Wave Function for Harmonically Confined Electrons in Time-Dependent Electric and Magnetostatic Fields

Size: px
Start display at page:

Download "Wave Function for Harmonically Confined Electrons in Time-Dependent Electric and Magnetostatic Fields"

Transcription

1 Cty Unversty of New York CUNY) CUNY Aadem Works Publatons and Researh Graduate Center 4 Wave Funton for Harmonally Confned Eletrons n Tme-Dependent Eletr and Magnetostat Felds Hong-Mng Zhu Nngbo Unversty Jn-Wang Chen Nngbo Unversty Xao-Yn Pan Nngbo Unversty Vraht Sahn CUNY Graduate Center and CUNY Brooklyn College How does aess to ths work beneft you? Let us know! Follow ths and addtonal works at: Part of the Atom, Moleular and Optal Physs Commons, Bologal and Chemal Physs Commons, Condensed Matter Physs Commons, and the Quantum Physs Commons Reommended Ctaton H.-M. Zhu, J.-W. Chen., X.-Y. Pan, and V. Sahn, J. Chem. Phys. 4, 438 4). Ths Artle s brought to you by CUNY Aadem Works. It has been aepted for nluson n Publatons and Researh by an authorzed admnstrator of CUNY Aadem Works. For more nformaton, please ontat AademWorks@g.uny.edu.

2 THE JOURNAL OF CHEMICAL PHYSICS 4, 438 4) Wave funton for harmonally onfned eletrons n tme-dependent eletr and magnetostat felds Hong-Mng Zhu,,a) Jn-Wang Chen, Xao-Yn Pan,,b) and Vraht Sahn Department of Physs, Nngbo Unversty, Nngbo 35, Chna Department of Physs, Brooklyn College and The Graduate Shool of the Cty Unversty of New York, New York, New York 6, USA Reeved 3 Otober 3; aepted 3 Deember 3; publshed onlne 4 January 4) We derve va the nteraton representaton the many-body wave funton for harmonally onfned eletrons n the presene of a magnetostat feld and perturbed by a spatally homogeneous tme-dependent eletr feld the Generalzed Kohn Theorem GKT) wave funton. In the absene of the harmon onfnement the unform eletron gas the GKT wave funton redues to the Kohn Theorem wave funton. Wthout the magnetostat feld, the GKT wave funton s the Harmon Potental Theorem wave funton. We further prove the valdty of the onneton between the GKT wave funton derved and the system n an aelerated frame of referene. Fnally, we provde examples of the applaton of the GKT wave funton. 4 AIP Publshng LLC. [ I. INTRODUCTION A bas problem n quantum mehans s the determnaton of the soluton to the many-eletron system n atoms, moleules, solds, quantum wells, two-dmensonal eletron systems suh as those at semondutor heterojuntons, quantum dots, et., and of the nteraton of suh systems wth external eletromagnet felds. Systems for whh exat solutons of the Shrödnger equaton exst are unommon, and thus suh systems play a sgnfant role n the understandng of the many-body problem. The exat solutons also lead to further physal nsghts va ther use n other manfestatons of Shrödnger theory suh as densty funtonal 6 and quantal densty funtonal 7, 8 theores. In ths paper we onsder a tme-dependent TD) Hamltonan that s modfable and hene applable to dfferent physal systems, 9 3 and provde a frst-prnples dervaton of the orrespondng most general) wave funton whh we refer to as the Generalzed Kohn Theorem GKT) wave funton. Consder a system of N harmonally onfned eletrons n a magnetostat feld Br) = Ar). On applaton of a spatally homogeneous tme-dependent eletr feld Et), the Hamltonan s H ˆ t) = H ˆ ) + eet) r, ) the unperturbed Hamltonan s H ˆ ) = [ ˆp + e ) m Ar ) + ] r K r +,j) ur r j ), ) wth =,...,N denotes the eletrons;, j) denotes all pars; r = x, y, z ); ur) the eletron nteraton operator; and K s a) Present address: Natonal Astronomal Observatores, Chnese Aademy of Senes, Bejng, Chna. b) Eletron mal: panxaoyn@nbu.edu.n the fore onstant matrx ωx K = m ωy, 3) ωz and ω x,w y,w z the dretonal harmon frequenes. The orrespondng tme-dependent TD) Shrödnger equaton s ) t H ˆ t) t) =. 4) Note that by modfyng the fore onstant matrx K, the Hamltonan of Eq. ) an represent a quantum well ω x = ω y =, ω z ); quantum dot ω x ω y, ω z = ; ω x = ω y ω z ); or a two-dmensonal eletron gas ω x = ω y = ω z = ). The absene of the magnet feld B n turn also onsttutes speal ases. In ths paper we present a frst prnples dervaton va the nteraton representaton of the soluton to the TD Shrödnger equaton. We refer to ths soluton as the GKT wave funton. In the symmetr gauge Ar) = Br) r,the soluton s the followng r,...,r N ; t) = e ī E n t+s [R m t)] P Rmt) R) n r R m t), r R m t),...,r N R m t)), 5) E n, n are the egenenerges and egenfuntons of the unperturbed Hamltonan: H ˆ ) n r,...,r N ) = E n n r,...,r N ); 6) S [R m t)] the total lassal aton: S [R m t)] = S XY t) + S Z t), 7) S XY [R t)] = M R R R + ω R J R )dt, 8) -966/4/4)/438/9/$3. 4, AIP Publshng LLC

