Upper triangular matrices and Billiard Arrays

Size: px
Start display at page:

Download "Upper triangular matrices and Billiard Arrays"

Transcription

1 Linear Algebra and its Applications 493 (2016) Contents lists available at ScienceDirect Linear Algebra and its Applications Upper triangular matrices and Billiard Arrays Yang Yang Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA a r t i c l e i n f o a b s t r a c t Article history: Received 12 September 2015 Accepted 21 December 2015 Available online xxxx Submitted by R. Brualdi MSC: primary 05E15 secondary 15A21 Keywords: Upper triangular matrix Billiard Array Flag Quantum group Equitable presentation Fix a nonnegative integer d, a field F, and a vector space V over F with dimension d +1. Let T denote an invertible upper triangular matrix in Mat d+1 (F). Using T we construct three flags on V. We find a necessary and sufficient condition on T for these three flags to be totally opposite. In this case, we use these three totally opposite flags to construct a Billiard Array B on V. It is known that B is determined up to isomorphism by a certain triangular array of scalar parameters called the B-values. We compute these B-values in terms of the entries of T. We describe the set of isomorphism classes of Billiard Arrays in terms of upper triangular matrices Elsevier Inc. All rights reserved. 1. Introduction This paper is about a connection between upper triangular matrices and Billiard Arrays. The Billiard Array concept was introduced in [15]. This concept is closely related to the equitable presentation of U q (sl 2 ) [10,15]. For more information about the equitable presentation, see [1,3,5 9,12 14,16]. We now summarize our results. Fix a nonnegative integer d, a field F, and a vector space V over F with dimension d +1. Let T denote an invertible upper triangular matrix address: yyang@math.wisc.edu / 2015 Elsevier Inc. All rights reserved.

2 Y. Yang / Linear Algebra and its Applications 493 (2016) in Mat d+1 (F). View T as the transition matrix from a basis {u i } d i=0 of V to a basis {v i} d i=0 of V. Using T we construct three flags {U i } d i=0, {U i }d i=0, {U i }d i=0 on V as follows. For 0 i d, U i = Fu 0 + Fu Fu i = Fv 0 + Fv Fv i ; U i = Fu d + Fu d Fu d i ; U i = Fv d + Fv d Fv d i. In our first main result, we find a necessary and sufficient condition (called very good) on T for {U i } d i=0, {U i }d i=0, {U i }d i=0 to be totally opposite in the sense of [15, Definition 12.1]. In [15, Theorem 12.7] it is shown how three totally opposite flags on V correspond to a Billiard Array on V. Assume that the three flags {U i } d i=0, {U i }d i=0, {U i }d i=0 are totally opposite, and let B denote the corresponding Billiard Array on V. By [15, Lemma 19.1] B is determined up to isomorphism by a certain triangular array of scalar parameters called the B-values. In our second main result, we compute these B-values in terms of the entries of T. Let T d (F) denote the set of very good upper triangular matrices in Mat d+1 (F). Define an equivalence relation on T d (F) as follows. For T, T T d (F), we declare T T whenever there exist invertible diagonal matrices H, K Mat d+1 (F) such that T = HTK. In our third main result, we display a bijection between the following two sets: (i) the equivalence classes for on T d (F); (ii) the isomorphism classes of Billiard Arrays on V. We give a commutative diagram that illustrates our second and third main results. At the end of this paper, we give an example. In this example, we display a very good upper triangular matrix with entries given by q-binomial coefficients. We show that for the corresponding Billiard Array B, all the B-values are equal to q 1. The paper is organized as follows. Section 2 contains some preliminaries. Section 3 contains necessary facts about decompositions and flags. Section 4 is devoted to the correspondence between very good upper triangular matrices and totally opposite flags. This section contains our first main result. Section 5 contains necessary facts about Billiard Arrays. In Sections 6 8 we obtain our second and third main results. In Section 9, we display an example to illustrate our theory. 2. Preliminaries Throughout the paper, we fix the following notation. Let R denote the field of real numbers. Recall the ring of integers Z = {0, ±1, ±2,...} and the set of natural numbers N = {0, 1, 2,...}. Fix d N. Let {x i } d i=0 denote a sequence. We call x i the i-component of

3 510 Y. Yang / Linear Algebra and its Applications 493 (2016) the sequence. By the inversion of the sequence {x i } d i=0 we mean the sequence {x d i} d i=0. Let F denote a field. Let V denote a vector space over F with dimension d + 1. Let Mat d+1 (F) denote the F-algebra consisting of the d +1 by d +1matrices that have all entries in F. We index the rows and columns by 0, 1,..., d. Let I denote the identity matrix in Mat d+1 (F). 3. Decompositions and flags In this section, we review some basic facts about decompositions and flags. consisting of one- Definition 3.1. By a decomposition of V we mean a sequence {V i } d i=0 dimensional subspaces of V such that V = d i=0 V i (direct sum). Remark 3.2. For a decomposition of V, its inversion is a decomposition of V. Example 3.3. Choose a basis {f i } d i=0 of V. For 0 i d, define V i = Ff i. Then {V i } d i=0 is a decomposition of V. is in- Definition 3.4. Referring to Example 3.3, we say that the decomposition {V i } d i=0 duced by the basis {f i } d i=0. Definition 3.5. By a flag on V, we mean a sequence {W i } d i=0 of subspaces of V such that W i has dimension i +1for 0 i d and W i 1 W i for 1 i d. Example 3.6. Let {V i } d i=0 denote a decomposition of V. For 0 i d, define W i = V 0 + V V i. Then {W i } d i=0 is a flag on V. Definition 3.7. Referring to Example 3.6, we say that the flag {W i } d i=0 is induced by the decomposition {V i } d i=0. Definition 3.8. Consider a basis of V. That basis induces a decomposition of V, which in turn induces a flag on V. We say that flag is induced by the given basis. Lemma 3.9. (See [15, Section 6].) Suppose that we are given two flags on V, denoted by {W i } d i=0 and {W i }d i=0. Then the following are equivalent: (i) W i W j =0for i + j<d(0 i, j d); (ii) there exists a decomposition {V i } d i=0 of V that induces {W i} d i=0 and whose inversion induces {W i }d i=0. Moreover, suppose (i), (ii) hold. Then V i = W i W d i for 0 i d. are called op- Definition Referring to Lemma 3.9, the flags {W i } d i=0 and {W i }d i=0 posite whenever (i), (ii) hold.

4 Y. Yang / Linear Algebra and its Applications 493 (2016) We mention a variation on Lemma 3.9. Lemma (See [15, Section 6].) Suppose that we are given two flags on V, denoted by {W i } d i=0 and {W i }d i=0. Then they are opposite if and only if W i W j =0for i +j = d 1 (0 i, j d 1). Definition Suppose that we are given three flags on V, denoted by {W i } d i=0, {W i }d i=0, {W i }d i=0. These flags are said to be totally opposite whenever W d r W d s =0for all r, s, t (0 r, s, t d) such that r + s + t > d. W d t Lemma (See [15, Theorem 12.3].) Suppose that we are given three flags on V, denoted by {W i } d i=0, {W i }d i=0, {W i }d i=0. Then the following are equivalent: (i) The flags {W i } d i=0, {W i }d i=0, {W i }d i=0 are totally opposite. (ii) For 0 n d, the sequences {W i } d n i=0, {W d n W n+i }d n i=0, {W d n W n+i }d n i=0 are mutually opposite flags on W d n. (iii) For 0 n d, the sequences {W i }d n i=0, {W d n W n+i }d n i=0, {W d n W n+i} d n i=0 are mutually opposite flags on W d n. (iv) For 0 n d, the sequences {W i }d n i=0, {W d n W n+i} d n i=0, {W d n W n+i }d n i=0 are mutually opposite flags on W d n. For more information about flags, we refer the reader to [11] and [4]. 4. Upper triangular matrices and flags In this section, we explore the relation between upper triangular matrices and flags. First, we introduce some notation. Definition 4.1. For a matrix A Mat d+1 (F), we define some submatrices of A as follows. For 0 i j d, let A[i, j] denote the submatrix {A kl } 0 k j i,i l j of A. Note that A[0, d] = A. Definition 4.2. For a matrix A Mat d+1 (F) and 0 j d, we call the submatrix A[0, j] the j-th leading principal submatrix of A. Definition 4.3. For a matrix A Mat d+1 (F), we call it good whenever the submatrix A[i, d] is invertible for 0 i d. Definition 4.4. For a matrix A Mat d+1 (F), we call it very good whenever the submatrix A[i, j] is invertible for 0 i j d. Lemma 4.5. A matrix in Mat d+1 (F) is very good if and only if each of its leading principal submatrices is good.

