arxiv: v2 [math.ag] 14 Mar 2019

Size: px
Start display at page:

Download "arxiv: v2 [math.ag] 14 Mar 2019"

Transcription

1 ALGEBRAIC AND GEOMETRIC PROPERTIES OF FLAG BOTT SAMELSON VARIETIES AND APPLICATIONS TO REPRESENTATIONS arxiv: v2 [math.ag] 14 Mar 2019 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Abstract. We study flag Bott Samelson variety as a generalization of Bott Samelson variety and flag variety. Using a birational morphism from an appropriate Bott Samelson variety to a flag Bott Samelson variety, we compute Newton Okounkov bodies of flag Bott Samelson varieties as generalized string polytopes, which are applied to give polyhedral expressions for irreducible decompositions of tensor products of G-modules. Furthermore, we show that flag Bott Samelson varieties are degenerated into flag Bott manifolds with higher rank torus actions, and find the Duistermaat Heckman measures of the moment map images of flag Bott Samelson varieties with the torus action together with invariant closed 2-forms. 1. Introduction Let G be a complex semisimple simply-connected algebraic group of rank n. A Bott Samelson variety Z i is a quotient (P i1 P ir )/(B B) of the product of minimal parabolic subgroups indexed by a word i = (i 1,..., i r ) [n] r with the twisted action of the product of Borel subgroups, so that Z i has a structure of an iterated CP 1 -fibrations. The space Z i is a nonsingular projective algebraic variety introduced in [4], [9], and [16]. When the word i is reduced, then the variety Z i is a desingularization of a Schubert variety. Moreover the set of sections of a holomorphic line bundle over a Bott Samelson variety has a structure of a B-module, called a generalized Demazure module. This gives a fruitful connection between representation theory and algebraic geometry such as the character formula of B-modules in [1, 27], the standard monomial theory in [29, 30, 32, 39], and the theory of Newton Okounkov bodies in [13, 24]. On the other hand, Grossberg and Karshon show in [14] that there is a complex one-parameter family of smooth varieties Zi t for t C such that Zi 1 = Z i and Zi 0 coincides with a nonsingular toric variety B r, called a Bott manifold. Furthermore all Zi t are diffeomorphic for t C. It should be noted 2010 Mathematics Subject Classification. Primary: 05E10; Secondary: 14M15, 57S25. Fujita was partially supported by Grant-in-Aid for JSPS Fellows (No. 16J00420). Lee was partially supported by IBS-R003-D1. Lee and Suh were partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1A2B ). 1

2 2 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH that a Bott tower Zi 0 = B r has an algebraic action of torus of rank equals to dim C Zi 0, while there is an algebraic action of a maximal torus of G on the Bott Samelson variety Z i which is induced from the left multiplication. The notion of Bott manifold is generalized to flag Bott manifolds in [28] as iterated full-flag manifold fibrations. In general, a flag Bott manifold is not toric, but has an action of a torus with larger rank than a maximal torus of G, and with this action every flag Bott manifold becomes a GKM manifold. One of the primary goal of this paper is to study a generalized notion of Bott Samelson variety so that the resulting variety extends the rich connection between representation theory and algebraic geometry, and moreover, it can be degenerated into a flag Bott manifold. Indeed, we consider a flag Bott Samelson variety Z I for a sequence I = (I 1,..., I r ) where I k are subsets of [n] for 1 k r (see Definition 2.1). A flag Bott Samelson variety Z I is a nonsingular projective variety which is an iterated fibration of products of full flag manifolds. Moreover, under certain condition on I, the flag Bott Samelson variety Z I is a desingularization of a Schubert variety. Because of the definition, both the flag variety G/B and a Bott Samelson variety Z i are flag Bott Samelson varieties. Hence we may regard flag Bott Samelson variety as a generalization of both flag variety and Bott Samelson variety. This notion of flag Bott Samelson variety is not new. Actually in [20] flag Bott Samelson varieties are treated in more general setting without naming them, and not much of flow-up work is done. Even though the class of flag Bott Samelson varieties is much larger than that of Bott Samelson varieties, for each flag Bott Samelson variety Z I, there exists a Bott Samelson variety Z i and a morphism η i,i : Z i Z I which is a birational equivalence. Hence the morphism induces an isomorphism on the fields of rational functions. Using this birational morphism we study B-representations coming from a flag Bott Samelson variety. To be more precise, the set of holomorphic sections of a holomorphic line bundle L over a flag Bott Samelson variety coincides with the B-module H 0 (Z i, ηi,i (L)) C µ where C µ is an appropriate B-representation (see Theorem 2.18). For a given algebraic variety X if a very ample (more generally a globally generated) line bundle L, a valuation ν : C(X) Z n with n = dim C X, and a section τ H 0 (X, L) are given, a convex body called the Newton Okounkov body (X, L, ν, τ) of X corresponding to these data is defined. So if a very ample line bundle L over a flag Bott Samelson variety Z I, a valuation ν : C(Z I ) Z N where N = dim C Z I and a section τ H 0 (Z I, L) are given, then the Newton Okounkov body (Z I, L, ν, τ) of Z I is defined. On the other hand, the Newton Okounkov body (Z i, ηi,i L, ν, η i,i τ) of Z i is also defined because ν is defined on C(Z i ) = C(Z I ). We then show in Theorem 2.20 that these two Newton Okounkov bodies are identical.

3 FLAG BOTT SAMELSON VARIETIES 3 Newton Okounkov bodies of Bott Samelson varieties with various valuations are computed by Fujita [12]. In particular, for a Bott Samelson variety Z i with a globally generated line bundle L i,a, the highest term valuation v high i and a particular section τ i,a, its Newton Okounkov body is equal to the generalized string polytope i,a in Definition 3.9 up to sign (see Theorem 3.11). A generalized string polytope is defined in term of a generalized Demazure crystal in the tensor product of crystals in the theory of crystal basis. Therefore the Newton Okounkov bodies of flag Bott Samelson varieties with the highest term valuations are certain generalized string polytopes up to sign. One of the fundamental questions in group representation theory is to find the multiplicities of irreducible representations in the tensor product of two representations. Berenstein and Zelevinsky [3] describe the multiplicities in terms of the numbers of lattice points in some explicit rational convex polytope. In Theorem 3.19 we give a different description of the multiplicities using the integral lattice points of the Newton Okounkov bodies, hence generalized string polytopes, of flag Bott Samelson varieties. We notice that our results give concrete constructions of convex bodies, appearing in [26], which encode multiplicities of irreducible representations. As is mentioned above, we degenerate the complex structures of certain flag Bott Samelson varieties to obtain flag Bott manifolds, which generalizes the similar result for Bott Samelson varieties. In Section 4, we do this for flag Bott Samelson varieties Z I for I = (I 1,..., I r ) such that the Levi subgroup L Ik of the parabolic subgroup P Ik is of A-type for 1 k r. Indeed, for each t C there is a nonsingular algebraic variety ZI t such that ZI 1 = Z I and ZI 0 is a flag Bott Samelson variety. Moreover, Zt I are all diffeomorphic for each t C. An r-stage flag Bott manifold F r is constructed from an (r 1)-stage flag Bott manifold F r 1 and a sum of complex line bundles ξ i over F r 1 by taking the full flag fibration Fl( ξ i ). Moreover any flag Bott manifold is completely determined by a set of integer vectors (see Proposition 4.3). On the other hand, not every flag Bott manifold can be obtained from a flag Bott Samelson variety by the above mentioned degeneration of complex structures. In Proposition 4.7 the set of line bundles needed to construct the flag Bott manifold appearing as a degeneration of flag Bott Samelson varieties are explicitly given. Furthermore the set of integer vectors to characterize such flag Bott manifolds is computed in Theorem 4.8. For a 2n-dimensional closed smooth oriented manifold M with a torus T action and a T -invariant closed 2-form ω which is not necessarily nondegenerate, a moment map Φ: M Lie(T ) can be defined similarly to the symplectic T -manifold case. However, unlike the symplectic case, the image Φ(M) needs not be a convex polytope. In this case the Duistermaat Heckman measure is a signed measure defined to be the push-forward of the Liouville measure on M via Φ. Any flag Bott Samelson variety Z I, regarded as a smooth manifold, is diffeomorphic to a flag Bott manifold ZI 0 for I = (I 1,..., I r ) such that the Levi

4 4 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH subgroup L Ik of the parabolic subgroup P Ik is of A-type for 1 k r, and a torus T of rank larger than that of the maximal torus T acts smoothly on Z I. We can find a T-invariant closed 2-form ω I induced from a given complex line bundle, and we can consider the moment map Φ I : Z I Lie(T). The Duistermaat Heckman measure on the image Φ I (Z I ) is described in Theorem 5.5 in terms of the Duistermaat Heckman measure corresponding to Z i, which is a Bott Samelson variety admitting a birational morphism η i,i : Z i Z I mentioned above. We remark that the Duistermaat Heckman measure corresponding to a Bott manifold, hence a Bott Samelson variety, is computed in [14] (also see Theorem 5.6), and this measure is closely related with the character decomposition of certain representations. Considering a Bott Samelson variety, such measure encodes the multiplicities of certain generalized Demazure modules. 2. Newton Okounkov bodies of flag Bott Samelson varieties 2.1. Definition of flag Bott Samelson variety. In this subsection we introduce flag Bott Samelson variety which is a generalization of both Bott Samelson variety and flag variety, and study its properties. We notice that the notion of flag Bott Samelson variety is already considered in Jantzen s book [20, II.13] without naming it. Let G be a simply-connected semisimple algebraic group of rank n over C. Choose a Cartan subgroup H, and let g = h α g α be the decomposition of the Lie algebra g of G into root spaces where h is the Lie algebra of H. Let h denote the roots of G. Choose a set of positive roots +, and let Σ = {α 1,..., α n } + denote the simple roots. Let := + be the set of negative roots. Let B be the Borel subgroup whose Lie algebra is b = h α + g α. Let {α1,..., α n} denote the coroots, and {ϖ 1,..., ϖ n } the fundamental weights which are characterized by the relation ϖ i, αj = δ ij. Let s i W denote the simple reflection in the Weyl group W of G corresponding to the simple root α i. For a subset I of [n] := {1,..., n}, define the subtorus H I H as (2.1) H I := {h H α i (h) = 1 for all i I} 0. Here, for a group G, G 0 is the connected component which contains the identity element of G. Then the centralizer C G (H I ) = {g G gh = hg for all h H I } of H I is a connected reductive subgroup of G whose Weyl group is isomorphic to W I := s i i I. We set L I := C G (H I ) for simplicity. Then the Borel subgroup B I of L I is B L I (see [40, 8.4.1]). Let I be the subset span Z {α i i I} of. The set of roots + \ I defines the unipotent subgroup U I of G satisfying the condition Lie(U I ) = g α. α + \ I