3 438- Zhu et al. J. Chem. Phys. 4, 438 4) S Z [Zt)] = M Ż ωz Z) dt. 9) In Eq. 5), R m t) s the three-dmensonal vetor X mt) Y m t) ), and Z m t) P Rm t) the orrespondng anonal momentum see Eq. 68) below). The vetor R m t) satsfes the lassal equaton of moton m d R m t) = K R dt m t) eet) e dr m t) B. ) dt In Eq. 8), R t) s the two-dmensonal vetor Xt) Y t) ); R the transpose of the vetor R ; = ω x ω ); and J = y ). Fnally, the vetor n Eq. 5) R = N r = X Y ), Z ω = NeB = eb the ylotron frequeny, and M = Nm. M m Observe that the GKT wave funton s omprsed of a phase fator tmes the unperturbed wave funton n whh the oordnates of eah eletron are translated by a value that satsfes the lassal equaton of moton. Hene, f the unperturbed wave funton s known, then the tme evoluton of all propertes s known. In partular, observables represented by non-dfferental Hermtan operators suh as the densty ρr,t) = ˆρr), wth ˆρr) = δr r) the densty operator, possess the translatonal property ρr,t) = ρ r R m t)), ) ρ r) s the unperturbed system densty. Thus, f the unperturbed wave funton and hene densty ρ r)sknown, then so s the tme evoluton of the perturbed system densty ρr, t). Beause of the phase fator ths translatonal property s not obeyed for observables nvolvng dfferental operators suh as the physal urrent densty. We note two speal ases of the wave funton: In the absene of the external harmon potental,.e., for the unform eletron gas, the GKT wave funton derved redues to the Kohn theorem KT) wave funton; 9 n the absene of the external magnet feld, the GKT wave funton redues to that of the harmon potental theorem HPT) wave funton. 4 For other ndependent dervatons of the HPT wave funton va the operator, Feynman Path ntegral, and nteraton representaton methods see, respetvely, Refs. 7, 5, and 6.) We next put our work n ontext. In the orgnal work by Kohn and o-workers, 9 3 t was shown that for systems represented by the Hamltonan of Eq. ), the optal absorpton frequenes observed, whether for the unform eletron gas or when the eletrons are onfned harmonally, were dental to those of a sngle partle and ndependent of the number of eletrons and the eletron-eletron nteraton. In the lterature, the ase of the unform eletron gas s onsdered the KT, and that of the harmonally onfned eletrons ase s referred to as the GKT.) However, n spte of the fat that Yp states n hs footnote 8 that It s straghtforward to dedue the ground-state wave funton and thus also the exted states) the explt expresson for the GKT wave funton of Eq. 5) s not gven n these papers. In a later paper, Dobson 4 derved the HPT wave funton statng that ths was a slght extenson of the GKT sne the GKT only refers to the frequeny dependene of lnear response and does not address the spatal profle of the movng densty. 7 By extenson Dobson was referrng to the dervaton of the HPT wave funton. From the wave funton t beomes lear that the densty ρr, t) must satsfythetranslatonal property of Eq. ). As the densty ρr, t) s the bas ngredent of TD densty funtonal theory, 3 6 ths property of the densty ould then be employed as a rgorous onstrant to test varous approxmate aton funtonals of the densty wthn the ontext of the theory. Agan, wth the purpose of testng dfferent aton funtonals, Vgnale 8 observed that the densty ρr, t) orrespondng to the GKT Hamltonan of Eq. ) also obeyed the translatonal property of Eq. ). He arrved at ths onluson by onsderng the Shrödnger equaton n an aelerated frame of referene. As the fous of TD densty funtonal theory s the densty ρr, t), nether the GKT wave funton nor ts dervaton va ths approah were provded. The expresson for the KT wave funton now appears n the text of Ref. 9.) Thus, the expresson for the GKT wave funton does not exst n the lterature at present. Knowledge of the GKT wave funton leads dretly to the translatonal property of the densty, and to the KT and HPT wave funtons sne these onsttute speal ases. It s evdent that there are several approahes by whh the wave funton ould be derved. For example, one ould employ the operator method of Kohn and o-workers 9 3 or of the aelerated frame of referene approah due to Vgnale. 8 Here we provde a frst prnples dervaton va the nteraton representaton that dffers from these methods. Further, n the Appendx we onsder the Vgnale approah, and prove the valdty of the onneton between the wave funton derved and the Hamltonan n the aelerated frame of referene. Fnally, we provde examples of the applaton of the GKT wave funton. II. SEPARATION OF HAMILTONIAN The key to the dervaton of the GKT wave funton, and of ourse to the understandng of the optal absorpton frequenes, s that the Hamltonan of Eq. ) s separable nto ts enter of mass and relatve oordnate omponents. The enter of mass omponent s that of a sngle partle of mass Nm and harge Ne onfned harmonally by N tmes the potental of a sngle partle. The effet of the TD eletr feld also appears only n ths omponent. The eletron nteraton potental term appears only n the relatve oordnate omponent of the Hamltonan. Furthermore, the n-plane enter of mass moton omponent of the Hamltonan s separable from the moton n the plane perpendular to t whh s the assumed dreton of the magnet feld. To see ths, defne the enter of mass and relatve oordnates and momentum,, as R R ) = N r ; ) = ˆπ ; ˆπ = + e Ar ), )

4 438-3 Zhu et al. J. Chem. Phys. 4, 438 4) and X ) = x x, X 3) = x + x x 3,..., 3) X N) = x + x x N N )x N, and smlarly for Y ),...Y N), Z ),...Z N), and ),... N). The Hamltonan an then be rewrtten as H ˆ = m + rel, 4) the enter of mass Hamltonan m t)s m t) = ˆ M + M ω x X + ωy Y + ωz Z) NeEt) R, 5) wth ˆ = R + Ne AR), 6) and M = Nm. rel s the Hamltonan of the relatve oordnates and ontans the effets of the nteraton. It an be readly shown that [ m, rel ] = so that the enter-of-mass moton and the relatve moton are separable. Therefore, the egenstates of the Hamltonan are the produt of the egenstates of the enter-of-mass moton R, t) and the relatve moton ϕ rel R ),...,R N) ): r, r,...r N,t) = R,t)ϕ rel R ),...,R N) ). 7) The relatve moton wave funton ϕ rel R ),..., R N) ) satsfes rel ϕ rel R ),...,R N) ) = E rel ϕ rel R ),...,R N) ), 8) E rel s the orrespondng egenvalue. We next fous on the m t) sne the effet of the external eletral feld appears only n the enter-of-mass moton. For smplty, hoosng the dreton of the magnet feld as the z dreton, then n the symmetr gauge AR) = BY, BX, ), and Eq. 5) an be deomposed nto two parts m t) = XY t) + Z t), 9) XY t) desrbes the n-plane moton, and Z t) = P M ˆ Z + Mω z Z + NeE z t)z, ) desrbes a trval moton n the Z-dreton wthout the nfluene of the magnet feld. Ths moton s ndependent of the n-plane moton, and as suh the enter-of-mass wave funton R, t) s just the produt of the n-plane moton wave funton and the Z-dreton wave funton. The latter s smply the one-dmensonal HPT wave funton. For the expresson of the n-plane relatve oordnate Hamltonan, see the supplementary materal. III. IN-PLANE CENTER-OF-MASS MOTION We next fous on the n-plane moton desrbed by XY t), whh may be further separated as XY t) = + t), ) the tme-ndependent part s = ˆ X M + ˆ ) Y + M ω x X + ω y Y ) = P ˆ X M + Pˆ Y ) + M ω X + ω Y ) + ω ˆL Z, ) wth ω = ω x + ω 4, ω = ω y + ω 4,ω = NeB = eb M m s the ylotron frequeny, and ˆL Z = XPˆ Y Y Pˆ X the angular momentum omponent along the Z axs. The tme dependent part s t) = Ne[E x t)x + E y t)y ]. 3) In the nteraton representaton the evoluton of state at tme t denoted by t s obtaned as t =exp ī t T exp ī t du nt u), 4) T s the tme-orderng operator, and nt t)=e t/ t)e t/ =Ne[E x t)xt) + E y t)y t)], 5) wth Xt) = e t/ Xe t/ wth = a t)x + a t)y + a 3 t) ˆ P X + a 4 t) ˆ P Y, 6) a t) = γ os λ t + γ os λ t, 7) ) sn λ t sn λ t a t) = γ 3 + γ 4 ), 8) λ λ ) sn λ t sn λ t a 3 t) = γ 5 + γ 6 ), 9) λ λ a 4 t) = γ 7 os λ t + γ 8 os λ t, 3) the oeffents ω γ = ω + ) ω, γ = ω + ), 3) γ 3 = ω 3ω + ω ), γ 4 = ω 3ω ω ), 3) γ 5 = M ω + ω ) ω, γ 6 = M + ω ω + ) ω, 33) Smlarly, γ 7 = ω Y t) = e ˆ H t/ Ye ˆ H t/ M, γ 8 = ω M. 34) = b t)x + b t)y + b 3 t) ˆ P x + b 4 t) ˆ P y, 35)

