2, Δ/2] Result: Variance is: e =, or e = 2 2B Xm 2 since 12 =2 12 B X m Assumptions work well for signals that change rapidly, are not clipped and for small Δ

12 Quantization Noise Figure 4.57 (continued) (b) Quantized samples of the cosine waveform in part (a) with a 3-bit quantizer. (c) Quantization error sequence for 3-bit quantization of the signal in (a). (d) Quantization error sequence for 8-bit quantization of the signal in (a).

13 SNR of Quantization Noise For uniform B+1 bits quantizer: SNR Q = 10 log 10 2x 2 e = 10 log B 2 x X 2 m 2 e = 2 2B Xm 2 12 SNR Q =6.02B log 10 Xm x Quantizer range rms of amp

14 SNR of Quantization Noise SNR Q =6.02B log 10 Xm x Improvement of 6dB with every bit Quantizer range rms of amp The range of the quantization must be adapted to the rms amplitude of the signal Tradeoff between clipping and noise! Often use pre-amp Sometimes use analog auto gain controller (AGC) If σx = Xm/4 then SNRQ 6B dB so SNR of db requires 16-bits (audio)

15 Quantization noise in Oversampled ADC x c (t) x[n] ˆx[n] =x[n]+e[n] T = C/D M e[n] + LPF ωc=π/m M ˆx d [n] = x d [n]+e d [n] X c (j ) 1 ˆX(e j! ) ΩNM/π σe 2 π/m ˆX d (e j! ) ΩN/π σe 2 /M

16 Quantization noise in Oversampled ADC Energy of xd[n] equals energy of x[n] No filtering of signal! Noise std is reduced by factor of M SNR Q =6.02B log 10 Xm x + 10 log 10 M For doubling of M we get 3dB improvement, which is the same as 1/2 a bit of accuracy With oversampling of 16 with 8bit ADC we get the same quantization noise as 10bit ADC!

17 Practical ADC (Ch ) D.T x[n] =x(t) t=nt sinc pulse generator x r (t) = 1X n= 1 C.T x[n]sinc t nt T Scaled train of sinc pulses Difficult to generate sinc Too long!

18 Practical ADC D.T x[n] =x(t) t=nt Interp. Filter h 0 (t) H 0 (jω) C.T analog processing Recon. Filter h r (t) H r (jω) x r (t) = X x[n]h 0 (t nt ) h 0 (t) is finite length pulse easy to implement For example: zero-order hold 1 H 0 (j ) = Te j T 2 sinc( s ) T

19 Practical ADC Zero-Order-Hold interpolation x 0 (t) 0 T 2T 3T 4T 5T 1X x 0 (t) = x[n]h 0 (t nt )=x 0 (t) x s (t) Taking a FT: n= 1 X ( j ) = H 0 (j )X s (j ) = H 0 (j ) 1 1X T k= 1 X(j( k s ))

20 Practical ADC Output of the reconstruction filter: X r (j ) = H r (j ) H 0 (j ) X s (j ) H r (j ) = H r (j ) {z } Te j T 2 sinc( ) {z s recon } filter X H 0 (j ) from zero-order hold 1 {z } 1 1X X(j( k s )) T k= 1 {z } Shifted copies from sampling X s (j )

21 Practical ADC X s (j ) Ideally: X s (j )H LP (j )

22 Practical ADC X s (j ) Practically: X s (j )H 0 (j )

23 Practical ADC X s (j ) Practically: X s (j )H 0 (j ) = *

24 Practical ADC X s (j ) Practically: X s (j )H 0 (j )H r (j )

25 Easier Implementation with Digital upsampling x[n] X s (j ) L x e [n] LPF gain=l /L Practically: X s (j )H 0 (j )H r (j )

26 Easier Implementation with Digital upsampling easier implementing with analog components Need analog components made of Nonobtainium

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE23 Digital Signal Processing Lecture 7B Sampling What is this Phenomena? https://www.youtube.com/watch?v=cxddi8m_mzk Sampling of Continuous ime Signals (Ch.4) Sampling: Conversion from C. (not quantized)

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 9: February 13th, 2018 Downsampling/Upsampling and Practical Interpolation Lecture Outline! CT processing of DT signals! Downsampling! Upsampling 2 Continuous-Time