5 FLAG BOTT SAMELSON VARIETIES 5 The parabolic subgroup P I of G corresponding to I is defined to be P I := L I U I. The subgroup L I is called a Levi subgroup of P I. Note that the Lie algebra of the parabolic subgroup P I is Lie(P I ) = b g α. α I Moreover the parabolic subgroup P I can be described that P I = BwB = Bw I B G, w W I where w I be the longest element in W I (see [40, Theorem 8.4.3]). We now define a flag Bott Samelson variety using a sequence of parabolic subgroups. Let I = (I 1,..., I r ) be a sequence of subsets of [n], and let P I = P I1 P Ir. Define a right action Θ of B r = B B on P }{{} I as r (2.2) Θ((p 1,..., p r ), (b 1,..., b r )) = (p 1 b 1, b 1 1 p 2b 2,..., b 1 r 1 p rb r ) for (p 1,..., p r ) P I and (b 1,..., b r ) B r. Definition 2.1. Let I = (I 1,..., I r ) be a sequence of subsets of [n]. The flag Bott Samelson variety Z I is defined to be the orbit space Z I := P I /Θ. For instance, suppose that I = ([n]). Then we have P I = G and the action Θ is the right multiplication of B. Therefore the flag Bott Samelson variety Z I is the flag variety G/B. Moreover, for the case when I k = 1 for all k, the flag Bott Samelson variety is a Bott Samelson variety, see [4] for the definition of Bott Samelson variety. In this case we use a sequence (i 1,..., i r ) of elements of [n] rather than ({i 1 },..., {i r }), and we write Z (i1,...,i r) for the corresponding Bott Samelson variety. For the subsequence I = (I 1,..., I r 1 ) of I, there is a fibration structure on the flag Bott Samelson variety Z I : (2.3) P Ir /B Z I π Z I where the projection map π : Z I Z I is defined as π([p 1,..., p r 1, p r ]) = [p 1,..., p r 1 ]. Let w k W Ik be the longest element in W Ik for 1 k r. Consider the following subset of P I : P I := Bw 1 B Bw r B P I. One can check that P I is closed under the action Θ of Br in (2.2), so we consider the orbit space Z I := P I/Θ. It is known that a flag Bott Samelson variety Z I has following properties (see [20, II.13] for details).

6 6 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Proposition 2.2. Let I = (I 1,..., I r ) be a sequence of subsets of [n]. Then the flag Bott Samelson variety Z I has following properties: (1) Z I is a smooth projective variety. (2) Z I is a dense open subset in Z I. (3) Z I C r k=1 l(wk) where l(w k ) is the length of the element w k. Consider the multiplication map (2.4) η : Z I G/B, [p 1,..., p r ] p 1 p r which is a well-defined morphism. The following proposition says that certain flag Bott Samelson varieties are birationally equivalent to Schubert varieties via the map η. Proposition 2.3 ([20, II.13.5]). Let I = (I 1,..., I r ) be a sequence of subsets of [n], and let w k W Ik be the longest element in W Ik = s i i I k. Set w = w 1 w r. If l(w) = l(w 1 ) + + l(w r ), then the morphism η induces an isomorphism between Z I and BwB/B G/B. Indeed, the morphism η maps birationally onto its image X(w) := BwB/B G/B. Example 2.4. Let G = SL(4). (1) Suppose that I 1 = ({1}, {2}, {1}, {3}). Then we have w 1 = s 1, w 2 = s 2, w 3 = s 1, w 4 = s 3, and w = s 1 s 2 s 1 s 3, which is a reduced decomposition. Hence the morphism η gives a birational morphism between Z I1 and X(s 1 s 2 s 1 s 3 ). (2) Let I 2 = ({1, 2}, {3}). Then we have that w 1 = s 1 s 2 s 1, w 2 = s 3, and w = w 1 w 2 = s 1 s 2 s 1 s 3. Again, this is a reduced decomposition, so the morphism η gives a birational morphism between Z I2 and X(s 1 s 2 s 1 s 3 ). Remark 2.5. Example 2.4 gives two different choices of flag Bott Samelson varieties each of which has a birational morphism onto the same Schubert variety X(s 1 s 2 s 1 s 3 ). For a given Schubert variety X(w), there are different choices of flag Bott Samelson varieties which define birational morphisms onto X(w), and there are several studies about such different choices, see, for example, [10, 11, 41]. We can define a multiplication map between two flag Bott Samelson varieties as we now explain. Let (2.5) J = (J 1,1,..., J 1,N1,..., J r,1,..., J r,nr ) be a sequence of subsets of [n] such that each J k,l I k for 1 l N k and 1 k r. Since each J k,l is contained in I k, we have P Jk,l P Ik by the definition of parabolic subgroups. Hence we have a multiplication map (2.6) η J,I : Z J Z I defined as [(p k,l ) 1 k r,1 l Nk ] [ N1 ] N r p 1,l,..., p r,l. l=1 l=1

7 FLAG BOTT SAMELSON VARIETIES 7 The following proposition describes a birational morphism between two flag Bott Samelson varieties. Proposition 2.6. Let I = (I 1,..., I r ) be a sequence of subsets of [n], and let J = (J 1,1,..., J 1,N1,..., J r,1,..., J r,nr ) be a sequence of subsets of [n] such that J k,1,..., J k,nk I k for 1 k r. Let w k,l, respectively v k be the longest element in W Jk,l, respectively in W Ik. Suppose that w k,1 w k,nk = v k and l(w k,1 ) + + l(w k,nk ) = l(v k ) for 1 k r. Then the multiplication map η J,I : Z J Z I in (2.6) induces an isomorphism between dense open subsets Z J Z I. There always exists a sequence (i k,1,..., i k,nk ) [n] N k which is a reduced word for the longest element in W Ik for 1 k r. Concatenating such sequences we get a sequence i = (i k,l ) 1 k r,1 l Nk [n] N 1+ +N r. Hence for a given flag Bott Samelson variety Z I one can always find a Bott Samelson variety Z i which is birationally isomorphic to Z I. Proof of Proposition 2.6. First we recall from [6, VI. 1, Corollary 2 of Proposition 17] and [20, II.13.1] that for a reduced decomposition w = s i1 s in W, the subgroup U(w) G is defined to be U(w) := U αi1 U si1 (α i2 ) U si1 s i2 (α i3 ) U si1 s in 1 (α in ). Moreover, we have an isomorphism (2.7) ψ(w): U αi1 U αi2 U αin U(w) which is defined to be (u 1,..., u N ) u 1 s i1 u 2 s i2 u N s in w 1. Also we have another isomorphism ψ I between varieties: (2.8) ψ I : U(v 1 ) U(v r ) Z I which sends (g 1,..., g r ) to [g 1 v 1,..., g r v r ] (see [20, II.13.5]). Because of the assumption, the concatenation w k,1 w k,nk is a reduced decomposition of the element v k. Hence we have an isomorphism induced by (2.7): ψ k : U(w k,1 ) U(w k,nk ) U(v k ) which maps (u 1,..., u Nk ) to u 1 w k,1 u 2 w k,2 u Nk w k,nk v 1 k for 1 k r. Combining isomorphisms ψ k and (2.8) we have the following commutative diagram: ψ J Z J U(w 1,1 ) U(w 1,N1 ) U(w r,1 ) U(w r,nr ) η J,I ψ 1 ψ r ψ I Z I U(v 1 ) U(v r ) Hence the result follows.

8 8 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Example 2.7. Let G = SL(4), and let I = ({1, 2}, {3}). Then w 1 = s 1 s 2 s 1, respectively w 2 = s 3, is a reduced decomposition of the longest element of W {1,2}, respectively W {3}. Then we have the birational morphism η (1,2,1,3),I : Z (1,2,1,3) Z I. Together with the birational morphism η described in Example 2.4-(2), we can see that three varieties Z (1,2,1,3), Z I, and X(s 1 s 2 s 1 s 3 ) are birationally equivalent: Z (1,2,1,3) Z I X(s 1 s 2 s 1 s 3 ). On the other hand, we have another reduced decomposition w 1 = s 2s 1 s 2 of the longest element of W {1,2}. This also gives a birational morphism η (2,1,2,3),I : Z (2,1,2,3) Z I. Hence we have the following diagram whose maps are all birational morphisms: Z (1,2,1,3) Z (2,1,2,3) Z I X(s 1 s 2 s 1 s 3 ) 2.2. Line bundles over flag Bott Samelson varieties. Let I be a sequence of subsets of [n]. In this subsection we study line bundles over a flag Bott Samelson variety Z I and their pullbacks in Proposition 2.8. For an integral weight λ Zϖ Zϖ n, we have a homomorphism e λ : H C. We can extend it to a homomorphism e λ : B C by composing with the homomorphism (2.9) Υ: B H induced by the canonical projection of Lie algebras b h as in [20, II.1.8]. Suppose that λ 1,..., λ r are integral weights. Define a representation C λ1,...,λ r of B r = B B on C as }{{} r (b 1,..., b r ) v = e λ 1 (b 1 ) e λr (b r )v. From this we can build a line bundle over Z I by setting (2.10) L I,λ1,...,λ r = P I B r (C λ1,...,λ r ), where an action of B r is defined as (p 1,..., p r, w) (b 1,..., b r ) = (Θ((p 1,..., p r ), (b 1,..., b r )), (b 1,..., b r ) 1 w) = (Θ((p 1,..., p r ), (b 1,..., b r )), e λ 1 (b 1 ) e λr (b r )w). For simplicity, we use the following notation: (2.11) L I,λ := L I,0,...,0,λ. Specifically when a flag Bott Samelson variety is a usual Bott Samelson variety, we will choose the weights to be of special form. Suppose given

9 FLAG BOTT SAMELSON VARIETIES 9 an integer vector a = (a 1,..., a r ) Z r, we define a sequence of weights λ 1,..., λ r associated to the word i = (i 1,..., i r ) and the vector a by setting For such λ j we use the notation λ 1 := a 1 ϖ i1,..., λ r := a r ϖ ir. (2.12) L i,a := L i,λ1,...,λ r. Since a Bott Samelson variety is an iterated sequence of projective bundles, the Picard group of Bott Samelson variety Z i is a free abelian group of rank r by [18, Exercise II.7.9]. Moreover the association between a Z r and L i,a gives an isomorphism between Z r and Pic(Z i ). Let i = (i k,l ) 1 k r,1 l Nk [n] N 1+ +N r be a sequence such that (i k,1,..., i k,nk ) is a reduced word for the longest element in W Ik for 1 k r. Recall from Proposition 2.6 that we have a birational morphism η i,i : Z i Z I. The following proposition describes the pullback bundle ηi,i L I,λ 1,...,λ r under the morphism η i,i in terms of an integer vector. Proposition 2.8. Let I and i be as above. The pullback bundle ηi,i L I,λ 1,...,λ r over a Bott Samelson variety Z i is isomorphic to the line bundle L i,a for the integer vector a = (a 1 (1),..., a 1 (N 1 ),..., a r (1),..., a r (N r )) Z N 1 Z Nr given by (2.13) λ k, αs + λ j, αs if l = max{q i k,q = s}, k<j r; a k (l) = s/ {i t,u k<t j,1 u N t} 0 otherwise. Example 2.9. Let G = SL(4), I = ({1, 2}, {3}) and i = (1, 2, 1, 3). Consider the line bundle L I,λ1,λ 2. Then the pullback line bundle η i,i L I,λ 1,λ 2 corresponds to the integer vector a = (a 1 (1), a 1 (2), a 1 (3), a 2 (1)) = (0, λ 1, α 2 + λ 2, α 2, λ 1, α 1 + λ 2, α 1, λ 2, α 3 ). Remark It is known from [33, Theorem 3.1, Corollary 3.3] that a line bundle L i,a is very ample, respectively generated by global sections, if and only if a Z i >0, respectively a Z i 0. Suppose that i is a sequence satisfying the condition in Proposition 2.8. As one can see in the previous example, we cannot ensure that the pullback line bundle ηi,i L I,λ 1,...,λ r is very ample even if the weights λ 1,..., λ r are regular dominant weights. Proof of Proposition 2.8. By the definition of pullback line bundles, we have η i,i L I,λ 1,...,λ r = {(p, q) Z i L I,λ1,...,λ r η i,i (p) = π I,λ1,...,λ r (q)}