5 512 Y. Yang / Linear Algebra and its Applications 493 (2016) Proof. By Definitions Referring to Definition 4.1, we now consider the case in which A is upper triangular. Lemma 4.6. For an upper triangular matrix A Mat d+1 (F), the submatrix A[0, j] is upper triangular for 0 j d. Proof. By Definition 4.1. Lemma 4.7. For an invertible upper triangular matrix A Mat d+1 (F), the submatrix A[0, j] is upper triangular and invertible for 0 j d. Proof. By Definition 4.1. Consider an invertible upper triangular matrix T Mat d+1 (F). View T as the transition matrix from a basis {u i } d i=0 of V to a basis {v i} d i=0 of V. Thus for 0 j d, v j = d T ij u i. (4.1) i=0 For the moment, pick x V. Then there exist scalars {b i (x)} d i=0 in F such that x = d b i (x)u i. (4.2) i=0 Moreover, there exist scalars {c i (x)} d i=0 in F such that By (4.1) (4.3), x = d c i (x)v i. (4.3) i=0 Tc = b, (4.4) where c = (c 0 (x), c 1 (x),..., c d (x)) t and b = (b 0 (x), b 1 (x),..., b d (x)) t. We now use T to construct three flags on V. Lemma 4.8. With the above notation, the following two flags on V coincide: (i) the flag induced by {u i } d i=0 ; (ii) the flag induced by {v i } d i=0.

6 Y. Yang / Linear Algebra and its Applications 493 (2016) Proof. By (4.1) and since T is upper triangular. We now define three flags on V, denoted by {U i } d i=0, {U i }d i=0, {U i }d i=0. The flag {U i } d i=0 is induced by the basis {u i} d i=0 or {v i} d i=0. The flag {U i }d i=0 (resp. {U i }d i=0 ) is induced by the basis {u d i } d i=0 (resp. {v d i} d i=0 ). More explicitly, for 0 i d, U i = Fu 0 + Fu Fu i = Fv 0 + Fv Fv i ; (4.5) U i = Fu d + Fu d Fu d i ; (4.6) U i = Fv d + Fv d Fv d i. (4.7) By Lemma 3.9, the flag {U i } d i=0 is opposite to the flags {U i }d i=0 and {U i }d i=0. Our next goal is to give a necessary and sufficient condition for the flags {U i }d i=0 and {U i }d i=0 to be opposite. We will use the following lemma. Lemma 4.9. With the above notation, for 0 i d 1, U i U d 1 i =0if and only if det(t [i +1, d]) 0. Proof. Consider x V. We refer to the notation around (4.2) and (4.3). We make two observations about x. The first observation is that by (4.6), we have x U i if and only if b n (x) = 0 for 0 n d 1 i. The second observation is that by (4.7), we have x U d 1 i if and only if c n(x) = 0 for 0 n i. In this case, by (4.4), T [i +1,d](c i+1 (x),c i+2 (x),...,c d (x)) t =(b 0 (x),b 1 (x),...,b d 1 i (x)) t. (4.8) First assume that det(t [i +1, d]) 0. We will show that U i U d 1 i = 0. To do this, we assume x U i U d 1 i, and show that x = 0. By the first observation, b n(x) = 0for 0 n d 1 i. By the second observation, c n (x) = 0for 0 n i and (4.8) holds. By these comments, T [i +1,d](c i+1 (x),c i+2 (x),...,c d (x)) t =0. (4.9) By (4.9) and det(t [i +1, d]) 0, the vector (c i+1 (x), c i+2 (x),..., c d (x)) t = 0. In other words, c n (x) = 0 for i +1 n d. We have shown that c n (x) = 0for 0 n d. Hence x = 0. Therefore U i U d 1 i = 0. Next assume that det(t [i + 1, d]) = 0. We will show that U i U d 1 i 0. By the assumption and linear algebra, there exists a nonzero vector w =(w i+1,w i+2,...,w d ) F d i such that T [i +1, d]w t =0. Choose the vector x such that c n (x) = 0for 0 n i and c n (x) = w n for i + 1 n d. Observe that x 0and satisfies (4.9). By the second observation, x U d 1 i and (4.8) holds. By (4.8) and (4.9), b n(x) =0for 0 n

7 514 Y. Yang / Linear Algebra and its Applications 493 (2016) d 1 i. By the first observation, x U i. We have shown that 0 x U i U Therefore U i U d 1 i 0. d 1 i. Proposition The flags {U i }d i=0 in the sense of Definition 4.3. and {U i }d i=0 are opposite if and only if T is good Proof. Recall from Definition 4.1 that T [0, d] = T. Since T is invertible, we obtain det(t [0, d]) 0. Therefore, by Definition 4.3, T is good if and only if det(t [i +1, d]) 0 for 0 i d 1. By Lemma 4.9, this happens if and only if U i U d 1 i =0for 0 i d 1. The result follows in view of Lemma Corollary T is good if and only if T 1 is good. Proof. Going through the construction around (4.5) (4.7) using T, we obtain a sequence of three flags {U i } d i=0, {U i }d i=0, {U i }d i=0. Repeating the construction with T replaced by T 1, we obtain a sequence of three flags {U i } d i=0, {U i }d i=0, {U i }d i=0. The result follows in view of Proposition Next, we give a necessary and sufficient condition for the three flags {U i } d i=0, {U i }d i=0, to be totally opposite in the sense of Definition {U i }d i=0 Proposition The three flags {U i } d i=0, {U i }d i=0, {U i }d i=0 are totally opposite in the sense of Definition 3.12 if and only if T is very good in the sense of Definition 4.4. Proof. By parts (i), (ii) of Lemma 3.13 along with Definition 4.4 and Lemma 4.5, it suffices to show that for 0 n d, the sequences {U i } d n i=0, {U d n U n+i }d n i=0, {U d n U n+i }d n i=0 are mutually opposite flags on U d n if and only if det(t [i, d n]) 0for 0 i d n. Let n be given. By (4.5) (4.7) we find that for 0 i d n, U d n U n+i = Fu d n i + Fu d n i Fu d n ; (4.10) U d n U n+i = Fv d n i + Fv d n i Fv d n. (4.11) By (4.5), (4.10) and Lemma 3.9, the flag {U i } d n i=0 on U d n is opposite to the flag {U d n U n+i }d n i=0 on U d n. Similarly, by (4.5), (4.11) and Lemma 3.9, the flag {U i } d n i=0 on U d n is opposite to the flag {U d n U n+i }d n i=0 on U d n. By Lemma 4.7, the submatrix T [0, d n] is invertible and upper triangular. Therefore we can apply Proposition 4.10 to the two flags {U d n U n+i }d n i=0 and {U d n U n+i }d n i=0 on U d n. By this, the two flags {U d n U n+i }d n i=0 and {U d n U n+i }d n i=0 are opposite if and only if det(t [i, d n]) 0 for 0 i d n. We have shown that the sequences {U i } d n i=0, {U d n U n+i }d n i=0, {U d n U n+i }d n i=0 are mutually opposite flags on U d n if and only if det(t [i, d n]) 0 for 0 i d n. The result follows. Corollary T is very good if and only if T 1 is very good.

8 Y. Yang / Linear Algebra and its Applications 493 (2016) Proof. Similar to the proof of Corollary Definition Let T d (F) denote the set of very good upper triangular matrices in Mat d+1 (F). Note that each element of T d (F) is invertible. 5. Billiard Arrays In this section, we develop some results about Billiard Arrays that will be used later in the paper. We will refer to the following basis for the vector space R 3 : e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1). Define a subset Φ = {e i e j 1 i, j 3, i j} of R 3. The set Φ is often called the root system A 2. For notational convenience define Note that α = e 1 e 2, β = e 2 e 3, γ = e 3 e 1. (5.1) Φ={±α, ±β,±γ}, α+ β + γ =0. Definition 5.1. Let d denote the subset of R 3 consisting of the three-tuples of natural numbers whose sum is d. Thus d = {(r, s, t) r, s, t N,r+ s + t = d}. Remark 5.2. We can arrange the elements of d in a triangular array. For example, if d = 3, the array looks as follows after deleting all punctuation: An element in d is called a location Definition 5.3. For η {1, 2, 3}, the η-corner of d is the location in d that has η-coordinate d and all other coordinates 0. By a corner of d we mean the 1-corner or 2-corner or 3-corner. The corners in d are listed below. de 1 =(d, 0, 0), de 2 =(0,d,0), de 3 =(0, 0,d).

9 516 Y. Yang / Linear Algebra and its Applications 493 (2016) Definition 5.4. For η {1, 2, 3}, the η-boundary of d is the set of locations in d that have η-coordinate 0. The boundary of d is the union of its 1-boundary, 2-boundary and 3-boundary. By the interior of d we mean the set of locations in d that are not on the boundary. Example 5.5. Referring to the picture of 3 from Remark 5.2, the 2-boundary of 3 consists of the four locations in the bottom row. Definition 5.6. For η {1, 2, 3} we define a binary relation on d called η-collinearity. By definition, locations λ, λ in d are η-collinear whenever the η-coordinate of λ λ is 0. Note that η-collinearity is an equivalence relation. Each equivalence class will be called an η-line. By a line in d we mean a 1-line or 2-line or 3-line. Example 5.7. Referring to the picture of 3 from Remark 5.2, the horizontal rows are the 2-lines of 3. Definition 5.8. Locations λ, µ in d are called adjacent whenever λ µ Φ. Definition 5.9. By an edge in d we mean a set of two adjacent locations. Definition By a 3-clique in d we mean a set of three mutually adjacent locations in d. There are two kinds of 3-cliques: (black) and (white). Lemma (See [15, Lemma 4.31].) Assume d 1. We describe a bijection from d 1 to the set of black 3-cliques in d. The bijection sends each (r, s, t) d 1 to the black 3-clique in d consisting of the locations (r +1, s, t), (r, s +1, t), (r, s, t +1). Lemma (See [15, Lemma 4.32].) Assume d 2. We describe a bijection from d 2 to the set of white 3-cliques in d. The bijection sends each (r, s, t) d 2 to the white 3-clique in d consisting of the locations (r, s +1, t +1), (r +1, s, t +1), (r +1, s +1, t). Lemma (See [15, Lemma 4.33].) For d, each edge is contained in a unique black 3-clique and at most one white 3-clique. Let P 1 (V )denote the set of 1-dimensional subspaces of V. Definition (See [15, Definition 7.1].) By a Billiard Array on V we mean a function B : d P 1 (V ), λ B λ that satisfies the following conditions: (i) for each line L in d the sum λ L B λ is direct; (ii) for each black 3-clique C in d the sum λ C B λ is not direct. We say that B is over F. We call V the underlying vector space. We call d the diameter of B.