5 438-4 Zhu et al. J. Chem. Phys. 4, 438 4) wth ) sn λ t sn λ t b t) = η + η ), 36) λ λ b t) = η 3 os λ t + η 4 os λ t, 37) b 3 t) = η 5 os λ t + η 6 os λ t, 38) ) sn λ t sn λ t b 4 t) = η 7 + η 8 ), 39) λ λ the oeffents η = ω 3ω ω + η = ω + 3ω + ω ω η 3 = ω + ), η 4 = η 5 = ), ), 4) ω ω + ), 4) ω M, η 6 = ω M, 4) η 7 = M + ω ω ) ω, η 8 = M ω + ω + ) ω. 43) Note that n above equatons = ω ω ) + ω ω + ω ), 44) λ, = ω ω + ω + ω ) ω + ω ω + ω) ). 45) The detals of how to alulate the values of the oeffents a t) and b t), =,, 3, 4 of Eqs. 6) and 35) are gven n the supplementary materal. Substtuton of Eqs. 6) and 35) nto Eq. 5) yelds nt t) = t)x + t)y + 3 t) Pˆ X + 4 t) Pˆ Y, 46) wth t) = Ne[E x t)a t) + E y t)b t)], =,, 3, 4. 47) Note that the ommutator of nt u) at dfferent tmes s a number, [ H ˆ nt u), nt v) ] = gu, v), 48) gu, v) = u) 3 v) + u) 4 v) v) 3 u) v) 4 u). 49) One then obtans T exp ī du nt u) = exp ī du nt u) exp du = exp ī du nt u) u u dv [ nt exp u), nt v ] αt), 5) αt) = du dvgu, v). 5) Combnng Eqs. 4) and 5), one obtans t =exp ī t exp ī t du nt u) exp ī αt). 5) IV. EVOLUTION OF THE EIGENSTATES OF THE IN-PLANE MOTION Sne the egenstates n of of Eq. ) form a omplete set, any state an be expanded n terms of them. We next alulate the evoluton of the egenstates of the n-plane moton,.e., wth = n, and n =En XY n we then have from Eq. 5) t =exp ī ˆ H t exp exp ī αt) n = e ī αt) e ˆ H t/ e ī Usng the denttes and ī du nt u) du ntu) e t/ e EXY n t/ n. 53) e A e B e A = e ea Be A, 54) e A Be A = B + [A, B] + [A, [A, B]]! Eq. 53) an be rewrtten as t =e ī [αt)+en XY t] Note that exp e ˆ H t/ = e ī [αt)+en XY t] exp ī + [A, [A, [A, B]]] +, 55) 3! ī du nt u) ) e t/ n du[e u t)/ u)e u t)/ ] n. 56) ˆ H u) = Ne[E x u)x + E y u)y ], 57)

6 438-5 Zhu et al. J. Chem. Phys. 4, 438 4) so that e u t)/ u)e u t)/ wth = Ne[E x u)xu t) + E y u)y u t)] = u, t)x + u, t)y + 3 u, t) Pˆ X + 4 u, t) Pˆ Y, 58) u, t) = Ne[E x u)a u t) + E y u)b u t)], =,, 3, 4. 59) Insertng Eq. 58) nto 56), we obtan t = e ī α t)x+α t) Pˆ X +β t)y +β t) Pˆ Y ) n e [EXY n t+αt)], 6) α t) = β t) = u, t)du, α t) = u, t)du, β t) = 3 u, t)du, 6) 4 u, t)du. 6) Then, the evoluton t n the oordnate representaton s X, Y t = X, Y exp ī [α t)x + α t) Pˆ X + β t)y + β t) Pˆ Y ] n exp ī [ E XY n t + αt)]. 63) Note that for operators A, B f ther ommutator [A, B] sa number, then Hene, Eq. 63) an be rewrtten as e A+B = e A e B e [A,B]. 64) X, Y t = X, Y e ī α t)x+α t) ˆ P X ) e ī β t)y +β t) Pˆ Y ) n e EXY n = exp ī [α t)x + β t)y ] t+αt)) exp α t)α t) + β t)β t)) X α t),y β t) n exp ī [ E XY n t + αt)]. 65) From the above equaton, we an mmedately see that the wave funton s shfted from the orgnal wave funton, and the phase angle s hanged. To see the physal meanng of the shft, we next nvestgate the propertes of the translaton funtons α t), β t). V. TOTAL WAVE FUNCTION AND CLASSICAL EQUATION OF MOTION The orrespondng Lagrangan for the n-plane Hamltonan of Eq. ) s L XY = MṘ R R + ω R J Ṙ ) NeE x t)x NeE y t)y, 66) ) Xt) R t) =, 67) Y t) denotes the mass enter poston vetor perpendular to the magnet feld B, R the transpose of vetor R, J = ), and = ω x ω ). From the Lagrangan one an y obtan the anonal momentum as P X = MẊ + Mω Y, P Y = MẎ Mω X, 68) and the equatons of moton Ẍ + ω Ẏ + ωx X + Ne M E xt) =, 69) Ÿ ω Ẋ + ωy Y + Ne M E yt) =. After some algebra manpulatons, one an verfy that the poston vetor, ) ) α t) Xm t) = R,m t), 7) β t) Y m t) satsfes the equaton of moton of Eq. 69) wth the ntal ondton α ) =, β ) =. Moreover, α t) = P Xm,β t) = P Ym, 7) the orrespondng anonal momentum for R, m. The lassal aton between the ponts, R, ) and t, R, t ) wthout the external eletr feld term s S XY [R t)] = M duṙ R R + ω L R J Ṙ ) Thus, = M R,t R,t R, Ṙ, + Ne S XY [R,m ] = M R,m Ṙ,m + Ne We next show αt) = Ne du R u) Eu). 7) = [α t)α t) + β t)β t)] + Ne du R,m u) Eu) du[e x u)x m u) + E y u)y m u)]. 73) du[e x u)x m u) + E y u)y m u)]. 74)