10 10 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH where π I,λ1,...,λ r : L I,λ1,...,λ r Z I. In other words, { ηi,i L I,λ 1,...,λ r = ([(p k,l ) 1 k r,1 l Nk ], [p 1,..., p r, w]) [ N1 ] N r p 1,l,..., p r,l = [p 1,..., p r ] in Z I }. l=1 Define a line bundle L i,λ1,...,λ r L i,λ1,...,λ r := L i,0,..., 0, λ1 Then, we obtain an isomorphism: (2.14) on Z i by l=1,0,..., 0, λ 2,...,0,..., 0, λ r }{{}}{{}}{{} N 1 N 2 Nr = (P i (C 0,...,0,λ1,0,...,0,λ 2,...,0,...,0,λ r ) )/B N 1+ +N r. ηi,i L I,λ 1,...,λ r Li,λ1,...,λ r, ([(p k,l ) k,l ], [p 1,..., p r, w]) [(p k,l ) k,l, Cw], where the value C is defined by ( ) ( N 1 C := e λ 1 p 1,l e λ 2 (2.15) e λr ( p 1 1 p 1 r l=1 p 1 1 p 1 2 p 1 1 N 1 N 2 p 1,l l=1 ) N 1 N r p 1,l p r,l. l=1 l=1 ) p 2,l Here, we notice that p 1 k p 1 N1 1 l=1 p 1,l N k l=1 p k,l is an element of B for 1 k r. Now we write λ k = d k,1 ϖ d k,n ϖ n for 1 k r, and set (2.16) k(j, s) := max{k 1 k j, i k,l = s for some 1 l N k } {0} for 1 j r and s [n]. Then we obtain the following isomorphism: (2.17) L i,λ1,...,λ r Li,a [(p k,l ) k,l, w] [(p k,l ) k,l, C w], where the value C is defined to be r (2.18) C := e d j,sϖ s (ζ(j, s)) 1, and ζ(j, s) is given by ζ(j, s) := N k(j,s) m=max{l i k(j,s),l =s}+1 j=1 s [n] p k(j,s),m l=1 N k(j,s)+1 p k(j,s)+1,l l=1 N j We note that if I [n] and s / I, then the map e ϖs : B C is naturally extended to e ϖs : P I C by setting e ϖs (exp(g α )) = {1} for all α l=1 p j,l.

11 FLAG BOTT SAMELSON VARIETIES 11 I. Hence e d j,sϖ s (ζ(j, s)) is defined. By combining two isomorphisms (2.14) and (2.17) the result follows. We put an example for explaining notations C, k(j, s), C in the proof of Proposition 2.8 for reader s convenience. Example Let G = SL(4). Suppose that I and i are given as in Example 2.9. Then for an element ([p 1,1, p 1,2, p 1,3, p 2,1 ], [p 1, p 2, w]) in η i,i L I,λ 1,λ 2 the value C in (2.15) is given by C = e λ 1 ( p 1 1 p 1,1p 1,2 p 1,3 ) e λ 2 ( p 1 2 p 1 1 p 1,1p 1,2 p 1,3 p 2,1 ). Moreover the indices k(j, s) in (2.16) are computed by k(1, 1) = 1, k(1, 2) = 1, k(1, 3) = 0, k(2, 1) = 1, k(2, 2) = 1, k(2, 3) = 2. Hence the value C in (2.18) is C = e d 1,2ϖ 2 (p 1,3 ) 1 e d 1,3ϖ 3 (p 1,1 p 1,2 p 1,3 ) 1 e d 2,1ϖ 1 (p 2,1 ) 1 e d 2,2ϖ 2 (p 1,3 p 2,1 ) 1 where λ k = d k,1 ϖ 1 + d k,2 ϖ 2 + d k,3 ϖ 3 for k = 1, Newton Okounkov bodies of flag Bott Samelson varieties. In this section we study Newton Okounkov bodies of flag Bott Samelson varieties in Theorem First we recall the definition and background of Newton Okounkov bodies. We refer the reader to [13, 17, 24, 25] for more details. Let R be a C-algebra without nonzero zero-divisors, and fix a total order < on Z r, r 1, respecting the addition. Definition A map v : R \ {0} Z r is called a valuation on R if the following conditions hold. For every f, g R \ {0} and c C \ {0}, (1) v(f g) = v(f) + v(g), (2) v(cf) = v(f), and (3) v(f + g) min{v(f), v(g)} unless f + g = 0. Moreover we say the valuation v has one-dimensional leaves if it satisfies that if v(f) = v(g) then there exists a nonzero constant λ C such that v(g λf) > v(g) or g λf = 0. Let X be a projective variety of dimension r over C equipped with a line bundle L which is generated by global sections. Fix a valuation v which has one-dimensional leaves on the function field C(X). Using the valuation v one can associate a semigroup S N Z r as follows. Fix a nonzero element τ H 0 (X, L). We use τ to identify H 0 (X, L) with a finite-dimensional subspace of C(X) by mapping Similarly we have the map H 0 (X, L) C(X), σ σ/τ. H 0 (X, L k ) C(X), σ σ/τ k.

12 12 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Using these identifications we define the semigroup: S = S(v, τ) = { } (k, v(σ/τ k )) σ H 0 (X, L k ) \ {0} N Z r, k>0 and denote by C = C(v, τ) R 0 R r the smallest real closed cone containing S(v, τ). Now we have the definition of Newton Okounkov body: Definition The Newton Okounkov body associated to (X, L, v, τ) is defined to be = (X, L, v) = (X, L, v, τ) = {x R r (1, x) C(v, τ)}. If we take another section τ H 0 (X, L) \ {0} then (X, L, v, τ ) = (X, L, v, τ) + v(τ/τ ). Hence the Newton Okounkov body (X, L, v, τ) does not fundamentally depend on the choice of the nonzero section τ H 0 (X, L) \ {0}. Remark If we choose a very ample line bundle L in the construction, then it is known in [17, Theorem 3.9] that the Newton Okounkov body has maximal dimension, i.e., it has real dimension r. Since we do not necessarily assume that the line bundle L is very ample in this paper, the real dimension of a Newton Okounkov body may be less than r. There are many possible valuations with one-dimensional leaves. We recall one of them introduced in [24]. One can construct a valuation on the function field C(X) using a regular system of parameters u 1,..., u r in a neighborhood of a smooth point p on X. Fix a total ordering on Z r respecting the addition. Let f be a polynomial in u 1,..., u r. Suppose that c k u k 1 1 ukr r is the term in f with the largest exponent k = (k 1,..., k r ). Then v(f) := ( k 1,..., k r ) defines a valuation on C(X), called the highest term valuation with respect to the parameters u 1,..., u r. Example Let X = Z i be a Bott Samelson variety determined by a word i = (i 1,..., i r ). Let f i be a nonzero element in g αi. Then the following map Φ i : C r Z i defines a coordinate system as in [12, 2.3] and [24, 2.2]: Φ i : (t 1,..., t r ) (exp(t 1 f i1 ),..., exp(t r f ir )) mod B r We denote the highest term valuation with respect to the lexicographic order on Z r by v high i. There are some results on computing Newton Okounkov bodies using the valuation v high i. We recall a result of Kaveh [24]: Example Let X = G/B be the full flag variety, and let L be a line bundle over X given by a dominant weight λ. Suppose that i = (i 1,..., i m ) is a reduced word for the longest element in the Weyl group W of G. Then the Bott Samelson variety Z i and the full flag variety G/B are birational

13 FLAG BOTT SAMELSON VARIETIES 13 by Proposition 2.3. Hence their function fields are isomorphic, i.e., C(Z i ) = C(G/B). Using the valuation v high i in Example 2.15, Kaveh proved in [24, Corollary 4.2] that the Newton Okounkov body (G/B, L, v high i ) can be identified with the string polytope. The following lemma directly comes from the definition of Newton Okounkov bodies. Lemma Let f : X Y be a birational morphism between varieties of dimension r, and let L be a line bundle on Y generated by global sections. Suppose that the canonical morphism H 0 (Y, L k ) H 0 (X, f L k ) is an isomorphism for every k > 0. Then their Newton Okounkov bodies coincide, i.e., (X, f L, v, f τ) = (Y, L, v, τ) for any valuation v : C(X) \ {0} Z r and τ H 0 (Y, L) \ {0}, where v is regarded also as a valuation on C(Y ) under the isomorphism C(Y ) = C(X). Now we define left actions of P I1 on Z I and L I,λ1,...,λ r by p [p 1,..., p r ] := [pp 1, p 2,..., p r ], p [p 1,..., p r, v] := [pp 1, p 2,..., p r, v] for p, p 1 P I1, p 2 P I2,..., p r P Ir, and v (C λ1,...,λ r ). Since the projection L I,λ1,...,λ r Z I is compatible with these actions, it follows that the space H 0 (Z I, L I,λ1,...,λ r ) of global sections has a natural P I1 -module structure. Theorem Let I = (I 1,..., I r ) be a sequence of subsets of [n], and let i = (i k,l ) 1 k r,1 l Nk [n] N 1+ +N r be a sequence such that (i k,1,..., i k,nk ) is a reduced word for the longest element in W Ik for 1 k r. Let η i,i : Z i Z I be the birational morphism in Proposition 2.6. Then for integral weights λ k := d k,1 ϖ d k,n ϖ n, 1 k r, (1) the canonical morphism H 0 (Z I, L I,λ1,...,λ r ) H 0 (Z i, L i,a ) is an isomorphism. (2) The isomorphism in (1) induces a B-module isomorphism H 0 (Z I, L I,λ1,...,λ r ) = H 0 (Z i, L i,a ) (C µ ), where a is an integer vector given in (2.13) and µ is a weight defined by r µ = d k,s ϖ s. k=1 s [n]\{i j,l 1 j k,1 l N j } To prove the theorem, we recall the following lemma. Lemma 2.19 ([20, II.14.5.(a)]). Let ϕ: Y X be a dominant and projective morphism of noetherian and integral schemes such that ϕ induces an isomorphism C(X) C(Y ) of function fields. If X is normal, then ϕ O Y = O X.