10 Y. Yang / Linear Algebra and its Applications 493 (2016) Lemma (See [15, Corollary 7.4].) Let B denote a Billiard Array on V. Let λ, µ, ν denote the locations in d that form a black 3-clique. Then each of B λ, B µ, B ν is contained in the sum of the other two. Definition Let V denote a vector space over F with dimension d +1. Let B (resp. B ) denote a Billiard Array on V (resp. V ). By an isomorphism of Billiard Arrays from B to B we mean an F-linear bijection σ : V V that sends B λ B λ for all λ d. The Billiard Arrays B and B are called isomorphic whenever there exists an isomorphism of Billiard Arrays from B to B. From now until the end of Lemma 5.21, let B denote a Billiard Array on V. Definition Pick η {1, 2, 3}. Following [15, Section 9] we now define a flag on V called the B-flag [η]. For 0 i d, the i-component of this flag is λ B λ, where the sum is over all λ d that have η-coordinate at least d i. Definition Pick distinct η, ξ {1, 2, 3}. Following [15, Section 10] we now define a decomposition of V called the B-decomposition [η, ξ]. For 0 i d the i-component of this decomposition is the subspace B λ, where the location λ is described in the table below: η ξ λ i 1 2 (d i, i, 0) 2 1 (i, d i, 0) 2 3 (0,d i, i) 3 2 (0,i,d i) 3 1 (i, 0,d i) 1 3 (d i, 0,i) Lemma (See [15, Lemma 10.6].) For distinct η, ξ {1, 2, 3} the B-decomposition [η, ξ] of V induces the B-flag [η] on V. Lemma (See [15, Theorem 12.4].) The B-flags [1], [2], [3] on V from Definition 5.17 are totally opposite in the sense of Definition Lemma (See [15, Corollary 11.2].) Pick a location λ = (r, s, t) in d. Then B λ is equal to the intersection of the following three sets: (i) component d r of the B-flag [1]; (ii) component d s of the B-flag [2]; (iii) component d t of the B-flag [3]. Theorem (See [15, Theorem 12.7].) Suppose that we are given three totally opposite flags on V, denoted by {W i } d i=0, {W i }d i=0, {W i }d i=0. For each location λ = (r, s, t) in

11 518 Y. Yang / Linear Algebra and its Applications 493 (2016) d, define B λ = W d r W d s W d t. Then the map B : d P 1 (V ), λ B λ is a Billiard Array on V. Definition (See [15, Definition 8.1].) By a Concrete Billiard Array on V we mean a function B : d V, λ B λ that satisfies the following conditions: (i) for each line L in d the vectors {B λ } λ L are linearly independent; (ii) for each black 3-clique C in d the vectors {B λ } λ C are linearly dependent. We say that B is over F. We call V the underlying vector space. We call d the diameter of B. Example Let B denote a Billiard Array on V. For λ d pick 0 B λ B λ. Then the function B : d V, λ B λ is a Concrete Billiard Array on V. Definition Let B denote a Billiard Array on V, and let B denote a concrete Billiard Array on V. We say that B, B correspond whenever B λ spans B λ for all λ d. Definition Let λ, µ denote locations in d that form an edge. By Lemma 5.13 there exists a unique location ν d such that λ, µ, ν form a black 3-clique. We call ν the completion of the edge. From now until the end of Definition 5.33, let B denote a Billiard Array on V. Definition Let λ, µ denote locations in d that form an edge. By a brace for this edge, we mean a set of nonzero vectors u B λ, v B µ such that u + v B ν. Here ν denotes the completion of the edge. Lemma (See [15, Lemma 13.12].) Let λ, µ denote locations in d that form an edge. Then each nonzero u B λ is contained in a unique brace for this edge. Definition (See [15, Definition 14.1].) Let λ, µ denote adjacent locations in d. We define an F-linear map B λ,µ : B λ B µ as follows. For each brace u B λ, v B µ, the map B λ,µ sends u v. The map B λ,µ is well defined by Lemma Observe that B λ,µ : B λ B µ is bijective. Definition (See [15, Definition 14.9].) Let λ, µ, ν denote locations in d that form a white 3-clique. Then the composition Bλ,µ Bµ,ν B λ Bµ Bν Bν,λ Bλ is a nonzero scalar multiple of the identity map on B λ. The scalar is called the clockwise B-value (resp. counterclockwise B-value) of the clique whenever λ, µ, ν runs clockwise (resp. counterclockwise) around the clique.

12 Y. Yang / Linear Algebra and its Applications 493 (2016) Definition For each white 3-clique in d, by its B-value we mean its clockwise B-value. Definition By a value function on d, we mean a function ψ : d F \{0}. Definition (See [15, Definition 14.13].) Assume d 2. We define a function B : d 2 F as follows. Pick (r, s, t) d 2. To describe the image of (r, s, t) under B, consider the corresponding white 3-clique in d from Lemma The B-value of this 3-clique is the image of (r, s, t) under B. Observe that B is a value function on d 2 in the sense of Definition We call B the value function for B. Definition Let BA d (F) denote the set of isomorphism classes of Billiard Arrays over F that have diameter d. Definition Let VF d (F) denote the set of value functions on d. Definition Assume d 2. We now define a map θ : BA d (F) VF d 2 (F). For B BA d (F), the image of B under θ is the value function B from Definition Lemma (See [15, Lemma 19.1].) Assume d 2. Then the map θ : BA d (F) VF d 2 (F) from Definition 5.36 is bijective. Definition Let B denote a Concrete Billiard Array on V. Let B denote the corresponding Billiard Array on V from Definition Let λ, µ denote adjacent locations in d. Recall the bijection B λ,µ : B λ B µ from Definition Recall that B λ is a basis for B λ and B µ is a basis for B µ. Define a scalar B λ,µ F such that B λ,µ sends B λ B λ,µ B µ. Note that B λ,µ 0. Lemma (See [15, Lemma 15.6].) Let B denote a Concrete Billiard Array on V. Let λ, µ, ν denote locations in d that form a black 3-clique. Then B λ + B λ,µ B µ + B λ,ν B ν =0. Lemma (See [15, Lemma 15.9].) Let B denote a Concrete Billiard Array on V. Let B denote the corresponding Billiard Array on V from Definition Let λ, µ, ν denote the locations in d that form a white 3-clique. Then the clockwise (resp. counterclockwise) B-value of the clique is equal to B λ,µ Bµ,ν Bν,λ whenever the sequence λ, µ, ν runs clockwise (resp. counterclockwise) around the clique. Next we consider the 2-boundary of d.

13 520 Y. Yang / Linear Algebra and its Applications 493 (2016) Proposition Given a Billiard Array B on V, let {V i } d i=0 denote the B-decomposition [1, 3] of V from Definition Then for λ = (r, s, t) d, B λ V t + V t V d r. (5.2) Proof. We do induction on s. First assume that s = 0. Then by Definition 5.18, B λ = V t. Next assume that s > 0. Consider the black 3-clique in d with the locations λ = (r, s, t), µ = (r, s 1, t +1), ν =(r +1, s 1, t). By induction, By Lemma 5.15, B µ V t+1 + V t V d r ; (5.3) B ν V t + V t V d r 1. (5.4) B λ B µ + B ν. (5.5) The equation (5.2) follows from (5.3) (5.5). Lemma Let B denote a Billiard Array on V. Let {u i } d i=0 (resp. {v i} d i=0 ) denote a basis of V that induces the B-decomposition [1, 2] (resp. B-decomposition [1, 3]). Then the transition matrices between {u i } d i=0 and {v i} d i=0 are upper triangular. Proof. By Proposition We next show that the transition matrices in Lemma 5.42 are very good in the sense of Definition 4.4. By Corollary 4.13, it suffices to show that the transition matrix from {u i } d i=0 to {v i} d i=0 is very good. Lemma Referring to Lemma 5.42, let T denote the transition matrix from {u i } d i=0 to {v i } d i=0. Then T is very good in the sense of Definition 4.4. Proof. Consider the corresponding three flags {U i } d i=0, {U i }d i=0, {U i }d i=0 on V from (4.5) (4.7). By Lemma 5.19, the B-flag [1] (resp. [2]) (resp. [3]) is the flag {U i } d i=0 (resp. {U i }d i=0 ) (resp. {U i }d i=0 ). By Lemma 5.20, the three flags {U i} d i=0, {U i }d i=0, {U i }d i=0 are totally opposite. By Proposition 4.12, T is very good. Recall the set T d (F) from Definition Corollary Referring to Lemma 5.43, T T d (F). Proof. By Lemmas 5.42, 5.43.