7 438-6 Zhu et al. J. Chem. Phys. 4, 438 4) Usng Eqs. 59), 6), and 6), Eq.74) an be rewrtten as u αt) = Ne) du E x u) dv[e x v)a 3 v u) + E y v)b 3 v u)] u +E y u) dv[e x v)a 4 v u)+e y v)b 4 v u)]. 75) On the other hand, from the defnton of αt) Eq.5), ombnng Eqs. 47) and 49), we only need to show αt) = Ne) t u du E x u) dv[a u) 3 v) +a u) 4 v) a 3 u) v) a 4 u) v)] + E y u) u dv[b u) 3 v) + b u) 4 v) b 3 u) v) b 4 u) v)]. 76) Usng the followng denttes, [a u)a 3 v) + a u)a 4 v) a 3 u)a v) a 4 u)a v)] = a 3 v u), 77) [a u)b 3 v) + a u)b 4 v) a 3 u)b v) a 4 u)b v)] = b 3 v u), 78) [b u)a 3 v) + b u)a 4 v) b 3 u)a v) b 4 u)a v)] = a 4 v u), 79) [b u)b 3 v) + b u)b 4 v) b 3 u)b v) b 4 u)b v)] = b 4 v u), 8) t s not dffult to verfy that Eq. 76) s true. Fnally, we have the wave funton of the n-plane moton to be X, Y t = exp [P X m X + P Ym Y ] X X m t),y Y m t) n exp ī En XY [R,m ]). 8) Hene, the total wave funton nludng the n-plane, Z-omponent and relatve motons s then gven by Eq. 5). VI. CONCLUDING REMARKS In onluson, by employng the nteraton representaton we have derved the TD wave funton for a system of harmonally onfned eletrons n the presene of a magnetostat feld and a spatally unform TD eletr feld the GKT wave funton. In the dervaton, no ansatz s assumed for ts struture, the expresson arses as a onsequene of the dervaton. In the absene of the harmon onfnng potental, the wave funton derved redues to that for the ase of the unform eletron gas the KT wave funton. Wthout the presene of the magnet feld, the wave funton s the HPT wave funton. We have also rgorously establshed the valdty of the onneton between the GKT wave funton derved and the eletrons n an aelerated frame of referene. As the KT and HPT wave funtons are speal ases, ths onneton s equally vald for the physal stuatons represented by these wave funtons. As noted n the ntrodutory remarks, wth a knowledge of the soluton to the unperturbed system, the tme evoluton of all the propertes of the system n the presene of the TD eletr feld s then exatly known va the GKT wave funton. We provde here two examples of ts applaton. In reent work, 3 t has been shown that losed form analytal solutons for the tme-ndependent ground and exted states of the two-eletron quantum dot an be derved. A typal ground state soluton 4 n a.u. e = = m = ) for the ase ω + ω L =, ω s the harmon frequeny and ω L = B/ the Larmor frequeny, s r r ) = C + r )exp r + r ), 8) r = r r and C = /π 3 + π). The ground state energy s E = 3 a.u. The orrespondng GKT wave funton s thus known, and all the propertes of the quantum dot n the presene of the TD eletr feld an be studed wthn the ontext of say the quantal Newtonan seond law 7 perspetve of Shrödnger theory and quantal densty funtonal theory. 7 Employng the unperturbed wave funton varous propertes of the quantum dot have been determned. 4 For example, the ground state densty s gven by the expresson ρr) = π3 + π) e r πe r [ + r )I r ) ) ] + r I r + + r ), 83) I x) and I x) are the zeroth- and frst-order modfed Bessel funtons. 5 The tme evoluton of the densty ρr, t)n the presene of the TD perturbaton s thus gven by the above expresson translated by the soluton of the orrespondng lassal equaton of moton. For ths ground state the physal urrent densty jr) = ρr)ar)/. The expresson for the tme evoluton of ths property jrt) = ρr, t)ar)/ s thus also known n losed analytal form. Yet another example s the three-eletron quantum dot 3 whose tme-ndependent soluton n the Wgner hgh eletron orrelaton regme s known. The orrespondng evoluton of the propertes of ths system s thus known va ts GKT wave funton. ACKNOWLEDGMENTS We thank Dr. J. J. Zhu for helpful dsussons. The work of X.P. was supported by the Natonal Natural Sene Foun-