14 14 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Proof of Theorem (1) Because of Propositions 2.2 and 2.6, the morphism η = η i,i : Z i Z I satisfies all the conditions in Lemma Hence we have that (2.19) η O Zi = O ZI. Then we have the following: η (η L I,λ1,...,λ r ) = η (O Zi OZi η L I,λ1,...,λ r ) = η O Zi OZI L I,λ1,...,λ r by [18, Exercise II.5.1.(d)] = O ZI OZI L I,λ1,...,λ r by (2.19) = L I,λ1,...,λ r. Taking global sections we have an isomorphism between H 0 (Z I, L I,λ1,...,λ r ) and H 0 (Z i, η i,i L I,λ 1,...,λ r ) as C-vector spaces. And the later one is isomorphic to H 0 (Z i, L i,a ) as C-vector spaces by Proposition 2.8. (2) Using the proof of Proposition 2.8 we complete the proof. As a direct consequence of Theorem 2.18(1) and Lemma 2.17 we have the following theorem. Theorem Let I = (I 1,..., I r ) be a sequence of subsets of [n], and let i = (i k,l ) 1 k r,1 l Nk [n] N 1+ +N r be a sequence such that (i k,1,..., i k,nk ) is a reduced word for the longest element in W Ik for 1 k r. Let η i,i : Z i Z I be the birational morphism defined in Proposition 2.6. Then for integral dominant weights λ k, 1 k r, a valuation v on C(Z I ), and a nonzero section τ H 0 (Z I, L I,λ1,...,λ r ), we have the equality (Z I, L I,λ1,...,λ r, v, τ) = (Z i, η i,i L I,λ 1,...,λ r, v, η i,i τ). Remark Even if the line bundle L = L I,λ1,...,λ r is very ample the pullback bundle ηi,i L is not necessarily very ample if Z I is not a Bott Samelson variety by Remark Therefore the real dimension of (Z i, ηi,i L, v) can possibly be smaller than the complex dimension of Z i as is mentioned in Remark However, by Theorem 2.20 we can see that dim R (Z i, η i,i L, v) = dim R (Z I, L, v) = dim C Z I = dim C Z i for any valuation v which has one-dimensional leaves. By Theorem 2.20 and [12, Corollary 7.3], we have the following corollary. Corollary Suppose that λ 1,..., λ r are integral regular dominant weights. Then the Newton Okounkov body (Z I, L I,λ1,...,λ r, v high i ) is a rational convex polytope of real dimension equal to the complex dimension of Z I. 3. Applications to representation theory In this section, we give applications of Newton Okounkov bodies of flag Bott Samelson varieties to representation theory, using the theory of generalized string polytopes introduced in [12]. We restrict ourselves to a specific

15 FLAG BOTT SAMELSON VARIETIES 15 class of flag Bott Samelson varieties Z I, that is, to the case of a sequence I = (I 1,..., I r ) of subsets of [n] such that I 1 = [n]. In this case, we have P I1 = P [n] = G. Hence the space H 0 (Z I, L I,λ1,...,λ r ) of global sections has a natural G-module structure. Let χ(h) := Zϖ Zϖ n be the character lattice, and let χ + (H) := Z 0 ϖ Z 0 ϖ n be the set of integral dominant weights. Fix nonzero elements e i g αi, f i g αi for i [n]. For λ χ + (H), let V (λ) denote the irreducible highest weight G-module over C with the highest weight λ, and let v λ V (λ) be a highest weight vector. Recall that every finite-dimensional irreducible G-module is isomorphic to V (λ) for some λ χ + (H), see [19, 31.3], and that every finitedimensional G-module is completely reducible, that is, isomorphic to a direct sum of irreducible G-modules (see [19, 14.3]). For λ 1,..., λ r χ + (H), we denote by τ I,λ1,...,λ r H 0 (Z I, L I,λ1,...,λ r ) the section corresponding to τ i,a H 0 (Z i, L i,a ) under the isomorphism in Theorem 2.18 (1), where τ i,a is the section defined in [12, 2.3]. Let π 2 : R N 1+ +N r R N 2+ +N r be the canonical projection given by π 2 ((x k,l ) 1 k r,1 l Nk ) := (x k,l ) 2 k r,1 l Nk, and set i,λ1,...,λ r := π 2 ( (Z I, L I,λ1,...,λ r, v high i, τ I,λ1,...,λ r )). Since (Z I, L I,λ1,...,λ r, v high i, τ I,λ1,...,λ r ) is a rational convex polytope, the image i,λ1,...,λ r is also a rational convex polytope. The following is the main result in this section. Theorem 3.1. Let I = (I 1,..., I r ) be a sequence of subsets of [n] such that I 1 = [n], and fix i = (i 1,1,..., i 1,N1,..., i r,1,..., i r,nr ) [n] N 1+ +N r such that (i k,1,..., i k,nk ) is a reduced word for the longest element in W Ik for 1 k r. For λ 1,..., λ r χ + (H), write H 0 (Z I, L I,λ1,...,λ r ) V (ν) cν I,λ 1,...,λr ν χ + (H) as a G-module. Then, the multiplicity c ν I,λ 1,...,λ r equals the cardinality of {x = (x k,l ) 2 k r,1 l Nk i,λ1,...,λ r Z N 2+ +N r λ λ r x k,l α ik,l = ν}. 2 k r,1 l N k Remark 3.2. Since (Z I, L I,λ1,...,λ r, v high i, τ I,λ1,...,λ r ) = (Z i, L i,a, v high i, τ i,a ) by Theorem 2.20, it is natural to ask why we consider not only Z i but also Z I. The reason is that the space H 0 (Z i, L i,a ) of global sections does not have a natural G-module structure because Z i is not a G-variety. The theory of flag Bott-Samelson varieties gives a natural framework to relate the usual Bott-Samelson variety Z i with G-modules. In order to prove Theorem 3.1, we use the theory of crystal bases, see [23] for a survey on this topic. Lusztig [35, 36, 37] and Kashiwara [21] constructed a specific C-basis of V (λ) via the quantized enveloping algebra associated

16 16 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH with g. This is called (the specialization at q = 1 of) the lower global basis (= the canonical basis), and denoted by {G low λ (b) b B(λ)} V (λ). The index set B(λ) is endowed with specific maps wt: B(λ) χ(h), ε i, ϕ i : B(λ) Z 0, and which have the following properties: wt(b λ ) = λ, ẽ i, f i : B(λ) B(λ) {0} for i [n], wt(ẽ i b) = wt(b) + α i if ẽ i b 0, wt( f i b) = wt(b) α i if fi b 0, ε i (b) = max{k Z 0 ẽ k i b 0}, ϕ i (b) = max{k Z 0 f k i b 0}, e i G low λ (b) C G low λ (ẽ ib) + f i G low λ (b) C G low λ ( f i b) + b B(λ); wt(b )=wt(b)+α i, ϕ i (b )>ϕ i (b)+1 b B(λ); wt(b )=wt(b) α i, ε i (b )>ε i (b)+1 CG low λ (b ), CG low λ (b ) for i [n] and b B(λ), where C = C \ {0}, and b λ B(λ) is defined as G low λ (b λ) C v λ, called the highest element. We call B(λ) the crystal basis for V (λ), which satisfies the axiom of crystals, see [22, Definition 1.2.1] for the definition of crystals. Definition 3.3 (see [23, 4.2]). The crystal graph of a crystal B is the [n]- colored, directed graph with vertex set B whose directed edges are given by: b i b if and only if b = f i b. In this paper, we identify a crystal B with its crystal graph. By [21, Theorem 3], for a G-module V = V (ν 1 ) V (ν M ), the crystal graph of the corresponding crystal basis B(V ) is the disjoint union of the crystal graphs B(ν 1 ),..., B(ν M ). Proposition 3.4 (see [22, Proposition 3.2.3]). Let i = (i 1,..., i r ) [n] r be a reduced word for w W, and λ χ + (H). Then, the subset B w (λ) := { f x 1 i 1 f xr i r b λ x 1,..., x r Z 0 } \ {0} B(λ) is independent of the choice of a reduced word i. The subset B w (λ) is called a Demazure crystal.

17 FLAG BOTT SAMELSON VARIETIES 17 Example 3.5. Let G = SL(3), and λ = α 1 + α 2 = ϖ 1 + ϖ 2. Then, the crystal graph of B(λ) is given as follows: b λ In addition, for w = s 2 s 1 W, the following directed graph gives the Demazure crystal B w (λ): b λ 2 The following is an immediate consequence of [22, Proposition 3.2.3]. Lemma 3.6. Let i = (i 1,..., i N ) [n] N be a reduced word for the longest element w 0 W. Then, the following equalities hold for all λ χ + (H): B(λ) = B w0 (λ) = { f x 1 i 1 f x N i N b λ x 1,..., x N Z 0 } \ {0}. In particular, the following equality holds for all w W : { f x 1 i 1 f x N i N b x 1,..., x N Z 0, b B w (λ)} \ {0} = B(λ). For two crystals B 1, B 2, we can define another crystal B 1 B 2, called the tensor product of B 1 and B 2, see [22, 1.3] for the definition. For λ 1,..., λ r χ + (H), the tensor product B(λ 1 ) B(λ r ) is identical to the crystal basis for the tensor product module V (λ 1 ) V (λ r ) by [21, Theorem 1]. Let us recall the definitions of generalized Demazure crystals and generalized string polytopes. Definition 3.7 (see [31, 1.2]). Let i = (i 1,..., i r ) [n] r be an arbitrary word, and a = (a 1,..., a r ) Z r 0. We define B i,a B(a 1 ϖ i1 ) B(a r ϖ ir ) by the subset { f x 1 i 1 (b a1 ϖ i1 f x 2 i 2 (b a2 ϖ i2 f x r 1 xr i r 1 (b ar 1 ϖ ir 1 f i r (b arϖir )) )) x 1,..., x r Z 0 } \ {0}; this is called a generalized Demazure crystal.