14 Y. Yang / Linear Algebra and its Applications 493 (2016) Definition For location τ = (r, s, t) d 1, consider the corresponding black 3-clique in d from Lemma 5.11, with locations λ = (r +1, s, t), µ = (r, s + 1, t), ν =(r, s, t + 1). Given a Concrete Billiard Array B on V, we say that B is τ-standard whenever B λ B µ FB ν. We call B standard whenever B is τ-standard for all τ d 1. Let B denote a Billiard Array on V. For 0 i d, pick 0 f i B κ where κ = (d i, 0, i) d. Observe that {f i } d i=0 is a basis of V that induces the B-decomposition [1, 3]. Lemma With the above notation, there exists a unique standard Concrete Billiard Array B on V such that (i) B corresponds to B in the sense of Definition 5.25; (ii) for 0 i d, B κ = f i where κ = (d i, 0, i) d. Proof. First we show that B exists. Let λ = (r, s, t) d. We construct B λ by induction on s. For s = 0define B λ = f t. By the construction 0 B λ B λ. Next assume that s > 0. Consider the black 3-clique in d with the locations λ = (r, s, t), µ = (r, s 1, t + 1), ν =(r +1, s 1, t). The vectors B µ and B ν have been determined by the induction. By Lemma 5.28, there exists a nonzero vector B λ B λ such that B λ B ν FB µ. We have constructed B λ such that 0 B λ B λ for all λ d. By Example 5.24 and Definition 5.25, B is a Concrete Billiard Array on V that corresponds to B. By the above construction and Definition 5.45, B is standard. We have shown that B exists. The uniqueness of B follows by (ii) and Definition Consider the standard Concrete Billiard Array B from Lemma For location λ = (r, s, t) d, by Proposition 5.41 the vector B λ is a linear combination of f t, f t+1,..., f d r. Let {a i (λ)} d r i=t denote the corresponding coefficients, so that B λ = a t (λ)f t + a t+1 (λ)f t a d r (λ)f d r. (5.6) Lemma With the above notation, a t (λ) = 1. Proof. We do induction on s. First assume that s = 0. Then by Lemma 5.46(ii), B λ = f t. Therefore a t (λ) = 1. Next assume that s > 0. Consider the black 3-clique in d with the locations λ = (r, s, t), µ = (r, s 1, t +1), ν =(r +1, s 1, t). By Proposition 5.41, By induction, B ν = a t (ν)f t + a t+1 (ν)f t a d r 1 (ν)f d r 1 ; (5.7) B µ = a t+1 (µ)f t+1 + a t+2 (µ)f t a d r (µ)f d r. (5.8) a t (ν) =1. (5.9)

15 522 Y. Yang / Linear Algebra and its Applications 493 (2016) Since B is standard, B λ B ν FB µ. (5.10) By (5.6) (5.10) we have a t (λ) = 1. For more information about Billiard Arrays, we refer the reader to [15]. 6. Upper triangular matrices and Billiard Arrays Recall the set T d (F) from Definition In this section, we consider a matrix T T d (F). Using T we construct a Billiard Array B. Then for each white 3-clique in d, we compute its B-value in terms of the entries of T. Definition 6.1. Recall the set BA d (F) from Definition We define a map b : T d (F) BA d (F) as follows. Let T T d (F). View T as the transition matrix from a basis {u i } d i=0 of V to a basis {v i } d i=0 of V as around (4.1). Consider the corresponding three flags {U i } d i=0, {U i }d i=0, {U i }d i=0 on V from (4.5) (4.7). These flags are totally opposite by Proposition 4.12, so they correspond to a Billiard Array on V by Theorem Since the bases {u i } d i=0 and {v i} d i=0 are not uniquely determined, this Billiard Array is only defined up to isomorphism of Billiard Arrays. The isomorphism class of this Billiard Array is the image of T under b. In this section, we fix T T d (F). By Definition 4.14, T is upper triangular and invertible. Fix the two bases {u i } d i=0, {v i} d i=0 of V as around (4.1) and the three flags {U i} d i=0, {U i }d i=0, {U i }d i=0 on V from (4.5) (4.7). Let B denote the corresponding Billiard Array on V from Theorem Observe that B b(t ). Lemma 6.2. With the above notation, B is the unique Billiard Array on V such that for 0 i d, (i) B µ = Fu i where µ = (d i, i, 0) d ; (ii) B ν = Fv i where ν =(d i, 0, i) d. Proof. First we show that B satisfies (i). By Theorem 5.22, B µ = U i U d i U d. The subspace U i is given by (4.5). By (4.6), U d i = Fu d + Fu d Fu i. By (4.7), U d = Fv d + Fv d Fv 0 = V. By the above comments, U i U d i U d = Fu i. Hence B µ = Fu i. Therefore B satisfies (i). Similarly, B satisfies (ii). Next we show that B is the unique Billiard Array on V that satisfies (i) and (ii). Suppose that B is a Billiard Array on V that satisfies (i) and (ii). By Lemma 5.19, the B -flag [1] (resp. [2]) (resp. [3]) is the flag {U i } d i=0 (resp. {U i }d i=0 ) (resp. {U i }d i=0 ). By Lemma 5.21 and Definition 6.1, B λ = B λ for all λ d. Therefore B = B. We conclude that B is the unique Billiard Array on V that satisfies (i) and (ii).

16 Y. Yang / Linear Algebra and its Applications 493 (2016) Lemma 6.3. Consider the Billiard Array B on V. There exists a unique standard Concrete Billiard Array B on V such that (i) B corresponds to B in the sense of Definition 5.25; (ii) for 0 i d, B ν = v i where ν =(d i, 0, i) d. Proof. By Lemma 5.46 and Lemma 6.2(ii). Consider the Concrete Billiard Array B on V from Lemma 6.3. For location λ = (r, s, t) in d, by Proposition 5.41 the vector B λ is a linear combination of the vectors u s, u s+1,..., u d r and also a linear combination of the vectors v t, v t+1,..., v d r. For notational convenience, abbreviate b i (λ) = b i (B λ )in(4.2) and c i (λ) = c i (B λ )in(4.3), so that B λ = b s (λ)u s + b s+1 (λ)u s b d r (λ)u d r ; (6.1) B λ = c t (λ)v t + c t+1 (λ)v t c d r (λ)v d r. (6.2) In the following result we compute the coefficients in (6.2) in terms of the entries of T. The coefficients in (6.1) can be similarly computed, but we don t need these coefficients. Recall the T [i, j] notation from Definition 4.1. Proposition 6.4. With the above notation, for location λ = (r, s, t) in d c t (λ) = 1. Moreover, if s > 0, we have u = (T [t +1,d r]) 1 v, (6.3) where u = (c t+1 (λ), c t+2 (λ),..., c d r (λ)) t and v =(T 0t, T 1t,..., T s 1,t ) t. Proof. By Lemma 5.47 and Lemma 6.3, c t (λ) = 1. For the rest of the proof, assume that s > 0. By (6.1), b i (λ) = 0for 0 i s 1. By (6.2), c i (λ) = 0for 0 i t 1and d r +1 i d. Evaluating (4.4) using the above comments, we obtain v + T [t +1,d r]u =0. (6.4) The matrix T is very good by Definition 4.14, so T [t +1, d r] is invertible. Solving (6.4) for u, we obtain (6.3). Recall the B-value concept from Definition Our next goal is to compute these values for the Billiard Array B. Definition 6.5. Pick λ = (r, s, t) Z 3. If λ d, then define T [λ] to be the submatrix T [t, d r] from Definition 4.1. If λ / d, then define T [λ] to be the empty set.

17 524 Y. Yang / Linear Algebra and its Applications 493 (2016) For the rest of this section assume d 2. For a location τ =(r, s, t) d 2, consider the corresponding white 3-clique in d from Lemma This white 3-clique consists of the locations λ =(r, s +1,t+1), µ =(r +1,s,t+ 1), ν =(r +1,s+1,t). Next, consider the vectors µ ± α, µ ± β, µ ± γ, where α, β, γ are from (5.1). Note that λ = µ α and ν = µ + β. Moreover, µ + α =(r +2,s 1,t+1), µ α =(r, s +1,t+1), µ + β =(r +1,s+1,t), µ β =(r +1,s 1,t+ 2), µ + γ =(r, s, t +2), µ γ =(r +2,s,t). The above vectors form a hexagon as follows: µ + β µ α µ γ µ µ+ γ µ + α µ β Theorem 6.6. With the above notation, the B-value of the white 3-clique in d corresponds to τ is that where we interpret det( ) = 1. Proof. Consider the following vectors: det(t [µ + α]) det(t [µ + β]) det(t [µ + γ]) det(t [µ α]) det(t [µ β]) det(t [µ γ]), (6.5) µ α + β µ + β µ α µ γ µ µ+ γ We have three black 3-cliques with the following locations: (i) µ, µ α, µ + γ; (ii) µ γ, µ + β, µ; (iii) µ + β, µ α + β, µ α. For notational convenience, let τ denote the B-value of the white 3-clique in d that corresponds to τ. By Lemma 5.40, τ = B µ α,µ Bµ,µ+β Bµ+β,µ α. (6.6)