More information

ECE Unit 4. Realizable system used to approximate the ideal system is shown below: Figure 4.47 (b) Digital Processing of Analog Signals

ECE Unit 4. Realizable system used to approximate the ideal system is shown below: Figure 4.47 (b) Digital Processing of Analog Signals ECE 8440 - Unit 4 Digital Processing of Analog Signals- - Non- Ideal Case (See sec8on 4.8) Before considering the non- ideal case, recall the ideal case: 1 Assump8ons involved in ideal case: - no aliasing

More information

6.003: Signals and Systems. Sampling and Quantization

6.003: Signals and Systems. Sampling and Quantization 6.003: Signals and Systems Sampling and Quantization December 1, 2009 Last Time: Sampling and Reconstruction Uniform sampling (sampling interval T ): x[n] = x(nt ) t n Impulse reconstruction: x p (t) =

More information

Sampling اهمتسیس و اهلانگیس یرهطم لضفلاوبا دیس فیرش یتعنص هاگشناد رتویپماک هدکشناد

Sampling اهمتسیس و اهلانگیس یرهطم لضفلاوبا دیس فیرش یتعنص هاگشناد رتویپماک هدکشناد Sampling سیگنالها و سیستمها سید ابوالفضل مطهری دانشکده کامپیوتر دانشگاه صنعتی شریف Sampling Conversion of a continuous-time signal to discrete time. x(t) x[n] 0 2 4 6 8 10 t 0 2 4 6 8 10 n Sampling Applications

More information

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1 Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, 7.49 Signals & Systems Sampling P1 Undersampling & Aliasing Undersampling: insufficient sampling frequency ω s < 2ω M Perfect

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Pro. Mark Fowler Note Set #14 Practical A-to-D Converters and D-to-A Converters Reading Assignment: Sect. 6.3 o Proakis & Manolakis 1/19 The irst step was to see that

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise EE 230 Lecture 40 Data Converters Amplitude Quantization Quantization Noise Review from Last Time: Time Quantization Typical ADC Environment Review from Last Time: Time Quantization Analog Signal Reconstruction

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #3 Wednesday, September 10, 2003 1.4 Quantization Digital systems can only represent sample amplitudes with a finite set of prescribed values,

More information

Periodic (Uniform) Sampling ELEC364 & ELEC442

Periodic (Uniform) Sampling ELEC364 & ELEC442 M.A. Amer Concordia University Electrical and Computer Engineering Content and Figures are from: Periodic (Uniform) Sampling ELEC364 & ELEC442 Introduction to sampling Introduction to filter Ideal sampling:

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA September 23, 2009 1 / 18 1 Sampling 2 Quantization 3 Digital-to-Analog Converter 4 Analog-to-Digital Converter

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin, PhD Shanghai Jiao Tong University Chapter 4: Analog-to-Digital Conversion Textbook: 7.1 7.4 2010/2011 Meixia Tao @ SJTU 1 Outline Analog signal Sampling Quantization

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 12th, 2019 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

Signals & Systems. Chapter 7: Sampling. Adapted from: Lecture notes from MIT, Binghamton University, and Purdue. Dr. Hamid R.

Signals & Systems. Chapter 7: Sampling. Adapted from: Lecture notes from MIT, Binghamton University, and Purdue. Dr. Hamid R. Signals & Systems Chapter 7: Sampling Adapted from: Lecture notes from MIT, Binghamton University, and Purdue Dr. Hamid R. Rabiee Fall 2013 Outline 1. The Concept and Representation of Periodic Sampling

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE37 Advanced Analog Circuits INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com NLCOTD: Level Translator VDD > VDD2, e.g. 3-V logic? -V logic VDD < VDD2, e.g. -V logic? 3-V

More information

EE 5345 Biomedical Instrumentation Lecture 12: slides

EE 5345 Biomedical Instrumentation Lecture 12: slides EE 5345 Biomedical Instrumentation Lecture 1: slides 4-6 Carlos E. Davila, Electrical Engineering Dept. Southern Methodist University slides can be viewed at: http:// www.seas.smu.edu/~cd/ee5345.html EE

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

CS578- Speech Signal Processing

CS578- Speech Signal Processing CS578- Speech Signal Processing Lecture 7: Speech Coding Yannis Stylianou University of Crete, Computer Science Dept., Multimedia Informatics Lab yannis@csd.uoc.gr Univ. of Crete Outline 1 Introduction