18 18 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Definition 3.8 ([12, Definition 4.4]). Let i = (i 1,..., i r ) [n] r be an arbitrary word, and a = (a 1,..., a r ) Z r 0. For b B i,a, we set b(1) := b, x 1 := max{x Z 0 ẽ x i 1 b(1) 0}, ẽ x 1 i 1 b(1) = b a1 ϖ i1 b(2), x 2 := max{x Z 0 ẽ x i 2 b(2) 0}, ẽ x 2 i 2 b(2) = b a2 ϖ i2 b(3),. x r := max{x Z 0 ẽ x i r b(r) 0}, and define the generalized string parametrization Ω i (b) of b with respect to i by Ω i (b) := (x 1,..., x r ). Definition 3.9 ([12, Definition 4.7]). For an arbitrary word i [n] r and a Z r 0, define a subset S i,a Z >0 Z r by S i,a := k>0{(k, Ω i (b)) b B i,ka }, and denote by C i,a R 0 R r the smallest real closed cone containing S i,a. Let us define a subset i,a R r by i,a := {x R r (1, x) C i,a }; this is called the generalized string polytope associated to i and a. The following is a fundamental property of generalized string polytopes. Proposition 3.10 (see [12, Corollaries 4.16, 5.4 (3)]). The generalized string polytope i,a is a rational convex polytope, and the equality Ω i (B i,a ) = i,a Z r holds. Fujita proved the following relation between the generalized string polytope and a Newton Okounkov body of the Bott Samelson variety Z i. Theorem 3.11 (see [12, Corollary 5.3]). Let Z i be the Bott Samelson variety determined by a word i [n] r, and let L i,a be the line bundle on Z i determined by an integer vector a Z r 0 as in (2.12). Then we have that (Z i, L i,a, v high i, τ i,a ) = i,a. Remark The combinatorial structure of generalized string polytopes is quite complicated that even their real dimensions are not easy to be determined. By Remark 2.21, Theorem 3.11 determines the dimensions of generalized string polytopes of the type (Z i, ηi,i L, vhigh i, τ i,a ), where I is a sequence of subsets of [n] and L is a very ample line bundle over Z I. Let I = (I 1,..., I r ) be a sequence of subsets of [n], and fix a sequence i = (i k,l ) 1 k r,1 l Nk [n] N 1+ +N r such that (i k,1,..., i k,nk ) is a reduced word for the longest element in W Ik for 1 k r. Given λ 1,..., λ r χ + (H),

19 FLAG BOTT SAMELSON VARIETIES 19 we denote the dual P I1 -module H 0 (Z I, L I,λ1,...,λ r ) by V I,λ1,...,λ r, and define B i,λ1,...,λ r B(λ 1 ) B(λ r ) to be the set of elements of the form (3.1) f x 1,1 i 1,1 f x 1,N 1 i 1,N1 (b λ1 f x r 1,1 i r 1,1 for some x 1,1,..., x 1,N1,..., x r,1,..., x r,nr Z 0. f x r 1,N r 1 i r 1,Nr 1 (b λr 1 f x r,1 i r,1 f x r,nr i r,nr (b λr )) ) Proposition For λ 1,..., λ r χ + (H), let a Z N 1+ +N r be the integer vector such that L i,a ηi,i L I,λ 1,...,λ r as given in Proposition 2.8, and let µ χ + (H) be the weight defined in Theorem 2.18 (2). (1) The B-module V I,λ1,...,λ r is naturally isomorphic to C µ V i,a, where V i,a is the generalized Demazure module defined in [31, 1.1]. (2) There is a natural bijective map B i,λ1,...,λ r bµ B i,a compatible with the crystal structures. (3) The crystal graph of B i,λ1,...,λ r is identical to that of B i,a. Proof. (1) The assertion is an immediate consequence of Theorem 2.18 and [31, Theorem 6]. (2) For λ, µ χ + (H), the crystal basis B(λ + µ) can be regarded as a connected component of B(λ) B(µ) by identifying b λ+µ with b λ b µ (see [23, 4.5]). If we identify b λ with b λ λ,α i ϖ i b λ,α i ϖ i for i [n] and λ χ + (H), then the definition of tensor product crystals implies that f a i b λ = b λ λ,α i ϖ i f a i b λ,α i ϖ i for all a Z 0 (see [12, Appendix A]). Hence it follows that f x 1,1 i 1,1 f x 1,N 1 i 1,N1 (b λ1 b) = b λ1 1 l N 1 µ l f x 1,1 i 1,1 (b µ1 f x 1,2 i 1,2 (b µ2 f x 1,N 1 i 1,N1 (b µn1 b) )) for b B i 2,λ 2,...,λ r and x 1,1,..., x 1,N1 Z 0, where { λ1, αi ϖ 1,l i 1,l if l = max{1 q N 1 i 1,q = i 1,l }, µ l := 0 otherwise for 1 l N 1, and i 2 := (i k,l ) 2 k r,1 l Nk. By repeating this deformation, all the elements of the form (3.1) can be naturally written as elements in b µ B i,a. This proves part (2). (3) Let us prove that ẽ i (b µ b) = b µ ẽ i b for all i [n] and b B i,a. By the definition of B i,a, we have wt(b) wt(b ) Zα j j {i k,l 1 k r, 1 l N k } for all b, b B i,a. Hence B i,a does not have edges labeled by j / {i k,l 1 k r, 1 l N k }. From this, we may assume that i {i k,l 1 k r, 1 l N k }. Then, we have µ, α i = 0 by the definition of µ, which implies by the definition of tensor product

20 20 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH crystals that ẽ i (b µ b) = b µ ẽ i b. Thus, we have proved that the crystal graph of b µ B i,a is identical to that of B i,a. Then, part (3) follows immediately from part (2). Proposition 3.13 implies that all the results in [31] for V i,a and B i,a are applicable also for V I,λ1,...,λ r and B i,λ1,...,λ r. Proposition The set B i,λ1,...,λ r does not depend on the choice of i. depends only on I, λ 1,..., λ r, that is, Proof. We proceed by induction on r. If r = 1, then the assertion is an immediate consequence of Proposition 3.4. Assume that r 2, and that B i 2,λ 2,...,λ r is independent of the choice of i 2. By [31, Theorem 2] and Proposition 3.13, it follows that b λ1 B i 2,λ 2,...,λ r is a disjoint union of Demazure crystals. Hence it suffices to prove that the set B v,i1,1,...,i 1,N1 (λ) := { f x 1 i 1,1 f x N 1 i 1,N1 b x 1,..., x N1 Z 0, b B v (λ)} \ {0} does not depend on the choice of (i 1,1,..., i 1,N1 ) for each connected component B v (λ) of b λ1 B i 2,λ 2,...,λ r. We define v 1,..., v N1 W inductively by { s i1,n1 v if l(s i1,n1 v) > l(v), v 1 := v if l(s i1,n1 v) < l(v), { s i1,n1 l+1 v l := v l 1 if l(s v i1,n1 l+1 l 1) > l(v l 1 ), v l 1 if l(s v i1,n1 l+1 l 1) < l(v l 1 ). Then, we deduce by [22, Proposition (iii)] that B v,i1,1,...,i 1,N1 (λ) = B vn1 (λ). In addition, it follows by [22, Lemma and Proposition (i)] that f x1 i 1,1 f x N 1 i 1,N1 x 1,...,x N1 Z 0 From these, we have b B v,i1,1,...,i 1,N1 (λ) b B v(λ) CG low λ (b) = CG low λ (b) = x 1,...,x N1 Z 0 f x1 i 1,1 f x N 1 i 1,N1 b B vn1 (λ) b B v(λ) CG low λ (b). CG low λ (b) ; the right hand side does not depend on the choice of (i 1,1,..., i 1,N1 ) by [22, Proposition (v)], which implies that the set B v,i1,1,...,i 1,N1 (λ) is also independent. This proves the proposition.

21 FLAG BOTT SAMELSON VARIETIES 21 We denote B i,λ1,...,λ r by B I,λ1,...,λ r, which is also called a generalized Demazure crystal. By definition, we have B I,λ1,...,λ r = { f x 1 i 1,1 f x N 1 i 1,N1 (b λ1 b) x 1,..., x N1 Z 0, b B (I2,...,I r),λ 2,...,λ r } \ {0}. Assume that I 1 = [n], and hence that (i 1,1,..., i 1,N1 ) is a reduced word for w 0 W. By [31, Theorem 2] and Proposition 3.13, the set b λ1 B (I2,...,I r),λ 2,...,λ r is a disjoint union of Demazure crystals. Hence the second assertion of Lemma 3.6 implies that each connected component of B I,λ1,...,λ r is of the form B(ν) for some ν χ + (H). Note that the character of V I,λ1,...,λ r equals the formal character of B I,λ1,...,λ r by [31, Theorem 5 and Corollary 10] and Proposition Since finite-dimensional G-modules are characterized by their characters, we obtain the following. Proposition Let I = (I 1,..., I r ) be a sequence of subsets of [n] such that I 1 = [n]. Then, the generalized Demazure crystal B I,λ1,...,λ r is isomorphic to the crystal basis for the G-module V I,λ1,...,λ r. In particular, if B I,λ1,...,λ r is the disjoint union of B(ν 1 ),..., B(ν M ), then V I,λ1,...,λ r is isomorphic to V (ν 1 ) V (ν M ). Since the crystal graph of B i,a is identical to that of B I,λ1,...,λ r by Proposition 3.13 (3), the generalized string parametrization Ω i of B i,a can be regarded as a parametrization of B I,λ1,...,λ r. We denote i,a by i,λ1,...,λ r. Then, we have i,λ1,...,λ r = π 2 ( i,λ1,...,λ r ) by Theorems 2.20, Proof of Theorem 3.1. By Proposition 3.15, the multiplicity c ν I,λ 1,...,λ r equals the number of connected components of B I,λ1,...,λ r isomorphic to B(ν). For b B I,λ1,...,λ r, we write Ω i (b) = (x 1,1,..., x 1,N1,..., x r,1,..., x r,nr ). By the definition of Ω i, we have (3.2) x 1,l = max{x Z 0 ẽ x i 1,l ẽ x 1,l 1 i 1,l 1 ẽ x 1,1 i 1,1 b 0} for 1 l N 1. Let C b denote the connected component of B I,λ1,...,λ r containing b. Since I 1 = [n], it follows that (i 1,1,..., i 1,N1 ) is a reduced word for w 0 W. So we deduce by [22, Proposition 3.2.3] that ẽ x 1,N 1 i 1,N1 ẽ x 1,1 i 1,1 b is the highest element in C b. Hence (0,..., 0, x 2,1,..., x 2,N2,..., x r,1,..., x r,nr ) is the generalized string parametrization of the highest element. In particular, the surjective map B I,λ1,...,λ r i,λ1,...,λ r Z N 2+ +N r given by b π 2 (Ω i (b)) induces a bijective map Υ: {connected components of B I,λ1,...,λ r } i,λ1,...,λ r Z N 2+ +N r. In addition, if Υ(C) = (x 2,1,..., x 2,N2,..., x r,1,..., x r,nr ), then the weight of the highest element in C is given by λ 1 + +λ r 2 k r,1 l N k x k,l α ik,l. From these, we deduce the assertion of the theorem. The following is an immediate consequence of the proof of Theorem 3.1.