8 438-7 Zhu et al. J. Chem. Phys. 4, 438 4) daton of Chna Grant No. 75) and the K. C. Wong Magna Foundaton of Nngbo Unversty. The work of V.S. was supported n part by the Researh Foundaton of CUNY. The ontrbutons of H.Z. were made whle vstng Nngbo Unversty. APPENDIX: RELATIONSHIP OF WAVE FUNCTION TO ACCELERATED FRAME OF REFERENCE By onsderng the system of harmonally onfned eletrons n the presene of a magnetostat feld and a TD eletr feld to be n an aelerated referene frame, Vgnale 8 arrved at the result that the densty ρr, t) was translated by a TD value that satsfed the orrespondng lassal equaton of moton. In ths appendx we prove that the GKT wave funton derved n our work satsfes the TD Shrödnger equaton n the aelerated frame of referene. Ths proves the valdty of the onneton between the GKT wave funton and the aelerated referene frame. For smplty we assume the external magnetostat feld to be along the z axs,.e., B =,, B), and onsder only the n-plane moton. The orgnal frame of referene see Se. III), the Hamltonan s ˆ H t) = m ˆp + e Ar ) ) + ur r j ) + ˆV r,t),,j) A) ur r j ) s the nteraton potental between the partles, and V h r ) + eet) A) ˆV r,t) = wth the harmon potental V h r) = r K r, K = m beng the sprng onstant matrx, r = x y ) the n-plane poston vetor, and r = x,y) ts transpose. The TD eletr feld s Et) and the magnet feld B desrbed by the vetor potental A = B r = B y,x,). The GKT wave funton ψt) satsfes the Shrödnger equaton ) t ψt) =. A3) In the absene of the external eletr feld, the Hamltonan redues to E= = [ ˆp + e ) m Ar ) + m ω x x + ω y y ) ] +,j) ur r j ). A4) Its egenstates n r, r r N ) an be obtaned by solvng E= E n ) n r, r r N ) = A5) wth E n the orrespondng egenvalues. The Hamltonan an be deomposed nto ts enter of mass and relatve moton omponents H ˆ = m + rel, wth m beng the same as of Eq. ). The expresson of rel s gven n the supplementary materal. j r j The lassal equaton of moton of the aelerated frame whose poston relatve to the orgnal referene frame s xt), s mat) = eet) K xt) e vt) B, A6) the veloty vt) = ẋt) the frst dervatve of xt) wth respet to tme, and the aeleraton at) = ẍt) s ts seond dervatve. We parameterse the tme and poston vetor n the movng frame by t and r so that r = r + xt); t = t. A7) Hene n the movng frame, the momentum operator s ˆp = r and the tme dervatve = r = ˆp, = t t + vt). r The Hamltonan n the movng frame 8 s ˆ H p, r,t ) = +,j ˆp m + e Ar ) ) ur r j ) + V r,t ), V r,t) = V r + xt),t) + mat) + e vt) B) r + gt), r A8) A9) A) A) gt) = N mvt) + e [B xt)] vt)). The wave funton ψ t ) for the Hamltonan H ˆ p, r ) satsfes the Shrödnger equaton n the movng frame: ) H ˆ t p, r,t ) ψ t ) =. A) The wave funton an be expressed n terms of a untary transformaton of the GKT wave funton: ψ t ) = ψ t) =Ût) ψt), A3) the untary operator s Ût) = [ ] [ ] û t); û t) = exp ī r dt) exp ˆp xt), A4) wth dt) = mvt) e B xt) = P xt) N, A5) and P xt) s the anonal momentum orrespondng to xt). Employng the dentty eâe ˆB = eâ+ ˆB+ [Â, ˆB], A6)

9 438-8 Zhu et al. J. Chem. Phys. 4, 438 4) whh s vald when [Â, [Â, ˆB]] = [ ˆB,[Â, ˆB]] =, we an rewrte Eq. A4) as [ ] [ ] û t) = exp ˆp xt) exp ī r dt) [ ] exp xt) dt), A7) so that [ ] [ ] û t) = exp ī dt) xt) exp dt) r [ ] exp ī ˆp xt). A8) Therefore, the nverse of the untary operator Ût)s [ ] [ ] Û t) = exp ī Ndt) xt) exp dt) NR [ ] exp ī xt) ˆP, A9) R = r j, ˆP = ˆp j. A) N j j It s easy to verfy the ommutaton relaton [ ˆP, R] =. A) Makng use of Eqs. A3), A5), and A9), we obtan [ ] ψt) =exp R xt)) Pxt) ψ r xt), r xt),, r N xt)) [ ] = exp R Pxt) ψ r, r,, r N ), A) wth R = X Y ) = N j r j = R xt). By omparson of A) wth the fnal wave funton derved n the text Eq. 5), wehave [ ] ψ r, r,, r N ) =exp xt) Pxt) [ ] [ ] exp ī E n t exp ī S [xt)] n r xt), r xt),, r N xt)). A3) Note that sne we only onsder the n-plane moton, as defned by Eq. 8) n the text, S [xt)] = S XY [xt)] = M dt[ẋ t) xt) xt) + ω xt)j ẋt)]. A4) We next show that ψ t) of Eq. A3) satsfes the Shrödnger equaton A) n the aelerated frame. Insertng Eq. A3) nto A), wehave ψ t = t + vt) r ) e ī P xt) xt) e ī E n t e ī S [xt)] e ī xt) ˆP n r,, r N ) = [P xt) vt) + Ṗ xt) xt)] + S [xt)] + e ī xt) ˆP E= e ī xt) ˆP ψ = H ˆ p, r,t) ψ. A5) Therefore, one now needs to show that H ˆ p, r ) = P xt) vt) Ṗ xt) xt) + S [xt)] + e ī xt) ˆP E= e ī xt) ˆP. A6) It s readly seen that P xt) vt) + Ṗ xt) xt) = M[ẋ t) + at) xt)], A7) whle the last term on the rhs of Eq. A6) an be alulated by usng the ommutator Eq. 55) to be e ī xt) ˆP E= e ī xt) ˆP = E= xt) M R ω ) J ˆP + M xt) xt), A8) = ω ω ). Insertng Eqs. A4), A7), and A8) nto A6), one arrves at ˆ H ˆ H E= = M vt) Mat) xt) + M [ ω ] 4 x t) + ω xt)j ẋt) xt) M R ω ) J ˆP. A9) On the other hand, from Eqs. A4) and A), one an show that H ˆ E= = ω ˆL Z ˆL Z ) + Mω 8 R R ) + mat) + e ) v B NR + gt) ˆL Z + eet) NR, A3) = X Pˆ Y Y Pˆ X. Note that ˆL Z ˆL Z = xt) J ˆP, A3) and Ne B xt) vt) = Mω xt) J vt). A3) These equatons together wth Eq. A6) then prove that Eqs. A9) and A3) are equvalent. Thus we prove the valdty of the onneton between the GKT wave funton and the dea of obtanng t va an aelerated frame of referene.