18 Y. Yang / Linear Algebra and its Applications 493 (2016) We now show that B µ α,µ = 1. (6.7) We apply Lemma 5.39 to the black 3-clique (i) and obtain For convenience we rewrite (6.8) as By Proposition 5.41, By Proposition 6.4, By (6.10), (6.11) and (6.13), By (6.9), (6.12) and (6.14), B µ α + B µ α,µ B µ + B µ α,µ+γ B µ+γ =0. (6.8) B µ α B µ +( B µ α,µ + 1)B µ + B µ α,µ+γ B µ+γ =0. (6.9) B µ Fv t+1 + Fv t Fv d r 1, (6.10) B µ α Fv t+1 + Fv t Fv d r, (6.11) B µ+γ Fv t+2 + Fv t Fv d r. (6.12) c t+1 (µ) =1, c t+1 (µ α) =1. (6.13) B µ α B µ Fv t+2 + Fv t Fv d r. (6.14) ( B µ α,µ + 1)B µ Fv t+2 + Fv t Fv d r. (6.15) By (6.10), the equation on the left in (6.13), and (6.15), we obtain (6.7). Next, we show that B µ,µ+β = det(t [µ + α]) det(t [µ]) det(t [µ β]) det(t [µ γ]). (6.16) There are two cases. First assume that s 0. We apply Lemma 5.39 to the black 3-clique (ii) and obtain By Proposition 5.41, B µ + B µ,µ+β B µ+β + B µ,µ γ B µ γ =0. (6.17) B µ γ Fv t + Fv t Fv d r 2. (6.18)

19 526 Y. Yang / Linear Algebra and its Applications 493 (2016) By (6.17) and (6.18), By Proposition 5.41, B µ + B µ,µ+β B µ+β Fv t + Fv t Fv d r 2. (6.19) By Proposition 6.4 and Cramer s rule, By (6.19) (6.21), B µ,µ+β = B µ Fv t+1 + Fv t Fv d r 1 ; B µ+β Fv t + Fv t Fv d r 1. (6.20) c d r 1 (µ) = ( 1)s det(t [t +1,d r 2]) ; det(t [t +2,d r 1]) c d r 1 (µ + β) = ( 1)s+1 det(t [t, d r 2]). (6.21) det(t [t +1,d r 1]) det(t [t +1,d r 2]) det(t [t +1,d r 1]). (6.22) det(t [t +2,d r 1]) det(t [t, d r 2]) Evaluating (6.22) using Definition 6.5, we obtain (6.16). Next assume that s = 0. Using an argument similar to (6.17) (6.21), we obtain Since we interpret det( ) = 1, B µ,µ+β = det(t [t +1,t+1]). (6.23) det(t [t, t]) det(t [µ + α]) = 1, det(t [µ β]) = 1. (6.24) Evaluate (6.23) using Definition 6.5. Combining the result with (6.24), we obtain (6.16). We have shown (6.16). In a similar manner using the black 3-clique (iii), we obtain B µ+β,µ α = det(t [µ + β]) det(t [µ + γ]). (6.25) det(t [µ α]) det(t [µ]) Evaluating (6.6) using (6.7), (6.16), (6.25) we obtain (6.5). 7. How T d (F) is related to BA d (F) Recall the set T d (F) from Definition 4.14, and the set BA d (F) from Definition In this section we explain how T d (F) is related to BA d (F). For convenience, we first consider an equivalence relation on T d (F).

20 Y. Yang / Linear Algebra and its Applications 493 (2016) Definition 7.1. For T, T T d (F), we declare T T whenever there exist invertible diagonal matrices H, K Mat d+1 (F) such that T = HTK. (7.1) The relation is an equivalence relation. For T T d (F), let [T ]denote the equivalence class of that contains T. Let T d (F) denote the set of equivalence classes for. Recall the map b : T d (F) BA d (F) from Definition 6.1. As we will see, b is surjective but not bijective. We will show that for T, T T d (F), b(t ) = b(t )if and only if T T. This tells us that the b-induced map T d (F) BA d (F) is bijective. Referring to Definition 7.1, assume that T T. Pick invertible diagonal matrices H, K Mat d+1 (F) that satisfy (7.1). Observe that the entries H ii 0and K ii 0for 0 i d. View T as the transition matrix from a basis {u i } d i=0 of V to a basis {v i} d i=0 of V as around (4.1). Recall the flags {U i } d i=0, {U i }d i=0, {U i }d i=0 from Definition 6.1. The matrix T can be viewed as the transition matrix from a basis {u i }d i=0 of V to a basis {v i }d i=0 of V, where u i = H ii u i and K iiv i = v i for 0 i d. Observe that the flags {U i } d i=0, {U i }d i=0, {U i }d i=0 are the same for T and T. Lemma 7.2. Let matrices T, T T d (F) satisfy T T in the sense of Definition 7.1. Then b(t ) = b(t ). Proof. By the discussion above the lemma statement, along with Definition 6.1. Definition 7.3. Using the map b : T d (F) BA d (F), we define a map b : T d (F) BA d (F) as follows. Given an equivalence class [T ] T d (F), the image of [T ]under b is b(t ). By Lemma 7.2 the map b is well-defined. Theorem 7.4. The map b : T d (F) BA d (F) from Definition 7.3 is bijective. Proof. First we show that the map b is surjective. Pick a Billiard Array B on V. It suffices to show that there exists T T d (F) such that B b(t ). For 0 i d, pick 0 u i B µ where µ = (d i, i, 0) d, and 0 v i B ν where ν =(d i, 0, i) d. By Definition 5.14, {u i } d i=0 and {v i} d i=0 are bases of V. Let T Mat d+1(f) denote the transition matrix from the basis {u i } d i=0 to the basis {v i} d i=0. By Corollary 5.44 T T d (F). Above Lemma 6.2 we refer to a Billiard Array obtained from Theorem By Lemma 6.2, this Billiard Array is the Billiard Array B. Hence B b(t )by the last sentence above Lemma 6.2. We have shown that the map b is surjective. Next we show that the map b is injective. Suppose that T, T T d (F) satisfy b(t ) = b(t ). We will show that T T in the sense of Definition 7.1. Define the Billiard Arrays B b(t )and B b(t )as around Definition 6.1. Since b(t ) = b(t ), the Billiard Arrays B and B are isomorphic. Therefore there exists an isomorphism σ of Billiard Arrays from B to B. By Definition 5.16, σ : V V is an F-linear bijection that sends

21 528 Y. Yang / Linear Algebra and its Applications 493 (2016) B λ B λ for all λ d. Associated with T we have the bases {u i } d i=0 and {v i} d i=0 of V from Definition 6.1. Similarly, associated with T we have bases {u i }d i=0 and {v i }d i=0 of V. To be more precise, T is the transition matrix from the basis {u i } d i=0 to the basis {v i } d i=0, and T is the transition matrix from the basis {u i }d i=0 to the basis {v i }d i=0. Since σ is an F-linear bijection, T is also the transition matrix from the basis {σ(u i )} d i=0 of V to the basis {σ(v i )} d i=0 of V. By Lemma 6.2, for 0 i d there exist nonzero h i, k i F such that σ(u i ) = h i u i and k iσ(v i ) = v i. Define diagonal matrices H, K Mat d+1(f) such that H ii = h i and K ii = k i for 0 i d. By construction H and K are invertible. By the above comments, T = HTK. By Definition 7.1, T T. We have shown that the map b is injective. Hence the map b is bijective. We continue to discuss the equivalence relation from Definition 7.1. Our next goal is to identify a representative in each equivalence class. Definition 7.5. A matrix T T d (F) is called nice whenever T 0i = T ii =1for 0 i d. Lemma 7.6. For the equivalence relation on T d (F) from Definition 7.1, each equivalence class contains a unique nice element in the sense of Definition 7.5. Proof. First, we show that each equivalence class in T d (F) contains at least one nice element. Choose T T d (F). By Definition 4.14, we have T 0i 0 and T ii 0 for 0 i d. Define diagonal matrices H, K Mat d+1 (F) such that H ii = T 0i /T ii and K ii =1/T 0i for 0 i d. By construction H and K are invertible. Let T = HTK. By construction, T T d (F) and T 0i = T ii =1for 0 i d. By Definition 7.1, we have T T. By Definition 7.5, T is nice. Therefore each equivalence class in T d (F) contains at least one nice element. Next, we show that this nice element is unique. Suppose that T, T are nice elements in T d (F) and T T. By Definition 7.1, there exist invertible diagonal matrices H, K Mat d+1 (F) that satisfy (7.1). For 0 i d, examining the (0, i)-entry in (7.1), we obtain T 0i = H 00T 0i K ii. Examining the (i, i)-entry in (7.1), we obtain T ii = H iit ii K ii. By Definition 7.5, we have T 0i = T ii = T 0i = T ii =1. By the above comments, we have K ii =1/H 00 and H ii = H 00 for 0 i d. Therefore H = H 00 I and K = I/H 00. Consequently T = T by (7.1). We have shown that each equivalence class in T d (F) contains a unique nice element. 8. A commutative diagram Recall the set T d (F) from Definition 4.14, the set BA d (F) from Definition 5.34, and the set VF d (F) from Definition For the moment assume d 2. In this section, we will describe how the sets T d (F), BA d (F), VF d (F) and VF d 2 (F) are related. In order to do this, we will establish a commutative diagram. As we proceed, some of our results do not require d 2. So until further notice, assume d 0. First we define a map D : T d (F) VF d (F).