22 22 NAOKI FUJITA, EUNJEONG LEE, AND DONG YOUP SUH Corollary Let I = (I 1,..., I r ) be a sequence of subsets of [n] such that I 1 = [n]. Then, the number of connected components of B I,λ1,...,λ r equals the cardinality of i,λ1,...,λ r Z N 2+ +N r. Let π 1 : R N 1+ +N r R N 1 denote the canonical projection given by (x 1,1,..., x 1,N1,..., x r,1,..., x r,nr ) (x 1,1,..., x 1,N1 ). Proposition For x i,λ1,...,λ r Z N 2+ +N r, the set π 1 (π 2 1 (x) i,λ1,...,λ r ) is identical to the string polytope for the connected component Υ 1 (x) of B I,λ1,...,λ r with respect to the reduced word (i 1,1,..., i 1,N1 ) for w 0 W ; see [24, Definition 3.5] and [34, 1] for the definition of string polytopes. Proof. Recall that Ω i : B I,λ1,...,λ r i,λ1,...,λ r Z N 1+ +N r is bijective by Proposition Hence by the definition of Υ, we obtain the following bijective map: Υ 1 (x) π 1 2 (x) i,λ 1,...,λ r Z N 1+ +N r, b Ω i (b). In addition, we see by (3.2) that π 1 (Ω i (b)) is the string parametrization of b Υ 1 (x) with respect to the reduced word (i 1,1,..., i 1,N1 ); see [34, 1] and [24, Definition 3.2] for the definition of string parametrizations. From these, we obtain the assertion of the proposition. Remark Kaveh-Khovanskii [26] gave a general framework to describe multiplicities of irreducible representations by using Newton-Okounkov bodies. Our results give concrete constructions of convex bodies appearing in [26]. Indeed, by the proof of Theorem 3.1 and [12, Theorem 5.2], it is not hard to prove that the rational convex polytope i,λ1,...,λ r is identical to the multiplicity convex body G (A) in [26, 4.1] for the valuation v high i, where A := k 0 H 0 (Z I, L k I,λ 1,...,λ r ). From this and Proposition 3.17, we deduce that the generalized string polytope i,λ1,...,λ r equals the string convex body (A) in [26, 5.2]. In representation theory, it is a fundamental problem to determine the G-module structure of the tensor product module V (λ) V (µ), which is equivalent to determining the multiplicity c ν λ,µ of V (ν) in V (λ) V (µ). Berenstein Zelevinsky [3, Theorems 2.3, 2.4] described the multiplicity c ν λ,µ as the number of lattice points in some explicit rational convex polytope. In the following, we see that Theorem 3.1 gives a different approach to such polyhedral expressions for c ν λ,µ. Let us consider the case I = ([n], [n]). In

23 FLAG BOTT SAMELSON VARIETIES 23 this case, the flag Bott Samelson variety Z I is identical to G B G/B, and the following map is an isomorphism of varieties: G/B G/B, [g1, g 2 ] (g 1 B/B, g 1 g 2 B/B); Z I the inverse map is given by (g 1 B/B, g 2 B/B) [g 1, g1 1 g 2]. It is easily seen that under the isomorphism Z I G/B G/B, the G-action on Z I coincides with the diagonal action on G/B G/B, and the line bundle L I,λ,µ corresponds to the direct product of L λ and L µ, where L ν denotes the line bundle L ([n]),ν over G/B for ν χ + (H). Hence we obtain the following isomorphisms of G-modules: H 0 (Z I, L I,λ,µ ) H 0 (G/B G/B, L λ L µ ) H 0 (G/B, L λ ) H 0 (G/B, L µ ) V (λ) V (µ) by the Borel-Weil theorem (see [20, Corollary II.5.6]). If we write V (λ) V (µ) V (ν) cν λ,µ ν χ + (H) as a G-module, then we obtain the following by Theorem 3.1. Theorem Let I = ([n], [n]), and (i 1,..., i N ), (j 1,..., j N ) [n] N reduced words for w 0 W. Then, the tensor product multiplicity c ν λ,µ equals the cardinality of {(y 1,..., y N ) i,λ,µ Z N λ + µ y l α jl = ν}, where i := (i 1,..., i N, j 1,..., j N ). 1 l N Example Let G = SL(3), I = ([2], [2]), and i = (1, 2, 1, 1, 2, 1). By [12, Corollary 4.15], the generalized string polytope i,λ,µ is identical to the set of (x 1, x 2, x 3, y 1, y 2, y 3 ) R 6 0 satisfying the following inequalities: 0 y 3 min{λ 2, µ 1 }, y 3 y 2 y 3 + µ 2, y 2 λ 2 y 1 min{λ 1, y 2 2y 3 + µ 1 }, max{y 3 λ 2, y 1 + y 2 λ 2 } x 3 2y 1 + y 2 2y 3 + λ 1 + µ 1, x 3 x 2 x 3 + y 1 2y 2 + y 3 + λ 2 + µ 2, 0 x 1 x 2 2x 3 2y 1 + y 2 2y 3 + λ 1 + µ 1, where λ i := λ, αi and µ i := µ, αi for i = 1, 2. Hence the polytope i,λ,µ is identical to the set of (y 1, y 2, y 3 ) R 3 0 satisfying the following inequalities: 0 y 3 min{λ 2, µ 1 }, y 3 y 2 y 3 + µ 2, y 2 λ 2 y 1 min{λ 1, y 2 2y 3 + µ 1 }.

Eigenvalue problem for Hermitian matrices and its generalization to arbitrary reductive groups

Eigenvalue problem for Hermitian matrices and its generalization to arbitrary reductive groups Eigenvalue problem for Hermitian matrices and its generalization to arbitrary reductive groups Shrawan Kumar Talk given at AMS Sectional meeting held at Davidson College, March 2007 1 Hermitian eigenvalue

More information

arxiv: v1 [math.ag] 4 Apr 2015

arxiv: v1 [math.ag] 4 Apr 2015 NEWTON-OKOUNKOV BODIES OF BOTT-SAMELSON VARIETIES AND GROSSBERG-KARSHON TWISTED CUBES MEGUMI HARADA AND JIHYEON JESSIE YANG ABSTRACT. We describe, under certain conditions, the Newton-Okounkov body of

More information

Lecture 1. Toric Varieties: Basics

Lecture 1. Toric Varieties: Basics Lecture 1. Toric Varieties: Basics Taras Panov Lomonosov Moscow State University Summer School Current Developments in Geometry Novosibirsk, 27 August1 September 2018 Taras Panov (Moscow University) Lecture

More information

Another proof of the global F -regularity of Schubert varieties

Another proof of the global F -regularity of Schubert varieties Another proof of the global F -regularity of Schubert varieties Mitsuyasu Hashimoto Abstract Recently, Lauritzen, Raben-Pedersen and Thomsen proved that Schubert varieties are globally F -regular. We give

More information

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8 LECTURE 11: SYMPLECTIC TORIC MANIFOLDS Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8 1. Symplectic toric manifolds Orbit of torus actions. Recall that in lecture 9

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

A PROOF OF BOREL-WEIL-BOTT THEOREM

A PROOF OF BOREL-WEIL-BOTT THEOREM A PROOF OF BOREL-WEIL-BOTT THEOREM MAN SHUN JOHN MA 1. Introduction In this short note, we prove the Borel-Weil-Bott theorem. Let g be a complex semisimple Lie algebra. One basic question in representation

More information

EKT of Some Wonderful Compactifications

EKT of Some Wonderful Compactifications EKT of Some Wonderful Compactifications and recent results on Complete Quadrics. (Based on joint works with Soumya Banerjee and Michael Joyce) Mahir Bilen Can April 16, 2016 Mahir Bilen Can EKT of Some

More information

(Equivariant) Chern-Schwartz-MacPherson classes

(Equivariant) Chern-Schwartz-MacPherson classes (Equivariant) Chern-Schwartz-MacPherson classes Leonardo Mihalcea (joint with P. Aluffi) November 14, 2015 Leonardo Mihalcea (joint with P. Aluffi) () CSM classes November 14, 2015 1 / 16 Let X be a compact

More information

LECTURE 11: SOERGEL BIMODULES

LECTURE 11: SOERGEL BIMODULES LECTURE 11: SOERGEL BIMODULES IVAN LOSEV Introduction In this lecture we continue to study the category O 0 and explain some ideas towards the proof of the Kazhdan-Lusztig conjecture. We start by introducing

More information

Delzant s Garden. A one-hour tour to symplectic toric geometry

Delzant s Garden. A one-hour tour to symplectic toric geometry Delzant s Garden A one-hour tour to symplectic toric geometry Tour Guide: Zuoqin Wang Travel Plan: The earth America MIT Main building Math. dept. The moon Toric world Symplectic toric Delzant s theorem

More information

Chow rings of Complex Algebraic Groups

Chow rings of Complex Algebraic Groups Chow rings of Complex Algebraic Groups Shizuo Kaji joint with Masaki Nakagawa Workshop on Schubert calculus 2008 at Kansai Seminar House Mar. 20, 2008 Outline Introduction Our problem (algebraic geometory)

More information

Smooth projective horospherical varieties with Picard number 1

Smooth projective horospherical varieties with Picard number 1 arxiv:math/0703576v1 [math.ag] 20 Mar 2007 Smooth projective horospherical varieties with Picard number 1 Boris Pasquier February 2, 2008 Abstract We describe smooth projective horospherical varieties

More information

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n)

BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n) BLOCKS IN THE CATEGORY OF FINITE-DIMENSIONAL REPRESENTATIONS OF gl(m n) VERA SERGANOVA Abstract. We decompose the category of finite-dimensional gl (m n)- modules into the direct sum of blocks, show that

More information

arxiv: v1 [math.ag] 28 Dec 2017

arxiv: v1 [math.ag] 28 Dec 2017 SINGULAR STRING POLYTOPES AND FUNCTORIAL RESOLUTIONS FROM NEWTON-OKOUNKOV BODIES MEGUMI HARADA AND JIHYEON JESSIE YANG arxiv:1712.09788v1 [math.ag] 28 Dec 2017 ABSTRACT. The main result of this note is

More information

Math 210C. The representation ring

Math 210C. The representation ring Math 210C. The representation ring 1. Introduction Let G be a nontrivial connected compact Lie group that is semisimple and simply connected (e.g., SU(n) for n 2, Sp(n) for n 1, or Spin(n) for n 3). Let

More information

IVAN LOSEV. Lemma 1.1. (λ) O. Proof. (λ) is generated by a single vector, v λ. We have the weight decomposition (λ) =

IVAN LOSEV. Lemma 1.1. (λ) O. Proof. (λ) is generated by a single vector, v λ. We have the weight decomposition (λ) = LECTURE 7: CATEGORY O AND REPRESENTATIONS OF ALGEBRAIC GROUPS IVAN LOSEV Introduction We continue our study of the representation theory of a finite dimensional semisimple Lie algebra g by introducing

More information

Category O and its basic properties

Category O and its basic properties Category O and its basic properties Daniil Kalinov 1 Definitions Let g denote a semisimple Lie algebra over C with fixed Cartan and Borel subalgebras h b g. Define n = α>0 g α, n = α

More information

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori

LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI. 1. Maximal Tori LECTURE 25-26: CARTAN S THEOREM OF MAXIMAL TORI 1. Maximal Tori By a torus we mean a compact connected abelian Lie group, so a torus is a Lie group that is isomorphic to T n = R n /Z n. Definition 1.1.

More information

CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS

CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS Trends in Mathematics Information Center for Mathematical Sciences Volume 4, Number, June, Pages 8 CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS SEOK-JIN KANG Abstract. We give a

More information

LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II

LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II LECTURE 20: KAC-MOODY ALGEBRA ACTIONS ON CATEGORIES, II IVAN LOSEV 1. Introduction 1.1. Recap. In the previous lecture we have considered the category C F := n 0 FS n -mod. We have equipped it with two

More information

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that

L(C G (x) 0 ) c g (x). Proof. Recall C G (x) = {g G xgx 1 = g} and c g (x) = {X g Ad xx = X}. In general, it is obvious that ALGEBRAIC GROUPS 61 5. Root systems and semisimple Lie algebras 5.1. Characteristic 0 theory. Assume in this subsection that chark = 0. Let me recall a couple of definitions made earlier: G is called reductive

More information

Spherical varieties and arc spaces

Spherical varieties and arc spaces Spherical varieties and arc spaces Victor Batyrev, ESI, Vienna 19, 20 January 2017 1 Lecture 1 This is a joint work with Anne Moreau. Let us begin with a few notations. We consider G a reductive connected

More information

Geometry and combinatorics of spherical varieties.