10 438-9 Zhu et al. J. Chem. Phys. 4, 438 4) P. Hohenberg and W. Kohn, Phys. Rev. 36, B ). W. Kohn and L. J. Sham, Phys. Rev. 4, A33 965). 3 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 5, ). 4 E. Engel and R. M. Drezler, Densty Funtonal Theory Sprnger-Verlag, Hedelberg, ). 5 Tme-Dependent Densty Funtonal Theory, edted by M. A. L. Marques et al. Sprnger-Verlag, Berln, 6). 6 C. A. Ullrh, Tme-Dependent Densty Funtonal Theory Oxford Unversty Press, New York, ). 7 V. Sahn, Quantal Densty Funtonal Theory Sprnger-Verlag, Hedelberg, 4). 8 V. Sahn, Quantal Densty Funtonal Theory II: Approxmaton Methods and Applatons Sprnger-Verlag, Hedelberg, ). 9 W. Kohn, Phys. Rev. 3, 4 96). L. Brey, N. F. Johnson, and B. I. Halpern, Phys. Rev. B 4, ). S. K. Yp, Phys. Rev. B 43, 77 99). P. A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 8 99). 3 F. M. Peters, Phys.Rev.B4, ). 4 J. Dobson, Phys. Rev. Lett. 73, ). 5 Y. Q. L, X.-Y. Pan, and V. Sahn, J. Chem. Phys. 39, 43 3). 6 J.-W. Chen, T. Yang, and X.-Y. Pan, Chn. Phys. Lett. 3, 33 3). 7 E. K. U. Gross, J. F. Dobson, and M. Peterslka, Top. Curr. Chem. 8, 8 996). 8 G. Vgnale, Phys. Rev. Lett. 74, ). 9 G. F. Gulan and G. Vgnale, Quantum Theory of the Eletron Lqud Cambrdge Unversty Press, Cambrdge, 5). Y. A. Frsov and V. L. Gurevth, Zh. Eksp. Teor. Fz. 4, 5 96) [Sov. Phys. JETP 4, )]. See supplementary materal at for the n-plane relatve oordnate Hamltonan, and for the alulaton of Xt)and Yt). M. Taut, J. Phys. A 7, ); 7, ). 3 M. Taut and H. Eshrg, Z. Phys. Chem. 4, 63 ). 4 T. Yang, X.-Y. Pan, and V. Sahn, Phys.Rev.A83, 458 ). 5 Handbook of Mathematal Funtons, edted by M. Abramowtz and I. A. Stegun Dover, New York, 97).

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Partle n a Magnet Feld Mhael Fowler 1/16/08 Introduton Classall, the fore on a harged partle n eletr and magnet felds s gven b the Lorentz fore law: v B F = q E+ Ths velot-dependent fore s qute

More information

Introduction to Molecular Spectroscopy

Introduction to Molecular Spectroscopy Chem 5.6, Fall 004 Leture #36 Page Introduton to Moleular Spetrosopy QM s essental for understandng moleular spetra and spetrosopy. In ths leture we delneate some features of NMR as an ntrodutory example

More information

Physics 504, Lecture 19 April 7, L, H, canonical momenta, and T µν for E&M. 1.1 The Stress (Energy-Momentum) Tensor

Physics 504, Lecture 19 April 7, L, H, canonical momenta, and T µν for E&M. 1.1 The Stress (Energy-Momentum) Tensor Last Latexed: Aprl 5, 2011 at 13:32 1 Physs 504, Leture 19 Aprl 7, 2011 Copyrght 2009 by Joel A. Shapro 1 L, H, anonal momenta, and T µν for E&M We have seen feld theory needs the Lagrangan densty LA µ,

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

Complement of an Extended Fuzzy Set

Complement of an Extended Fuzzy Set Internatonal Journal of Computer pplatons (0975 8887) Complement of an Extended Fuzzy Set Trdv Jyot Neog Researh Sholar epartment of Mathemats CMJ Unversty, Shllong, Meghalaya usmanta Kumar Sut ssstant

More information

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry:

Voltammetry. Bulk electrolysis: relatively large electrodes (on the order of cm 2 ) Voltammetry: Voltammetry varety of eletroanalytal methods rely on the applaton of a potental funton to an eletrode wth the measurement of the resultng urrent n the ell. In ontrast wth bul eletrolyss methods, the objetve

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

425. Calculation of stresses in the coating of a vibrating beam

425. Calculation of stresses in the coating of a vibrating beam 45. CALCULAION OF SRESSES IN HE COAING OF A VIBRAING BEAM. 45. Calulaton of stresses n the oatng of a vbratng beam M. Ragulsks,a, V. Kravčenken,b, K. Plkauskas,, R. Maskelunas,a, L. Zubavčus,b, P. Paškevčus,d

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 4, 000 Ths paper formalzes a onept presented n my book, "Eletrogravtaton As A Unfed

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 3 C 634 Intermedate M Waves Fall 216 Prof. Davd R. akson Dept. of C Notes 3 1 Types of Current ρ v Note: The free-harge densty ρ v refers to those harge arrers (ether postve or negatve) that are free to

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

Development of the Schrodinger equation for attosecond laser pulse interaction with Planck gas

Development of the Schrodinger equation for attosecond laser pulse interaction with Planck gas Develoment of the Shrodnger equaton for attoseond laser ulse nteraton wth Plank gas M. Kozlowsk 1 * J. Marak Kozlowska 1 Josef Plsudsk Warsaw Unversty, Insttute of Eletron Tehnology Abstrat The reaton

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

4.5. QUANTIZED RADIATION FIELD

4.5. QUANTIZED RADIATION FIELD 4-1 4.5. QUANTIZED RADIATION FIELD Baground Our treatent of the vetor potental has drawn on the onohroat plane-wave soluton to the wave-euaton for A. The uantu treatent of lght as a partle desrbes the

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov

JSM Survey Research Methods Section. Is it MAR or NMAR? Michail Sverchkov JSM 2013 - Survey Researh Methods Seton Is t MAR or NMAR? Mhal Sverhkov Bureau of Labor Statsts 2 Massahusetts Avenue, NE, Sute 1950, Washngton, DC. 20212, Sverhkov.Mhael@bls.gov Abstrat Most methods that