22 Y. Yang / Linear Algebra and its Applications 493 (2016) Definition 8.1. For T T d (F), define a function D(T ) : d F as follows. For each location λ = (r, s, t) d, the image of λ under D(T )is det(t [λ]), where T [λ] is from Definition 6.5. Lemma 8.2. With reference to Definition 8.1, D(T ) is a value function on d in the sense of Definition In other words, D(T ) VF d (F). Proof. Pick λ =(r, s, t) d. By construction D(T )(λ) =det(t [t, d r]), which is nonzero since T is very good. We have shown that D(T )(λ) 0for all λ d. Therefore D(T ) VF d (F). Definition 8.3. We define a map D : T d (F) VF d (F) as follows. For T T d (F), the image of T under D is the function D(T )from Definition 8.1. By Lemma 8.2 the map D is well defined. For later use, we recall an elementary fact from linear algebra. Pick T Mat d+1 (F). For 0 i, j d, let T (i,j) denote the determinant of the d d matrix that results from deleting the i-th row and the j-th column of T. Applying the Laplace expansion to the bottom row of T we obtain det(t )= d ( 1) d+j T dj T (d,j). (8.1) Lemma 8.4. The map D : T d (F) VF d (F) from Definition 8.3 is bijective. j=0 Proof. For f VF d (F), we show that there exists a unique T T d (F) such that D(T ) = f. Our strategy is as follows. We are going to show that T exists. As we proceed, our calculation will show that there is only one solution for T. For 0 i, j d, we solve for T ij by induction on i +j. First assume that i +j =0, so that i = j = 0. Then D(T ) = f forces T 00 = f((d, 0, 0)). Next assume that i +j >0. If i > j, then T ij =0since T is required to be upper triangular. If i = 0, then D(T ) = f forces T 0j = f((d j, 0, j)). If 0 < i j, then D(T ) = f forces det(t [j i, j]) = f((d j, i, j i)). Consider the matrix T [j i, j]. The bottom right entry is T ij. All the other entries have already been computed by induction. We now compute det(t [j i, j]) using the Laplace expansion to its bottom row. Applying (8.1) to T [j i, j], we obtain a formula for det(t [j i, j]). In this formula the coefficient of T ij is det(t [j i, j 1]), which is nonzero by assumption. Therefore there is a unique solution for T ij. We have shown that the map D is bijective. From now until the end of Theorem 8.6, assume that d 2. Next we define a map w : VF d (F) VF d 2 (F).

23 530 Y. Yang / Linear Algebra and its Applications 493 (2016) Definition 8.5. Assume d 2. We define a map w : VF d (F) VF d 2 (F)as follows. Given f VF d (F), we describe the image of f under w. For a location τ =(r, s, t) d 2, the value of w(f)(τ) is f(µ + α)f(µ + β)f(µ + γ) f(µ α)f(µ β)f(µ γ). (8.2) Here µ = (r +1, s, t +1) d and α, β, γ are from (5.1). We interpret f(λ) = 1for all λ Z 3 such that λ / d. Theorem 8.6. Assume d 2. Then the following diagram commutes: T d (F) D VF d (F) b w BA d (F) θ VF d 2(F) Here θ is from Definition 5.36, b is from Definition 6.1, D is from Definition 8.3, and w is from Definition 8.5. Proof. For T T d (F) chase T around the diagram using Theorem 6.6. Recall the equivalence relation on T d (F) from Definition 7.1. Definition 8.7. Via the bijection D : T d (F) VF d (F), the equivalence relation on T d (F) induces an equivalence relation on VF d (F), which we denote by. In other words, for T, T T d (F), T T if and only if D(T ) D(T ). For f VF d (F), let [f] denote the equivalence class of that contains f. Let VF d (F) denote the set of equivalence classes for. We now give an alternative description of. Lemma 8.8. For f, f VF d (F) the following are equivalent: (i) f f in the sense of Definition 8.7; (ii) there exist nonzero h i, k i F (0 i d) such that for λ = (r, s, t) d. f (λ) =f(λ) s (h i k t+i ) (8.3) i=0

24 Y. Yang / Linear Algebra and its Applications 493 (2016) Proof. By Lemma 8.4 there exist T, T T d (F) such that D(T ) = f and D(T ) = f. (i) (ii) By Definition 8.7 we have T T. So there exist invertible diagonal matrices H, K Mat d+1 (F) that satisfy (7.1). Define h i = H ii and k i = K ii for 0 i d. By construction 0 h i, k i F for 0 i d, and T ij = h ik j T ij for 0 i, j d. Pick λ = (r, s, t) d. By Definition 8.1 and the above comments, f (λ) = det(t [t, d r]) = h 0 h 1...h s k t k t+1...k s+t det(t [t, d r]) = h 0 h 1...h s k t k t+1...k s+t f(λ). Therefore (8.3) holds. (ii) (i) Define diagonal matrices H, K Mat d+1 (F)such that H ii = h i and K ii = k i for 0 i d. By construction H, K are invertible. We will show that T = HTK. In order to do this, we show that T ij = h ik j T ij for 0 i, j d. We proceed by induction on i + j. First assume that i + j = 0, so that i = j = 0. Applying (8.3) to λ = (d, 0, 0) d we obtain T 00 = h 0 k 0 T 00. Next assume that i + j>0. If i >j, then T ij = T ij =0. Therefore T ij = h ik j T ij. If i = 0, then by applying (8.3) to λ = (d j, 0, j) d we obtain T 0j = h 0k j T 0j. If 0 < i j, then by applying (8.3) to λ = (d j, i, j i) d we obtain det(t [j i, j]) = det(t [j i, j]) i (h l k j i+l ). (8.4) By (8.4) and induction we routinely obtain T ij = h ik j T ij. We have shown that T = HTK. By Definition 7.1, T T. By Definition 8.7, f f. Definition 8.9. An element f VF d (F) is called fine whenever f((i, d i, 0)) = f((i, 0, d i)) = 1for 0 i d. l=0 Lemma For T T d (F) the following are equivalent: (i) T is nice in the sense of Definition 7.5; (ii) D(T ) is fine in the sense of Definition 8.9. Proof. By Definition 8.1, Similarly, by Definition 8.1, D(T )((i, d i, 0)) = T 00 T 11...T d i,d i (0 i d). (8.5) D(T )((i, 0,d i)) = T 0,d i (0 i d). (8.6)

25 532 Y. Yang / Linear Algebra and its Applications 493 (2016) First assume that T is nice. By Definition 7.5 along with (8.5) and (8.6), D(T )((i, d i, 0)) = D(T )((i, 0, d i)) =1for 0 i d. Therefore D(T )is fine in view of Definition 8.9. Next assume that D(T )is fine. By Definition 8.9 along with (8.5) and (8.6), T 0i = T ii =1for 0 i d. Therefore T is nice in view of Definition 7.5. Corollary Under the equivalence relation from Definition 8.7, each equivalence class contains a unique fine element in VF d (F). Proof. By Lemma 7.6 and Lemma Definition We define a map D : T d (F) VF d (F) as follows. Given an equivalence class [T ] T d (F), the image of [T ]under D is [D(T )]. By Definition 8.7 the map D is well-defined. Lemma The map D : T d (F) VF d (F) from Definition 8.12 is bijective. Proof. By Lemma 8.4 and Definition 8.7. For the rest of this section assume d 2. Lemma Assume d 2. Recall the map w from Definition 8.5. For f, f VF d (F), suppose that f f in the sense of Definition 8.7. Then w(f) = w(f ). Proof. Apply (8.2) to f and evaluate the result using (8.3). Definition Assume d 2. We define a map w : VF d (F) VF d 2 (F) as follows. Given an equivalence class [f] VF d (F), the image of [f] under w is w(f). By Lemma 8.14 the map w is well-defined. Lemma Assume d 2. Then the map w : VF d (F) VF d 2 (F) from Definition 8.15 is bijective. Proof. We will show that for g VF d 2 (F), there exists a unique fine f VF d (F) such that w(f) = g. Our strategy is as follows. We are going to show that f exists. As we proceed, our calculation will show that there is only one solution for f. For λ = (r, s, t) d, we solve for f(λ) by induction on s r. First assume that s r = d, so that λ = (d, 0, 0). By Definition 8.9, f(λ) = 1. Next assume that s r> d. If s = 0 or t = 0, then by Definition 8.9, f(λ) = 1. If s 0and t 0, then by Definition 8.5, g(τ) = f(µ + α)f(µ + β)f(µ + γ) f(µ α)f(µ β)f(µ γ), (8.7)

26 Y. Yang / Linear Algebra and its Applications 493 (2016) where τ =(r, s 1, t 1) d 2, µ = (r +1, s 1, t) d and α, β, γ are from (5.1). In terms of r, s, t the equation (8.7) becomes g(r, s 1,t 1) = f(r +2,s 2,t)f(r +1,s,t 1)f(r, s 1,t+ 1) f(r, s, t)f(r +1,s 2,t+1)f(r +2,s 1,t 1). (8.8) In the right hand side of (8.8), all the factors except for f(λ) = f(r, s, t) have been determined by induction, and these factors are nonzero. Hence f(λ) = f(r, s, t) is uniquely determined. We have shown that for g VF d 2 (F), there exists a unique fine f VF d (F) such that w(f) = g. By this and Corollary 8.11, the map w is bijective. Theorem Assume d 2. Then the following diagram commutes: T d (F) D VF d (F) b w BA d (F) θ VF d 2(F) Here θ is from Definition 5.36, b is from Definition 7.3, D is from Definition 8.12, and w is from Definition Proof. Use Theorem 8.6. Remark In the commutative diagram from Theorem 8.17, each map is bijective. 9. An example In this section, we will give an example to illustrate Theorem 6.6. We first recall some notation. Fix 0 q F. For n N define n 1 [n] q = q i, [n]! q = i=0 n [i] q. i=1 We interpret [0] q =0and [0]! q = 1. For n, k Z we define [ ] n k as follows. For 0 k n, q [ ] n = k q [n]! q [k]! q[n k]!. (9.1) q If k <0or k >n, then for notational convenience define [ ] n k q =0.