More information

Data Converter Fundamentals

Data Converter Fundamentals Data Converter Fundamentals David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 33 Introduction Two main types of converters Nyquist-Rate Converters Generate output

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

Bridge between continuous time and discrete time signals

Bridge between continuous time and discrete time signals 6 Sampling Bridge between continuous time and discrete time signals Sampling theorem complete representation of a continuous time signal by its samples Samplingandreconstruction implementcontinuous timesystems

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Image Acquisition and Sampling Theory

Image Acquisition and Sampling Theory Image Acquisition and Sampling Theory Electromagnetic Spectrum The wavelength required to see an object must be the same size of smaller than the object 2 Image Sensors 3 Sensor Strips 4 Digital Image

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Lab 4: Quantization, Oversampling, and Noise Shaping

Lab 4: Quantization, Oversampling, and Noise Shaping Lab 4: Quantization, Oversampling, and Noise Shaping Due Friday 04/21/17 Overview: This assignment should be completed with your assigned lab partner(s). Each group must turn in a report composed using

More information

EE 230 Lecture 43. Data Converters

EE 230 Lecture 43. Data Converters EE 230 Lecture 43 Data Converters Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 7th, 2017 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

ETSF15 Analog/Digital. Stefan Höst

ETSF15 Analog/Digital. Stefan Höst ETSF15 Analog/Digital Stefan Höst Physical layer Analog vs digital Sampling, quantisation, reconstruction Modulation Represent digital data in a continuous world Disturbances Noise and distortion Synchronization

More information

Timing Offset and Quantization Error Trade-off in Interleaved Multi-Channel Measurements. Joseph Gary McMichael

Timing Offset and Quantization Error Trade-off in Interleaved Multi-Channel Measurements. Joseph Gary McMichael Timing Offset and Quantization Error Trade-off in Interleaved Multi-Channel Measurements by Joseph Gary McMichael Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

More information

Random signals II. ÚPGM FIT VUT Brno,

Random signals II. ÚPGM FIT VUT Brno, Random signals II. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Temporal estimate of autocorrelation coefficients for ergodic discrete-time random process. ˆR[k] = 1 N N 1 n=0 x[n]x[n + k],

More information

Class of waveform coders can be represented in this manner

Class of waveform coders can be represented in this manner Digital Speech Processing Lecture 15 Speech Coding Methods Based on Speech Waveform Representations ti and Speech Models Uniform and Non- Uniform Coding Methods 1 Analog-to-Digital Conversion (Sampling

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

INTRODUCTION TO DELTA-SIGMA ADCS

INTRODUCTION TO DELTA-SIGMA ADCS ECE1371 Advanced Analog Circuits Lecture 1 INTRODUCTION TO DELTA-SIGMA ADCS Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding of

More information

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems Quantization and Compensation in Sampled Interleaved Multi-Channel Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals

CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals CMPT 889: Lecture 3 Fundamentals of Digital Audio, Discrete-Time Signals Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 6, 2005 1 Sound Sound waves are longitudinal

More information

7.1 Sampling and Reconstruction

7.1 Sampling and Reconstruction Haberlesme Sistemlerine Giris (ELE 361) 6 Agustos 2017 TOBB Ekonomi ve Teknoloji Universitesi, Guz 2017-18 Dr. A. Melda Yuksel Turgut & Tolga Girici Lecture Notes Chapter 7 Analog to Digital Conversion

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.34: Discrete-Time Signal Processing OpenCourseWare 006 ecture 8 Periodogram Reading: Sections 0.6 and 0.7

More information

DSP Design Lecture 2. Fredrik Edman.

DSP Design Lecture 2. Fredrik Edman. DSP Design Lecture Number representation, scaling, quantization and round-off Noise Fredrik Edman fredrik.edman@eit.lth.se Representation of Numbers Numbers is a way to use symbols to describe and model

More information

Discrete-Time Signals and Systems. Efficient Computation of the DFT: FFT Algorithms. Analog-to-Digital Conversion. Sampling Process.