More information

Could be explained the origin of dark matter and dark energy through the. introduction of a virtual proper time? Abstract

Could be explained the origin of dark matter and dark energy through the. introduction of a virtual proper time? Abstract Could be explaned the orgn o dark matter and dark energy through the ntroduton o a vrtual proper tme? Nkola V Volkov Department o Mathemats, StPetersburg State Eletrotehnal Unversty ProPopov str, StPetersburg,

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test)

A Theorem of Mass Being Derived From Electrical Standing Waves (As Applied to Jean Louis Naudin's Test) A Theorem of Mass Beng Derved From Eletral Standng Waves (As Appled to Jean Lous Naudn's Test) - by - Jerry E Bayles Aprl 5, 000 Ths Analyss Proposes The Neessary Changes Requred For A Workng Test Ths

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Analytical calculation of adiabatic processes in real gases

Analytical calculation of adiabatic processes in real gases Journal of Physs: Conferene Seres PAPER OPEN ACCESS Analytal alulaton of adabat roesses n real gases o te ths artle: I B Amarskaja et al 016 J. Phys.: Conf. Ser. 754 11003 Related ontent - Shortuts to

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION

FAULT DETECTION AND IDENTIFICATION BASED ON FULLY-DECOUPLED PARITY EQUATION Control 4, Unversty of Bath, UK, September 4 FAUL DEECION AND IDENIFICAION BASED ON FULLY-DECOUPLED PARIY EQUAION C. W. Chan, Hua Song, and Hong-Yue Zhang he Unversty of Hong Kong, Hong Kong, Chna, Emal:

More information

Rigid body simulation

Rigid body simulation Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

Solving the Temperature Problem under Relativistic Conditions within the Frame of the First Principle of Thermodynamics

Solving the Temperature Problem under Relativistic Conditions within the Frame of the First Principle of Thermodynamics Physs & Astronomy Internatonal Journal Solvng the Temperature Problem under Relatvst Condtons wthn the Frame of the Frst Prnple of Thermodynams Abstrat The frst prnples of thermodynams under relatvst ondtons

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

High-Order Hamilton s Principle and the Hamilton s Principle of High-Order Lagrangian Function

High-Order Hamilton s Principle and the Hamilton s Principle of High-Order Lagrangian Function Commun. Theor. Phys. Bejng, Chna 49 008 pp. 97 30 c Chnese Physcal Socety Vol. 49, No., February 15, 008 Hgh-Orer Hamlton s Prncple an the Hamlton s Prncple of Hgh-Orer Lagrangan Functon ZHAO Hong-Xa an

More information

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article: Homework Math 80: Introduton to GR Temple-Wnter 208 (3) Summarze the artle: https://www.udas.edu/news/dongwthout-dark-energy/ (4) Assume only the transformaton laws for etors. Let X P = a = a α y = Y α

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chapter 7. Ab initio Theory

Chapter 7. Ab initio Theory Chapter 7. Ab nto Theory Ab nto: from the frst prnples. I. Roothaan-Hall approah Assumng Born-Oppenhemer approxmaton, the eletron Hamltonan: Hˆ Tˆ e + V en + V ee Z r a a a + > r Wavefunton Slater determnant:

More information

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j

ˆ A = A 0 e i (k r ωt) + c.c. ( ωt) e ikr. + c.c. k,j p. Supp. 9- Suppleent to Rate of Absorpton and Stulated Esson Here are a ouple of ore detaled dervatons: Let s look a lttle ore arefully at the rate of absorpton w k ndued by an sotrop, broadband lght

More information

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem Journal of Engneerng and Appled Senes Volue: Edton: Year: 4 Pages: 7 4 Ultraspheral Integraton Method for Solvng Bea Bendng Boundary Value Proble M El-Kady Matheats Departent Faulty of Sene Helwan UnverstyEgypt

More information

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels Frequeny-Seletve and Tme-Varyng Channels Ampltude flutuatons are not the only effet. Wreless hannel an be frequeny seletve (.e. not flat) and tmevaryng. Frequeny flat/frequeny-seletve hannels Frequeny

More information

Phase Transition in Collective Motion

Phase Transition in Collective Motion Phase Transton n Colletve Moton Hefe Hu May 4, 2008 Abstrat There has been a hgh nterest n studyng the olletve behavor of organsms n reent years. When the densty of lvng systems s nreased, a phase transton

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 0 Canoncal Transformatons (Chapter 9) What We Dd Last Tme Hamlton s Prncple n the Hamltonan formalsm Dervaton was smple δi δ p H(, p, t) = 0 Adonal end-pont constrants δ t ( )

More information

Chap 5. Dynamics in Condensed Phases

Chap 5. Dynamics in Condensed Phases PG/KA/Chap 5-1 Chap 5. Dynamcs n Condensed Phases Generalzed Langevn Equaton Phenomenologcal ntroducton m v = m Γ(t τ)v(τ)dτ + R(t) Γ(t) : frcton kernel frcton depends on the past ( = memory effect : delayed

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

A computer-aided optimization method of bending beams

A computer-aided optimization method of bending beams WSES Internatonal Conferene on ENGINEERING MECHNICS, STRUCTURES, ENGINEERING GEOLOGY (EMESEG '8), Heraklon, Crete Island, Greee, July 22-24, 28 omputer-aded optmzaton method of bendng beams CRMEN E. SINGER-ORCI

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

3D Numerical Analysis for Impedance Calculation and High Performance Consideration of Linear Induction Motor for Rail-guided Transportation

3D Numerical Analysis for Impedance Calculation and High Performance Consideration of Linear Induction Motor for Rail-guided Transportation ADVANCED ELECTROMAGNETICS SYMPOSIUM, AES 13, 19 MARCH 13, SHARJAH UNITED ARAB EMIRATES 3D Numeral Analss for Impedane Calulaton and Hgh Performane Consderaton of Lnear Induton Motor for Ral-guded Transportaton

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

The Similar Structure Method for Solving Boundary Value Problems of a Three Region Composite Bessel Equation

The Similar Structure Method for Solving Boundary Value Problems of a Three Region Composite Bessel Equation The Smlar Struture Method for Solvng Boundary Value Problems of a Three Regon Composte Bessel Equaton Mngmng Kong,Xaou Dong Center for Rado Admnstraton & Tehnology Development, Xhua Unversty, Chengdu 69,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state The alulaton of ternary vapor-lqud syste equlbru by usng P-R equaton of state Y Lu, Janzhong Yn *, Rune Lu, Wenhua Sh and We We Shool of Cheal Engneerng, Dalan Unversty of Tehnology, Dalan 11601, P.R.Chna