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8. Linear Algebra M1 - FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Hessenberg Pairs of Linear Transformations

Hessenberg Pairs of Linear Transformations Hessenberg Pairs of Linear Transformations Ali Godjali November 21, 2008 arxiv:0812.0019v1 [math.ra] 28 Nov 2008 Abstract Let K denote a field and V denote a nonzero finite-dimensional vector space over

More information

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS J. WARNER SUMMARY OF A PAPER BY J. CARLSON, E. FRIEDLANDER, AND J. PEVTSOVA, AND FURTHER OBSERVATIONS 1. The Nullcone and Restricted Nullcone We will need

More information

Intrinsic products and factorizations of matrices

Intrinsic products and factorizations of matrices Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 5 3 www.elsevier.com/locate/laa Intrinsic products and factorizations of matrices Miroslav Fiedler Academy of Sciences

More information

Solving a system by back-substitution, checking consistency of a system (no rows of the form

Solving a system by back-substitution, checking consistency of a system (no rows of the form MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

More information

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016 Linear Algebra Notes Lecture Notes, University of Toronto, Fall 2016 (Ctd ) 11 Isomorphisms 1 Linear maps Definition 11 An invertible linear map T : V W is called a linear isomorphism from V to W Etymology:

More information

Mathematics 1. Part II: Linear Algebra. Exercises and problems

Mathematics 1. Part II: Linear Algebra. Exercises and problems Bachelor Degree in Informatics Engineering Barcelona School of Informatics Mathematics Part II: Linear Algebra Eercises and problems February 5 Departament de Matemàtica Aplicada Universitat Politècnica

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Throughout these notes, F denotes a field (often called the scalars in this context). 1 Definition of a vector space Definition 1.1. A F -vector space or simply a vector space

More information

q-inverting pairs of linear transformations and the q-tetrahedron algebra

q-inverting pairs of linear transformations and the q-tetrahedron algebra q-inverting pairs of linear transformations and the q-tetrahedron algebra arxiv:math/0606237v1 [math.rt] 10 Jun 2006 Tatsuro Ito and Paul Terwilliger Abstract As part of our study of the q-tetrahedron

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 11. Determinants

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Characterizations of Strongly Regular Graphs: Part II: Bose-Mesner algebras of graphs. Sung Y. Song Iowa State University

Characterizations of Strongly Regular Graphs: Part II: Bose-Mesner algebras of graphs. Sung Y. Song Iowa State University Characterizations of Strongly Regular Graphs: Part II: Bose-Mesner algebras of graphs Sung Y. Song Iowa State University sysong@iastate.edu Notation K: one of the fields R or C X: a nonempty finite set

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Math 396. Quotient spaces

Math 396. Quotient spaces Math 396. Quotient spaces. Definition Let F be a field, V a vector space over F and W V a subspace of V. For v, v V, we say that v v mod W if and only if v v W. One can readily verify that with this definition

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Exercises on chapter 0

Exercises on chapter 0 Exercises on chapter 0 1. A partially ordered set (poset) is a set X together with a relation such that (a) x x for all x X; (b) x y and y x implies that x = y for all x, y X; (c) x y and y z implies that

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS 1 SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS HUAJUN HUANG AND HONGYU HE Abstract. Let G be the group preserving a nondegenerate sesquilinear form B on a vector space V, and H a symmetric subgroup

More information

Infinite-Dimensional Triangularization

Infinite-Dimensional Triangularization Infinite-Dimensional Triangularization Zachary Mesyan March 11, 2018 Abstract The goal of this paper is to generalize the theory of triangularizing matrices to linear transformations of an arbitrary vector

More information

4.2. ORTHOGONALITY 161

4.2. ORTHOGONALITY 161 4.2. ORTHOGONALITY 161 Definition 4.2.9 An affine space (E, E ) is a Euclidean affine space iff its underlying vector space E is a Euclidean vector space. Given any two points a, b E, we define the distance

More information

2.2. Show that U 0 is a vector space. For each α 0 in F, show by example that U α does not satisfy closure.

2.2. Show that U 0 is a vector space. For each α 0 in F, show by example that U α does not satisfy closure. Hints for Exercises 1.3. This diagram says that f α = β g. I will prove f injective g injective. You should show g injective f injective. Assume f is injective. Now suppose g(x) = g(y) for some x, y A.

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Notes on the Matrix-Tree theorem and Cayley s tree enumerator

Notes on the Matrix-Tree theorem and Cayley s tree enumerator Notes on the Matrix-Tree theorem and Cayley s tree enumerator 1 Cayley s tree enumerator Recall that the degree of a vertex in a tree (or in any graph) is the number of edges emanating from it We will

More information

MODEL ANSWERS TO THE FIRST HOMEWORK

MODEL ANSWERS TO THE FIRST HOMEWORK MODEL ANSWERS TO THE FIRST HOMEWORK 1. Chapter 4, 1: 2. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

2: LINEAR TRANSFORMATIONS AND MATRICES

2: LINEAR TRANSFORMATIONS AND MATRICES 2: LINEAR TRANSFORMATIONS AND MATRICES STEVEN HEILMAN Contents 1. Review 1 2. Linear Transformations 1 3. Null spaces, range, coordinate bases 2 4. Linear Transformations and Bases 4 5. Matrix Representation,

More information

The 4-periodic spiral determinant

The 4-periodic spiral determinant The 4-periodic spiral determinant Darij Grinberg rough draft, October 3, 2018 Contents 001 Acknowledgments 1 1 The determinant 1 2 The proof 4 *** The purpose of this note is to generalize the determinant

More information

5 Linear Transformations

5 Linear Transformations Lecture 13 5 Linear Transformations 5.1 Basic Definitions and Examples We have already come across with the notion of linear transformations on euclidean spaces. We shall now see that this notion readily

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

1.8 Dual Spaces (non-examinable)

1.8 Dual Spaces (non-examinable) 2 Theorem 1715 is just a restatement in terms of linear morphisms of a fact that you might have come across before: every m n matrix can be row-reduced to reduced echelon form using row operations Moreover,

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Determinants: Introduction and existence

Determinants: Introduction and existence Math 5327 Spring 2018 Determinants: Introduction and existence In this set of notes I try to give the general theory of determinants in a fairly abstract setting. I will start with the statement of the

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA DAVID MEREDITH These notes are about the application and computation of linear algebra objects in F n, where F is a field. I think everything here works over any field including

More information

Citation Osaka Journal of Mathematics. 43(2)

Citation Osaka Journal of Mathematics. 43(2) TitleIrreducible representations of the Author(s) Kosuda, Masashi Citation Osaka Journal of Mathematics. 43(2) Issue 2006-06 Date Text Version publisher URL http://hdl.handle.net/094/0396 DOI Rights Osaka

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics

MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics MTH 309 Supplemental Lecture Notes Based on Robert Messer, Linear Algebra Gateway to Mathematics Ulrich Meierfrankenfeld Department of Mathematics Michigan State University East Lansing MI 48824 meier@math.msu.edu

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Semicontinuity of rank and nullity and some consequences

Semicontinuity of rank and nullity and some consequences Semicontinuity of rank and nullity and some consequences Andrew D Lewis 2009/01/19 Upper and lower semicontinuity Let us first define what we mean by the two versions of semicontinuity 1 Definition: (Upper

More information

Linear Vector Spaces

Linear Vector Spaces CHAPTER 1 Linear Vector Spaces Definition 1.0.1. A linear vector space over a field F is a triple (V, +, ), where V is a set, + : V V V and : F V V are maps with the properties : (i) ( x, y V ), x + y

More information

Math 115A: Linear Algebra

Math 115A: Linear Algebra Math 115A: Linear Algebra Michael Andrews UCLA Mathematics Department February 9, 218 Contents 1 January 8: a little about sets 4 2 January 9 (discussion) 5 2.1 Some definitions: union, intersection, set

More information

II. Determinant Functions

II. Determinant Functions Supplemental Materials for EE203001 Students II Determinant Functions Chung-Chin Lu Department of Electrical Engineering National Tsing Hua University May 22, 2003 1 Three Axioms for a Determinant Function

More information

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain. MODEL ANSWERS TO HWK #7 1. Suppose that F is a field and that a and b are in F. Suppose that a b = 0, and that b 0. Let c be the inverse of b. Multiplying the equation above by c on the left, we get 0