Discrete-Time Signals and Systems. Efficient Computation of the DFT: FFT Algorithms. Analog-to-Digital Conversion. Sampling Process. iscrete-time Signals and Systems Efficient Computation of the FT: FFT Algorithms r. eepa Kundur University of Toronto Reference: Sections 6.1, 6., 6.4, 6.5 of John G. Proakis and imitris G. Manolakis,

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ, April 1, 010 QUESTION BOOKLET Your

More information

Multirate signal processing

Multirate signal processing Multirate signal processing Discrete-time systems with different sampling rates at various parts of the system are called multirate systems. The need for such systems arises in many applications, including

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 3, 3rd September The Data Converter Interface Analog Media and Transducers Signal Conditioning Signal Conditioning

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Slide Set Data Converters. Digital Enhancement Techniques

Slide Set Data Converters. Digital Enhancement Techniques 0 Slide Set Data Converters Digital Enhancement Techniques Introduction Summary Error Measurement Trimming of Elements Foreground Calibration Background Calibration Dynamic Matching Decimation and Interpolation

More information

! Downsampling/Upsampling. ! Practical Interpolation. ! Non-integer Resampling. ! Multi-Rate Processing. " Interchanging Operations

! Downsampling/Upsampling. ! Practical Interpolation. ! Non-integer Resampling. ! Multi-Rate Processing.  Interchanging Operations Lecture Outline ESE 531: Digital Signal Processing Lec 10: February 14th, 2017 Practical and Non-integer Sampling, Multirate Sampling! Downsampling/! Practical Interpolation! Non-integer Resampling! Multi-Rate

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

Introduction to digital systems. Juan P Bello

Introduction to digital systems. Juan P Bello Introduction to digital systems Juan P Bello Analogue vs Digital (1) Analog information is made up of a continuum of values within a given range At its most basic, digital information can assume only one

More information

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet EE538 Final Exam Fall 005 3:0 pm -5:0 pm PHYS 3 Dec. 17, 005 Cover Sheet Test Duration: 10 minutes. Open Book but Closed Notes. Calculators ARE allowed!! This test contains five problems. Each of the five

More information

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University Principles of Communications Lecture 8: Baseband Communication Systems Chih-Wei Liu 劉志尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Outlines Introduction Line codes Effects of filtering Pulse

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Issued: Tuesday, September 5. 6.: Discrete-Time Signal Processing Fall 5 Solutions for Problem Set Problem.

More information

Digital Image Processing Lectures 25 & 26

Digital Image Processing Lectures 25 & 26 Lectures 25 & 26, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2015 Area 4: Image Encoding and Compression Goal: To exploit the redundancies in the image

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing 1.1 What is DSP? DSP is a technique of performing the mathematical operations on the signals in digital domain. As real time signals are analog in nature we need

More information

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko Mobile Communications (KECE425) Lecture Note 20 5-19-2014 Prof Young-Chai Ko Summary Complexity issues of diversity systems ADC and Nyquist sampling theorem Transmit diversity Channel is known at the transmitter

More information

FROM ANALOGUE TO DIGITAL

FROM ANALOGUE TO DIGITAL SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 7. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.mee.tcd.ie/ corrigad FROM ANALOGUE TO DIGITAL To digitize signals it is necessary

More information

4.1 Introduction. 2πδ ω (4.2) Applications of Fourier Representations to Mixed Signal Classes = (4.1)

4.1 Introduction. 2πδ ω (4.2) Applications of Fourier Representations to Mixed Signal Classes = (4.1) 4.1 Introduction Two cases of mixed signals to be studied in this chapter: 1. Periodic and nonperiodic signals 2. Continuous- and discrete-time signals Other descriptions: Refer to pp. 341-342, textbook.

More information

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 4, 10th October

Sistemas de Aquisição de Dados. Mestrado Integrado em Eng. Física Tecnológica 2016/17 Aula 4, 10th October Sistemas de Aquisição de Dados Mestrado Integrado em Eng. Física Tecnológica 216/17 Aula 4, 1th October ADC Amplitude Quantization: ADC Digital Output Formats V REF +FS RANGE (SPAN) OR FS ANALOG INPUT

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Multirate Signal Processing Dr. Manar Mohaisen Office: F28 Email: manar.subhi@kut.ac.kr School of IT Engineering Review of the Precedent ecture Introduced Properties of FIR Filters