Geometry and combinatorics of spherical varieties. Geometry and combinatorics of spherical varieties. Notes of a course taught by Guido Pezzini. Abstract This is the lecture notes from a mini course at the Winter School Geometry and Representation Theory

More information

Intersection of stable and unstable manifolds for invariant Morse functions

Intersection of stable and unstable manifolds for invariant Morse functions Intersection of stable and unstable manifolds for invariant Morse functions Hitoshi Yamanaka (Osaka City University) March 14, 2011 Hitoshi Yamanaka (Osaka City University) ()Intersection of stable and

More information

Groups of Prime Power Order with Derived Subgroup of Prime Order

Groups of Prime Power Order with Derived Subgroup of Prime Order Journal of Algebra 219, 625 657 (1999) Article ID jabr.1998.7909, available online at http://www.idealibrary.com on Groups of Prime Power Order with Derived Subgroup of Prime Order Simon R. Blackburn*

More information

Intersection Theory course notes

Intersection Theory course notes Intersection Theory course notes Valentina Kiritchenko Fall 2013, Faculty of Mathematics, NRU HSE 1. Lectures 1-2: examples and tools 1.1. Motivation. Intersection theory had been developed in order to

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

Characteristic classes in the Chow ring

Characteristic classes in the Chow ring arxiv:alg-geom/9412008v1 10 Dec 1994 Characteristic classes in the Chow ring Dan Edidin and William Graham Department of Mathematics University of Chicago Chicago IL 60637 Let G be a reductive algebraic

More information

Combinatorial models for the variety of complete quadrics

Combinatorial models for the variety of complete quadrics Combinatorial models for the variety of complete quadrics Soumya D. Banerjee, Mahir Bilen Can, Michael Joyce October 21, 2016 Abstract We develop several combinatorial models that are useful in the study

More information

Birational geometry and deformations of nilpotent orbits

Birational geometry and deformations of nilpotent orbits arxiv:math/0611129v1 [math.ag] 6 Nov 2006 Birational geometry and deformations of nilpotent orbits Yoshinori Namikawa In order to explain what we want to do in this paper, let us begin with an explicit

More information

TORIC WEAK FANO VARIETIES ASSOCIATED TO BUILDING SETS

TORIC WEAK FANO VARIETIES ASSOCIATED TO BUILDING SETS TORIC WEAK FANO VARIETIES ASSOCIATED TO BUILDING SETS YUSUKE SUYAMA Abstract. We give a necessary and sufficient condition for the nonsingular projective toric variety associated to a building set to be

More information

Math 249B. Geometric Bruhat decomposition

Math 249B. Geometric Bruhat decomposition Math 249B. Geometric Bruhat decomposition 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ Φ, and let B be the unique

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS

PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS Contents 1. Regular elements in semisimple Lie algebras 1 2. The flag variety and the Bruhat decomposition 3 3. The Grothendieck-Springer resolution 6 4. The

More information

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS APPENDIX 3: AN OVERVIEW OF CHOW GROUPS We review in this appendix some basic definitions and results that we need about Chow groups. For details and proofs we refer to [Ful98]. In particular, we discuss

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

0 A. ... A j GL nj (F q ), 1 j r

0 A. ... A j GL nj (F q ), 1 j r CHAPTER 4 Representations of finite groups of Lie type Let F q be a finite field of order q and characteristic p. Let G be a finite group of Lie type, that is, G is the F q -rational points of a connected

More information

arxiv: v4 [math.rt] 9 Jun 2017

arxiv: v4 [math.rt] 9 Jun 2017 ON TANGENT CONES OF SCHUBERT VARIETIES D FUCHS, A KIRILLOV, S MORIER-GENOUD, V OVSIENKO arxiv:1667846v4 [mathrt] 9 Jun 217 Abstract We consider tangent cones of Schubert varieties in the complete flag

More information

Toric degeneration of Bott-Samelson-Demazure-Hansen varieties

Toric degeneration of Bott-Samelson-Demazure-Hansen varieties Toric degeneration of Bott-Samelson-Demazure-Hansen varieties Paramasamy Karuppuchamy and Parameswaran, A. J. Abstract In this paper we construct a degeneration of Bott-Samelson-Demazure-Hansen varieties

More information

ON THE COMBINATORICS OF CRYSTAL GRAPHS, II. THE CRYSTAL COMMUTOR. 1. Introduction

ON THE COMBINATORICS OF CRYSTAL GRAPHS, II. THE CRYSTAL COMMUTOR. 1. Introduction ON THE COMBINATORICS OF CRYSTAL GRAPHS, II. THE CRYSTAL COMMUTOR CRISTIAN LENART Abstract. We present an explicit combinatorial realization of the commutor in the category of crystals which was first studied

More information

Geometry of Schubert varieties and Demazure character formula

Geometry of Schubert varieties and Demazure character formula Geometry of Schubert varieties and Demazure character formula lectures by Shrawan Kumar during April, 2011 Hausdorff Research Institute for Mathematics Bonn, Germany notes written by Brandyn Lee 1 Notation

More information

Cohomology theories on projective homogeneous varieties

Cohomology theories on projective homogeneous varieties Cohomology theories on projective homogeneous varieties Baptiste Calmès RAGE conference, Emory, May 2011 Goal: Schubert Calculus for all cohomology theories Schubert Calculus? Cohomology theory? (Very)

More information

Irreducible subgroups of algebraic groups

Irreducible subgroups of algebraic groups Irreducible subgroups of algebraic groups Martin W. Liebeck Department of Mathematics Imperial College London SW7 2BZ England Donna M. Testerman Department of Mathematics University of Lausanne Switzerland

More information

(1) is an invertible sheaf on X, which is generated by the global sections

(1) is an invertible sheaf on X, which is generated by the global sections 7. Linear systems First a word about the base scheme. We would lie to wor in enough generality to cover the general case. On the other hand, it taes some wor to state properly the general results if one

More information

Math 249B. Tits systems

Math 249B. Tits systems Math 249B. Tits systems 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ + Φ, and let B be the unique Borel k-subgroup

More information

Root systems. S. Viswanath

Root systems. S. Viswanath Root systems S. Viswanath 1. (05/07/011) 1.1. Root systems. Let V be a finite dimensional R-vector space. A reflection is a linear map s α,h on V satisfying s α,h (x) = x for all x H and s α,h (α) = α,

More information

Background on Chevalley Groups Constructed from a Root System

Background on Chevalley Groups Constructed from a Root System Background on Chevalley Groups Constructed from a Root System Paul Tokorcheck Department of Mathematics University of California, Santa Cruz 10 October 2011 Abstract In 1955, Claude Chevalley described

More information

Toroidal Embeddings and Desingularization

Toroidal Embeddings and Desingularization California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of Graduate Studies 6-2018 Toroidal Embeddings and Desingularization LEON NGUYEN 003663425@coyote.csusb.edu

More information

Crystal Bases for Quantum Generalized Kac-Moody Algebras

Crystal Bases for Quantum Generalized Kac-Moody Algebras Crystal Bases for Quantum Generalized Kac-Moody Algebras Seok-Jin Kang Department of Mathematical Sciences Seoul National University 20 June 2006 Monstrous Moonshine 1.Monstrous Moonshine M: Monster simple

More information

COMBINATORIAL CURVE NEIGHBORHOODS FOR THE AFFINE FLAG MANIFOLD OF TYPE A 1 1

COMBINATORIAL CURVE NEIGHBORHOODS FOR THE AFFINE FLAG MANIFOLD OF TYPE A 1 1 COMBINATORIAL CURVE NEIGHBORHOODS FOR THE AFFINE FLAG MANIFOLD OF TYPE A 1 1 LEONARDO C. MIHALCEA AND TREVOR NORTON Abstract. Let X be the affine flag manifold of Lie type A 1 1. Its moment graph encodes

More information

arxiv:math.ag/ v1 7 Jan 2005

arxiv:math.ag/ v1 7 Jan 2005 arxiv:math.ag/0501104 v1 7 Jan 2005 Asymptotic cohomological functions of toric divisors Milena Hering, Alex Küronya, Sam Payne January 7, 2005 Abstract We study functions on the class group of a toric

More information

Semistable Representations of Quivers

Semistable Representations of Quivers Semistable Representations of Quivers Ana Bălibanu Let Q be a finite quiver with no oriented cycles, I its set of vertices, k an algebraically closed field, and Mod k Q the category of finite-dimensional

More information

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL In this lecture we discuss a criterion for non-stable-rationality based on the decomposition of the diagonal in the Chow group. This criterion

More information

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS ANA BALIBANU DISCUSSED WITH PROFESSOR VICTOR GINZBURG 1. Introduction The aim of this paper is to explore the geometry of a Lie algebra g through the action

More information

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA COURSE SUMMARY FOR MATH 504, FALL QUARTER 2017-8: MODERN ALGEBRA JAROD ALPER Week 1, Sept 27, 29: Introduction to Groups Lecture 1: Introduction to groups. Defined a group and discussed basic properties

More information

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS

SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS SPHERICAL UNITARY REPRESENTATIONS FOR REDUCTIVE GROUPS DAN CIUBOTARU 1. Classical motivation: spherical functions 1.1. Spherical harmonics. Let S n 1 R n be the (n 1)-dimensional sphere, C (S n 1 ) the

More information

Reducibility of generic unipotent standard modules

Reducibility of generic unipotent standard modules Journal of Lie Theory Volume?? (??)???? c?? Heldermann Verlag 1 Version of March 10, 011 Reducibility of generic unipotent standard modules Dan Barbasch and Dan Ciubotaru Abstract. Using Lusztig s geometric

More information

Lemma 1.3. The element [X, X] is nonzero.