More information

Chapter 5. Linear Algebra

Chapter 5. Linear Algebra Chapter 5 Linear Algebra The exalted position held by linear algebra is based upon the subject s ubiquitous utility and ease of application. The basic theory is developed here in full generality, i.e.,

More information

Homework 5 M 373K Mark Lindberg and Travis Schedler

Homework 5 M 373K Mark Lindberg and Travis Schedler Homework 5 M 373K Mark Lindberg and Travis Schedler 1. Artin, Chapter 3, Exercise.1. Prove that the numbers of the form a + b, where a and b are rational numbers, form a subfield of C. Let F be the numbers

More information

IDEAL CLASSES AND RELATIVE INTEGERS

IDEAL CLASSES AND RELATIVE INTEGERS IDEAL CLASSES AND RELATIVE INTEGERS KEITH CONRAD The ring of integers of a number field is free as a Z-module. It is a module not just over Z, but also over any intermediate ring of integers. That is,

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Chapter 2: Matrix Algebra

Chapter 2: Matrix Algebra Chapter 2: Matrix Algebra (Last Updated: October 12, 2016) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). Write A = 1. Matrix operations [a 1 a n. Then entry

More information

Topic 1: Matrix diagonalization

Topic 1: Matrix diagonalization Topic : Matrix diagonalization Review of Matrices and Determinants Definition A matrix is a rectangular array of real numbers a a a m a A = a a m a n a n a nm The matrix is said to be of order n m if it

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

(K + L)(c x) = K(c x) + L(c x) (def of K + L) = K( x) + K( y) + L( x) + L( y) (K, L are linear) = (K L)( x) + (K L)( y).

(K + L)(c x) = K(c x) + L(c x) (def of K + L) = K( x) + K( y) + L( x) + L( y) (K, L are linear) = (K L)( x) + (K L)( y). Exercise 71 We have L( x) = x 1 L( v 1 ) + x 2 L( v 2 ) + + x n L( v n ) n = x i (a 1i w 1 + a 2i w 2 + + a mi w m ) i=1 ( n ) ( n ) ( n ) = x i a 1i w 1 + x i a 2i w 2 + + x i a mi w m i=1 Therefore y

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

A classification of sharp tridiagonal pairs. Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger

A classification of sharp tridiagonal pairs. Tatsuro Ito, Kazumasa Nomura, Paul Terwilliger Tatsuro Ito Kazumasa Nomura Paul Terwilliger Overview This talk concerns a linear algebraic object called a tridiagonal pair. We will describe its features such as the eigenvalues, dual eigenvalues, shape,

More information

The Cayley-Hamilton Theorem and the Jordan Decomposition

The Cayley-Hamilton Theorem and the Jordan Decomposition LECTURE 19 The Cayley-Hamilton Theorem and the Jordan Decomposition Let me begin by summarizing the main results of the last lecture Suppose T is a endomorphism of a vector space V Then T has a minimal

More information

Determinants. Beifang Chen

Determinants. Beifang Chen Determinants Beifang Chen 1 Motivation Determinant is a function that each square real matrix A is assigned a real number, denoted det A, satisfying certain properties If A is a 3 3 matrix, writing A [u,

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Combinatorics for algebraic geometers

Combinatorics for algebraic geometers Combinatorics for algebraic geometers Calculations in enumerative geometry Maria Monks March 17, 214 Motivation Enumerative geometry In the late 18 s, Hermann Schubert investigated problems in what is

More information

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A =

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A = STUDENT S COMPANIONS IN BASIC MATH: THE ELEVENTH Matrix Reloaded by Block Buster Presumably you know the first part of matrix story, including its basic operations (addition and multiplication) and row

More information

NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS. Contents. 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4. 1.

NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS. Contents. 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4. 1. NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS Contents 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4 1. Introduction These notes establish some basic results about linear algebra over

More information

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS KEITH CONRAD. Introduction The easiest matrices to compute with are the diagonal ones. The sum and product of diagonal matrices can be computed componentwise

More information

A Multiplicative Operation on Matrices with Entries in an Arbitrary Abelian Group

A Multiplicative Operation on Matrices with Entries in an Arbitrary Abelian Group A Multiplicative Operation on Matrices with Entries in an Arbitrary Abelian Group Cyrus Hettle (cyrus.h@uky.edu) Robert P. Schneider (robert.schneider@uky.edu) University of Kentucky Abstract We define

More information

Vector Spaces and Linear Transformations

Vector Spaces and Linear Transformations Vector Spaces and Linear Transformations Wei Shi, Jinan University 2017.11.1 1 / 18 Definition (Field) A field F = {F, +, } is an algebraic structure formed by a set F, and closed under binary operations

More information

Notes on Mathematics

Notes on Mathematics Notes on Mathematics - 12 1 Peeyush Chandra, A. K. Lal, V. Raghavendra, G. Santhanam 1 Supported by a grant from MHRD 2 Contents I Linear Algebra 7 1 Matrices 9 1.1 Definition of a Matrix......................................

More information

Combinatorial Structures

Combinatorial Structures Combinatorial Structures Contents 1 Permutations 1 Partitions.1 Ferrers diagrams....................................... Skew diagrams........................................ Dominance order......................................

More information

Direct Limits. Mathematics 683, Fall 2013

Direct Limits. Mathematics 683, Fall 2013 Direct Limits Mathematics 683, Fall 2013 In this note we define direct limits and prove their basic properties. This notion is important in various places in algebra. In particular, in algebraic geometry

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE

SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE SCHUR IDEALS AND HOMOMORPHISMS OF THE SEMIDEFINITE CONE BABHRU JOSHI AND M. SEETHARAMA GOWDA Abstract. We consider the semidefinite cone K n consisting of all n n real symmetric positive semidefinite matrices.

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

How to sharpen a tridiagonal pair

How to sharpen a tridiagonal pair How to sharpen a tridiagonal pair Tatsuro Ito and Paul Terwilliger arxiv:0807.3990v1 [math.ra] 25 Jul 2008 Abstract Let F denote a field and let V denote a vector space over F with finite positive dimension.

More information

NOTES on LINEAR ALGEBRA 1

NOTES on LINEAR ALGEBRA 1 School of Economics, Management and Statistics University of Bologna Academic Year 207/8 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Where is matrix multiplication locally open?

Where is matrix multiplication locally open? Linear Algebra and its Applications 517 (2017) 167 176 Contents lists available at ScienceDirect Linear Algebra and its Applications www.elsevier.com/locate/laa Where is matrix multiplication locally open?

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Matrix representation of a linear map

Matrix representation of a linear map Matrix representation of a linear map As before, let e i = (0,..., 0, 1, 0,..., 0) T, with 1 in the i th place and 0 elsewhere, be standard basis vectors. Given linear map f : R n R m we get n column vectors

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

Parameterizing orbits in flag varieties

Parameterizing orbits in flag varieties Parameterizing orbits in flag varieties W. Ethan Duckworth April 2008 Abstract In this document we parameterize the orbits of certain groups acting on partial flag varieties with finitely many orbits.

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

NOTES ON LINEAR ODES

NOTES ON LINEAR ODES NOTES ON LINEAR ODES JONATHAN LUK We can now use all the discussions we had on linear algebra to study linear ODEs Most of this material appears in the textbook in 21, 22, 23, 26 As always, this is a preliminary

More information

Prelims Linear Algebra I Michaelmas Term 2014

Prelims Linear Algebra I Michaelmas Term 2014 Prelims Linear Algebra I Michaelmas Term 2014 1 Systems of linear equations and matrices Let m,n be positive integers. An m n matrix is a rectangular array, with nm numbers, arranged in m rows and n columns.

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

arxiv:math.oc/ v2 14 Dec 1999

arxiv:math.oc/ v2 14 Dec 1999 FEEDBACK STABILIZATION OVER COMMUTATIVE RINGS: arxiv:math.oc/9902124 v2 14 Dec 1999 FURTHER STUDY OF THE COORDINATE-FREE APPROACH KAZUYOSHI MORI AND KENICHI ABE June 16, 2006 Abstract. This paper is concerned

More information

We simply compute: for v = x i e i, bilinearity of B implies that Q B (v) = B(v, v) is given by xi x j B(e i, e j ) =

We simply compute: for v = x i e i, bilinearity of B implies that Q B (v) = B(v, v) is given by xi x j B(e i, e j ) = Math 395. Quadratic spaces over R 1. Algebraic preliminaries Let V be a vector space over a field F. Recall that a quadratic form on V is a map Q : V F such that Q(cv) = c 2 Q(v) for all v V and c F, and

More information

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction NONCOMMUTATIVE POLYNOMIAL EQUATIONS Edward S Letzter Introduction My aim in these notes is twofold: First, to briefly review some linear algebra Second, to provide you with some new tools and techniques

More information

Determinants - Uniqueness and Properties

Determinants - Uniqueness and Properties Determinants - Uniqueness and Properties 2-2-2008 In order to show that there s only one determinant function on M(n, R), I m going to derive another formula for the determinant It involves permutations

More information

A Questionable Distance-Regular Graph

A Questionable Distance-Regular Graph A Questionable Distance-Regular Graph Rebecca Ross Abstract In this paper, we introduce distance-regular graphs and develop the intersection algebra for these graphs which is based upon its intersection

More information