More information

E4702 HW#4-5 solutions by Anmo Kim

E4702 HW#4-5 solutions by Anmo Kim E70 HW#-5 solutions by Anmo Kim (ak63@columbia.edu). (P3.7) Midtread type uniform quantizer (figure 3.0(a) in Haykin) Gaussian-distributed random variable with zero mean and unit variance is applied to

More information

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name: EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed Scientific calculators are allowed Complete

More information

Higher-Order Σ Modulators and the Σ Toolbox

Higher-Order Σ Modulators and the Σ Toolbox ECE37 Advanced Analog Circuits Higher-Order Σ Modulators and the Σ Toolbox Richard Schreier richard.schreier@analog.com NLCOTD: Dynamic Flip-Flop Standard CMOS version D CK Q Q Can the circuit be simplified?

More information

Images have structure at various scales

Images have structure at various scales Images have structure at various scales Frequency Frequency of a signal is how fast it changes Reflects scale of structure A combination of frequencies 0.1 X + 0.3 X + 0.5 X = Fourier transform Can we

More information

IB Paper 6: Signal and Data Analysis

IB Paper 6: Signal and Data Analysis IB Paper 6: Signal and Data Analysis Handout 5: Sampling Theory S Godsill Signal Processing and Communications Group, Engineering Department, Cambridge, UK Lent 2015 1 / 85 Sampling and Aliasing All of

More information

MULTIRATE SYSTEMS. work load, lower filter order, lower coefficient sensitivity and noise,

MULTIRATE SYSTEMS. work load, lower filter order, lower coefficient sensitivity and noise, MULIRAE SYSEMS ransfer signals between two systems that operate with different sample frequencies Implemented system functions more efficiently by using several sample rates (for example narrow-band filters).

More information

Multimedia Systems Giorgio Leonardi A.A Lecture 4 -> 6 : Quantization

Multimedia Systems Giorgio Leonardi A.A Lecture 4 -> 6 : Quantization Multimedia Systems Giorgio Leonardi A.A.2014-2015 Lecture 4 -> 6 : Quantization Overview Course page (D.I.R.): https://disit.dir.unipmn.it/course/view.php?id=639 Consulting: Office hours by appointment:

More information

VID3: Sampling and Quantization

VID3: Sampling and Quantization Video Transmission VID3: Sampling and Quantization By Prof. Gregory D. Durgin copyright 2009 all rights reserved Claude E. Shannon (1916-2001) Mathematician and Electrical Engineer Worked for Bell Labs

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

Simulation, and Overload and Stability Analysis of Continuous Time Sigma Delta Modulator

Simulation, and Overload and Stability Analysis of Continuous Time Sigma Delta Modulator UNLV Theses, Dissertations, Professional Papers, and Capstones 1-1-014 Simulation, and Overload and Stability Analysis of Continuous Time Sigma Delta Modulator Kyung Kang University of Nevada, Las Vegas,

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 1 Time-Dependent FT Announcements! Midterm: 2/22/216 Open everything... but cheat sheet recommended instead 1am-12pm How s the lab going? Frequency Analysis with

More information

arxiv: v1 [cs.it] 20 Jan 2018

arxiv: v1 [cs.it] 20 Jan 2018 1 Analog-to-Digital Compression: A New Paradigm for Converting Signals to Bits Alon Kipnis, Yonina C. Eldar and Andrea J. Goldsmith fs arxiv:181.6718v1 [cs.it] Jan 18 X(t) sampler smp sec encoder R[ bits

More information

1. Quantization Signal to Noise Ratio (SNR).

1. Quantization Signal to Noise Ratio (SNR). Digital Signal Processing 2/ Advanced Digital Signal Processing Lecture 2, Quantization, SNR Gerald Schuller, TU Ilmenau 1. Quantization Signal to Noise Ratio (SNR). Assume we have a A/D converter with

More information

Roundoff Noise in Digital Feedback Control Systems

Roundoff Noise in Digital Feedback Control Systems Chapter 7 Roundoff Noise in Digital Feedback Control Systems Digital control systems are generally feedback systems. Within their feedback loops are parts that are analog and parts that are digital. At

More information

ECE 421 Introduction to Signal Processing

ECE 421 Introduction to Signal Processing ECE 421 Introduction to Signal Processing Dror Baron Assistant Professor Dept. of Electrical and Computer Engr. North Carolina State University, NC, USA Denoising and Project 4 Where does denoising appear?