Lemma 1.3. The element [X, X] is nonzero. Math 210C. The remarkable SU(2) Let G be a non-commutative connected compact Lie group, and assume that its rank (i.e., dimension of maximal tori) is 1; equivalently, G is a compact connected Lie group

More information

On some smooth projective two-orbit varieties with Picard number 1

On some smooth projective two-orbit varieties with Picard number 1 On some smooth projective two-orbit varieties with Picard number 1 Boris Pasquier March 3, 2009 Abstract We classify all smooth projective horospherical varieties with Picard number 1. We prove that the

More information

Demushkin s Theorem in Codimension One

Demushkin s Theorem in Codimension One Universität Konstanz Demushkin s Theorem in Codimension One Florian Berchtold Jürgen Hausen Konstanzer Schriften in Mathematik und Informatik Nr. 176, Juni 22 ISSN 143 3558 c Fachbereich Mathematik und

More information

Littlewood Richardson coefficients for reflection groups

Littlewood Richardson coefficients for reflection groups Littlewood Richardson coefficients for reflection groups Arkady Berenstein and Edward Richmond* University of British Columbia Joint Mathematical Meetings Boston January 7, 2012 Arkady Berenstein and Edward

More information

Homogeneous Coordinate Ring

Homogeneous Coordinate Ring Students: Kaiserslautern University Algebraic Group June 14, 2013 Outline Quotients in Algebraic Geometry 1 Quotients in Algebraic Geometry 2 3 4 Outline Quotients in Algebraic Geometry 1 Quotients in

More information

Margulis Superrigidity I & II

Margulis Superrigidity I & II Margulis Superrigidity I & II Alastair Litterick 1,2 and Yuri Santos Rego 1 Universität Bielefeld 1 and Ruhr-Universität Bochum 2 Block seminar on arithmetic groups and rigidity Universität Bielefeld 22nd

More information

On the Birational Geometry of Schubert Varieties

On the Birational Geometry of Schubert Varieties On the Birational Geometry of Schubert Varieties Benjamin Schmidt arxiv:1208.5507v1 [math.ag] 27 Aug 2012 August 29, 2012 Abstract We classify all Q-factorializations of (co)minuscule Schubert varieties

More information

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

CHEVALLEY S THEOREM AND COMPLETE VARIETIES CHEVALLEY S THEOREM AND COMPLETE VARIETIES BRIAN OSSERMAN In this note, we introduce the concept which plays the role of compactness for varieties completeness. We prove that completeness can be characterized

More information

U a n w = ( U a )n w. U a n w

U a n w = ( U a )n w. U a n w Math 249B. Tits systems, root groups, and applications 1. Motivation This handout aims to establish in the general case two key features of the split case: the applicability of BN-pair formalism (a.k.a.

More information

(E.-W. Zink, with A. Silberger)

(E.-W. Zink, with A. Silberger) 1 Langlands classification for L-parameters A talk dedicated to Sergei Vladimirovich Vostokov on the occasion of his 70th birthday St.Petersburg im Mai 2015 (E.-W. Zink, with A. Silberger) In the representation

More information

CLASSIFICATION OF TORIC MANIFOLDS OVER AN n-cube WITH ONE VERTEX CUT

CLASSIFICATION OF TORIC MANIFOLDS OVER AN n-cube WITH ONE VERTEX CUT CLASSIFICATION OF TORIC MANIFOLDS OVER AN n-cube WITH ONE VERTEX CUT SHO HASUI, HIDEYA KUWATA, MIKIYA MASUDA, AND SEONJEONG PARK Abstract We say that a complete nonsingular toric variety (called a toric

More information

COMBINATORIAL MODELS FOR THE VARIETY OF COMPLETE QUADRICS

COMBINATORIAL MODELS FOR THE VARIETY OF COMPLETE QUADRICS COMBINATORIAL MODELS FOR THE VARIETY OF COMPLETE QUADRICS SOUMYA D. BANERJEE, MAHIR BILEN CAN, AND MICHAEL JOYCE Abstract. We develop several combinatorial models that are useful in the study of the SL

More information

REPRESENTATION THEORY, LECTURE 0. BASICS

REPRESENTATION THEORY, LECTURE 0. BASICS REPRESENTATION THEORY, LECTURE 0. BASICS IVAN LOSEV Introduction The aim of this lecture is to recall some standard basic things about the representation theory of finite dimensional algebras and finite

More information

A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX

A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX HAJIME FUJITA Abstract. We give a direct geometric proof of a Danilov-type formula for toric origami manifolds by using the

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop Eric Sommers 17 July 2009 2 Contents 1 Background 5 1.1 Linear algebra......................................... 5 1.1.1

More information

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille Math 429/581 (Advanced) Group Theory Summary of Definitions, Examples, and Theorems by Stefan Gille 1 2 0. Group Operations 0.1. Definition. Let G be a group and X a set. A (left) operation of G on X is

More information

Cover Page. Author: Yan, Qijun Title: Adapted deformations and the Ekedahl-Oort stratifications of Shimura varieties Date:

Cover Page. Author: Yan, Qijun Title: Adapted deformations and the Ekedahl-Oort stratifications of Shimura varieties Date: Cover Page The handle http://hdl.handle.net/1887/56255 holds various files of this Leiden University dissertation Author: Yan, Qijun Title: Adapted deformations and the Ekedahl-Oort stratifications of

More information

Cluster Algebras and Compatible Poisson Structures

Cluster Algebras and Compatible Poisson Structures Cluster Algebras and Compatible Poisson Structures Poisson 2012, Utrecht July, 2012 (Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 1 / 96 (Poisson 2012, Utrecht)

More information

A finite universal SAGBI basis for the kernel of a derivation. Osaka Journal of Mathematics. 41(4) P.759-P.792

A finite universal SAGBI basis for the kernel of a derivation. Osaka Journal of Mathematics. 41(4) P.759-P.792 Title Author(s) A finite universal SAGBI basis for the kernel of a derivation Kuroda, Shigeru Citation Osaka Journal of Mathematics. 4(4) P.759-P.792 Issue Date 2004-2 Text Version publisher URL https://doi.org/0.890/838

More information

Toric Varieties and the Secondary Fan

Toric Varieties and the Secondary Fan Toric Varieties and the Secondary Fan Emily Clader Fall 2011 1 Motivation The Batyrev mirror symmetry construction for Calabi-Yau hypersurfaces goes roughly as follows: Start with an n-dimensional reflexive

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

The Spinor Representation

The Spinor Representation The Spinor Representation Math G4344, Spring 2012 As we have seen, the groups Spin(n) have a representation on R n given by identifying v R n as an element of the Clifford algebra C(n) and having g Spin(n)

More information

Formal power series rings, inverse limits, and I-adic completions of rings

Formal power series rings, inverse limits, and I-adic completions of rings Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely

More information

The Lusztig-Vogan Bijection in the Case of the Trivial Representation

The Lusztig-Vogan Bijection in the Case of the Trivial Representation The Lusztig-Vogan Bijection in the Case of the Trivial Representation Alan Peng under the direction of Guangyi Yue Department of Mathematics Massachusetts Institute of Technology Research Science Institute

More information

Classification of root systems

Classification of root systems Classification of root systems September 8, 2017 1 Introduction These notes are an approximate outline of some of the material to be covered on Thursday, April 9; Tuesday, April 14; and Thursday, April

More information

Equivariant K -theory and hook formula for skew shape on d-complete set

Equivariant K -theory and hook formula for skew shape on d-complete set Equivariant K -theory and hook formula for skew shape on d-complete set Hiroshi Naruse Graduate School of Education University of Yamanashi Algebraic and Enumerative Combinatorics in Okayama 2018/02/20

More information

GKM GRAPHS INDUCED BY GKM MANIFOLDS WITH SU(l + 1)-SYMMETRIES

GKM GRAPHS INDUCED BY GKM MANIFOLDS WITH SU(l + 1)-SYMMETRIES Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 12, Number 1, 2010, pages 103 113 Toric Topology Workshop KAIST 2010 c 2010 ICMS in KAIST GKM GRAPHS INDUCED BY GKM

More information

arxiv: v2 [math.ag] 1 Jan 2011

arxiv: v2 [math.ag] 1 Jan 2011 Okounkov bodies on projectivizations of rank two toric vector bundles José Luis González 1 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA arxiv:0911.2287v2 [math.ag] 1 Jan

More information

LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O

LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O LECTURE 3: TENSORING WITH FINITE DIMENSIONAL MODULES IN CATEGORY O CHRISTOPHER RYBA Abstract. These are notes for a seminar talk given at the MIT-Northeastern Category O and Soergel Bimodule seminar (Autumn

More information

Multiplicity free actions of simple algebraic groups

Multiplicity free actions of simple algebraic groups Multiplicity free actions of simple algebraic groups D. Testerman (with M. Liebeck and G. Seitz) EPF Lausanne Edinburgh, April 2016 D. Testerman (with M. Liebeck and G. Seitz) (EPF Lausanne) Multiplicity

More information

5 Quiver Representations

5 Quiver Representations 5 Quiver Representations 5. Problems Problem 5.. Field embeddings. Recall that k(y,..., y m ) denotes the field of rational functions of y,..., y m over a field k. Let f : k[x,..., x n ] k(y,..., y m )

More information

Thus we get. ρj. Nρj i = δ D(i),j.

Thus we get. ρj. Nρj i = δ D(i),j. 1.51. The distinguished invertible object. Let C be a finite tensor category with classes of simple objects labeled by a set I. Since duals to projective objects are projective, we can define a map D :

More information

LINE BUNDLES ON BOTT-SAMELSON VARIETIES

LINE BUNDLES ON BOTT-SAMELSON VARIETIES LINE BUNDLES ON BOTT-SAMELSON VARIETIES NIELS LAURITZEN, JESPER FUNCH THOMSEN 1. Introduction Let G be a connected semisimple, simply connected linear algebraic group over an algebraically closed field

More information

Upper triangular matrices and Billiard Arrays

Upper triangular matrices and Billiard Arrays Linear Algebra and its Applications 493 (2016) 508 536 Contents lists available at ScienceDirect Linear Algebra and its Applications www.elsevier.com/locate/laa Upper triangular matrices and Billiard Arrays

More information

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS 1 SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS HUAJUN HUANG AND HONGYU HE Abstract. Let G be the group preserving a nondegenerate sesquilinear form B on a vector space V, and H a symmetric subgroup

More information

SEMI-GROUP AND BASIC FUNCTIONS

SEMI-GROUP AND BASIC FUNCTIONS SEMI-GROUP AND BASIC FUNCTIONS 1. Review on reductive semi-groups The reference for this material is the paper Very flat reductive monoids of Rittatore and On reductive algebraic semi-groups of Vinberg.

More information

SOME REMARKS ON THE TOPOLOGY OF HYPERBOLIC ACTIONS OF R n ON n-manifolds

SOME REMARKS ON THE TOPOLOGY OF HYPERBOLIC ACTIONS OF R n ON n-manifolds SOME REMARKS ON THE TOPOLOGY OF HYPERBOLIC ACTIONS OF R n ON n-manifolds DAMIEN BOULOC Abstract. This paper contains some more results on the topology of a nondegenerate action of R n on a compact connected

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

MAT 5330 Algebraic Geometry: Quiver Varieties

MAT 5330 Algebraic Geometry: Quiver Varieties MAT 5330 Algebraic Geometry: Quiver Varieties Joel Lemay 1 Abstract Lie algebras have become of central importance in modern mathematics and some of the most important types of Lie algebras are Kac-Moody

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )).

H(G(Q p )//G(Z p )) = C c (SL n (Z p )\ SL n (Q p )/ SL n (Z p )). 92 19. Perverse sheaves on the affine Grassmannian 19.1. Spherical Hecke algebra. The Hecke algebra H(G(Q p )//G(Z p )) resp. H(G(F q ((T ))//G(F q [[T ]])) etc. of locally constant compactly supported

More information