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity

Uniqueness of Weak Solutions to the 3D Ginzburg- Landau Model for Superconductivity Int. Journal of Math. Analyss, Vol. 6, 212, no. 22, 195-114 Unqueness of Weak Solutons to the 3D Gnzburg- Landau Model for Superconductvty Jshan Fan Department of Appled Mathematcs Nanjng Forestry Unversty

More information

Supplemental document

Supplemental document Electronc Supplementary Materal (ESI) for Physcal Chemstry Chemcal Physcs. Ths journal s the Owner Socetes 01 Supplemental document Behnam Nkoobakht School of Chemstry, The Unversty of Sydney, Sydney,

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

ON DUALITY FOR NONSMOOTH LIPSCHITZ OPTIMIZATION PROBLEMS

ON DUALITY FOR NONSMOOTH LIPSCHITZ OPTIMIZATION PROBLEMS Yugoslav Journal of Oeratons Researh Vol 9 (2009), Nuber, 4-47 DOI: 0.2298/YUJOR09004P ON DUALITY FOR NONSMOOTH LIPSCHITZ OPTIMIZATION PROBLEMS Vasle PREDA Unversty of Buharest, Buharest reda@f.unbu.ro

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

Theory of Ferromagnetism in Double Perosvkites. Luis Brey CSIC-Madrid F. Guinea CSIC-Madrid S.Das Sarma Univ.Maryland

Theory of Ferromagnetism in Double Perosvkites. Luis Brey CSIC-Madrid F. Guinea CSIC-Madrid S.Das Sarma Univ.Maryland Theory of Ferromagnetsm n Double Perosvktes. Lus Brey CSIC-Madrd F. Gunea CSIC-Madrd S.Das Sarma Unv.Maryland 1 OUTLINE Introduton to Fe based double perovsktes. Chemstry Band struture Ferromagnetsm ndued

More information

) is the unite step-function, which signifies that the second term of the right-hand side of the

) is the unite step-function, which signifies that the second term of the right-hand side of the Casmr nteracton of excted meda n electromagnetc felds Yury Sherkunov Introducton The long-range electrc dpole nteracton between an excted atom and a ground-state atom s consdered n ref. [1,] wth the help

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

The classical spin-rotation coupling

The classical spin-rotation coupling LOUAI H. ELZEIN 2018 All Rghts Reserved The classcal spn-rotaton couplng Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 louaelzen@gmal.com Abstract Ths paper s prepared to show that a rgd

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold

Perfect Fluid Cosmological Model in the Frame Work Lyra s Manifold Prespacetme Journal December 06 Volume 7 Issue 6 pp. 095-099 Pund, A. M. & Avachar, G.., Perfect Flud Cosmologcal Model n the Frame Work Lyra s Manfold Perfect Flud Cosmologcal Model n the Frame Work Lyra

More information

technische universiteit eindhoven Analysis of one product /one location inventory control models prof.dr. A.G. de Kok 1

technische universiteit eindhoven Analysis of one product /one location inventory control models prof.dr. A.G. de Kok 1 TU/e tehnshe unverstet endhoven Analyss of one produt /one loaton nventory ontrol models prof.dr. A.G. de Kok Aknowledgements: I would lke to thank Leonard Fortun for translatng ths ourse materal nto Englsh

More information

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning

Erratum: A Generalized Path Integral Control Approach to Reinforcement Learning Journal of Machne Learnng Research 00-9 Submtted /0; Publshed 7/ Erratum: A Generalzed Path Integral Control Approach to Renforcement Learnng Evangelos ATheodorou Jonas Buchl Stefan Schaal Department of

More information

12 th National Congress on Theoretical and Applied Mechanics September 2013, Saints Constantine and Helena, Varna, Bulgaria

12 th National Congress on Theoretical and Applied Mechanics September 2013, Saints Constantine and Helena, Varna, Bulgaria th Natonal Congress on Theoretal and Appled Mehans 3-6 September 03 Sants Constantne and Helena Varna Bulgara APPLICATION OF GEARING PRIMITIVES TO SKEW AXES GEAR SET SYNTHESIS PART : MATHEMATICAL MODEL

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices

The Jacobsthal and Jacobsthal-Lucas Numbers via Square Roots of Matrices Internatonal Mathematcal Forum, Vol 11, 2016, no 11, 513-520 HIKARI Ltd, wwwm-hkarcom http://dxdoorg/1012988/mf20166442 The Jacobsthal and Jacobsthal-Lucas Numbers va Square Roots of Matrces Saadet Arslan

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods.

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods. CANONICAL RUNGE-KUTTA-NYSTRÖM METHODS OF ORDERS 5 AND 6 DANIEL I. OKUNBOR AND ROBERT D. SKEEL DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 304 W. SPRINGFIELD AVE. URBANA, ILLINOIS

More information

On Generalized Fractional Hankel Transform

On Generalized Fractional Hankel Transform Int. ournal o Math. nalss Vol. 6 no. 8 883-896 On Generaled Fratonal ankel Transorm R. D. Tawade Pro.Ram Meghe Insttute o Tehnolog & Researh Badnera Inda rajendratawade@redmal.om. S. Gudadhe Dept.o Mathemats

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Bernoulli Numbers and Polynomials

Bernoulli Numbers and Polynomials Bernoull Numbers and Polynomals T. Muthukumar tmk@tk.ac.n 17 Jun 2014 The sum of frst n natural numbers 1, 2, 3,..., n s n n(n + 1 S 1 (n := m = = n2 2 2 + n 2. Ths formula can be derved by notng that

More information

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if SK300 and SK400 Lnk funtons for bnomal GLMs Autumn 08 We motvate the dsusson by the beetle eample GLMs for bnomal and multnomal data Covers the followng materal from hapters 5 and 6: Seton 5.6., 5.6.3,

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian,

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian, HW #6, due Oct 5. Toy Drac Model, Wck s theorem, LSZ reducton formula. Consder the followng quantum mechancs Lagrangan, L ψ(σ 3 t m)ψ, () where σ 3 s a Paul matrx, and ψ s defned by ψ ψ σ 3. ψ s a twocomponent

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information