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING GEORGIA INSIUE OF ECHNOLOGY SCHOOL of ELECRICAL and COMPUER ENGINEERING ECE 6250 Spring 207 Problem Set # his assignment is due at the beginning of class on Wednesday, January 25 Assigned: 6-Jan-7 Due

More information

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256 General Models for Compression / Decompression -they apply to symbols data, text, and to image but not video 1. Simplest model (Lossless ( encoding without prediction) (server) Signal Encode Transmit (client)

More information

Higher-Order Modulators: MOD2 and MODN

Higher-Order Modulators: MOD2 and MODN ECE37 Advanced Analog Circuits Lecture 2 Higher-Order Modulators: MOD2 and MODN Richard Schreier richard.schreier@analog.com Trevor Caldwell trevor.caldwell@utoronto.ca Course Goals Deepen understanding

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA August 30, 2009 1 / 19 1 Course Overview 2 Measurement System 3 Noise 4 Error Analysis 2 / 19 Textbooks C.W. De

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Pulse-Code Modulation (PCM) :

Pulse-Code Modulation (PCM) : PCM & DPCM & DM 1 Pulse-Code Modulation (PCM) : In PCM each sample of the signal is quantized to one of the amplitude levels, where B is the number of bits used to represent each sample. The rate from

More information

EE 435. Lecture 32. Spectral Performance Windowing

EE 435. Lecture 32. Spectral Performance Windowing EE 435 Lecture 32 Spectral Performance Windowing . Review from last lecture. Distortion Analysis T 0 T S THEOREM?: If N P is an integer and x(t) is band limited to f MAX, then 2 Am Χ mnp 1 0 m h N and

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

An Anti-Aliasing Multi-Rate Σ Modulator

An Anti-Aliasing Multi-Rate Σ Modulator An Anti-Aliasing Multi-Rate Σ Modulator Anthony Chan Carusone Depart. of Elec. and Comp. Eng. University of Toronto, Canada Franco Maloberti Department of Electronics University of Pavia, Italy May 6,

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Lecture Schedule: Week Date Lecture Title

Lecture Schedule: Week Date Lecture Title http://elec34.org Sampling and CONVOLUTION 24 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 2-Mar Introduction 3-Mar

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi

Correlator I. Basics. Chapter Introduction. 8.2 Digitization Sampling. D. Anish Roshi Chapter 8 Correlator I. Basics D. Anish Roshi 8.1 Introduction A radio interferometer measures the mutual coherence function of the electric field due to a given source brightness distribution in the sky.

More information

CITY UNIVERSITY LONDON. MSc in Information Engineering DIGITAL SIGNAL PROCESSING EPM746

CITY UNIVERSITY LONDON. MSc in Information Engineering DIGITAL SIGNAL PROCESSING EPM746 No: CITY UNIVERSITY LONDON MSc in Information Engineering DIGITAL SIGNAL PROCESSING EPM746 Date: 19 May 2004 Time: 09:00-11:00 Attempt Three out of FIVE questions, at least One question from PART B PART

More information

Overview of Sampling Topics

Overview of Sampling Topics Overview of Sampling Topics (Shannon) sampling theorem Impulse-train sampling Interpolation (continuous-time signal reconstruction) Aliasing Relationship of CTFT to DTFT DT processing of CT signals DT

More information

MULTIRATE DIGITAL SIGNAL PROCESSING

MULTIRATE DIGITAL SIGNAL PROCESSING MULTIRATE DIGITAL SIGNAL PROCESSING Signal processing can be enhanced by changing sampling rate: Up-sampling before D/A conversion in order to relax requirements of analog antialiasing filter. Cf. audio

More information

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece,

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece, Sinusoidal Modeling Yannis Stylianou University of Crete, Computer Science Dept., Greece, yannis@csd.uoc.gr SPCC 2016 1 Speech Production 2 Modulators 3 Sinusoidal Modeling Sinusoidal Models Voiced Speech

More information

Lecture 7: Interpolation

Lecture 7: Interpolation Lecture 7: Interpolation ECE 401: Signal and Image Analysis University of Illinois 2/9/2017 1 Sampling Review 2 Interpolation and Upsampling 3 Spectrum of Interpolated Signals Outline 1 Sampling Review

More information