Phan Nhu Quan, PhD Dec 02, 2017

Size: px
Start display at page:

Download "Phan Nhu Quan, PhD Dec 02, 2017"

Transcription

1 Phan Nhu Quan, Ph ec 0, 07

2 Course learnng outcomes (COs) CO: Provde the background of the electronc components and ther applcaton crcuts CO: Explan and demonstrate the operaton prncple of the electronc crcuts based on the characterstc of the electronc components and the bass of the mathematcal CO3: Analyze and solve the problems related to electronc crcuts CO4: Analyze and smulate the electronc crcuts by the specalzed software

3 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

4 Chapter. Materals structure.. Materals structure... Materal structure An atom s composed of a nucleus, whch contans postvely charged protons and neutral neutrons, and negatvely charged electrons that, n the classcal sense, orbt the nucleus. The electrons are dstrbuted n varous "shells" at dfferent dstances from the nucleus Nucleus +8 Electrons Fg... Atom structure

5 Chapter. Materals structure... Atom structure +8 share one electron +8 eceve one electron Postve on Negatve on Fg... Atom structure

6 Chapter. Materals structure... Atom structure Order of orbtals (fllng) n mult-electron atom For example: Z Gemanum = 3: correspondng: s s p 6 3s 3p 6 4s 3d 0 4p Ge Fg..3. Electrons dstrbuton

7 Chapter. Materals structure..3. Materals..3. Conductor The substances that the outermost shell have only one or two electrons. For example slver, gold, copper and alumnum..3. nsulator The substances that the outermost shell have 8 electrons For example glass, porcelan, rubber and paper..3.3 Semconductor The substances that n the outermost shell have 4 electrons The semconductor resstance s greater than the conductor resstance but smaller than the nsulator resstance For example slcon, germanum, etc.

8 Chapter. Materals structure.. Semconductor materals Most electronc devces are fabrcated by usng semconductor materals along wth conductors and nsulators... Negatve semconductor S S Free- electron S S S S P S S S Fg..4. Pure semconductor Fg..5. Negatve semconductor

9 Chapter. Materals structure... Postve semconductor S Holes S n S S Fg..6. ndum atom dstrbuton Note: n normally, both the N and the P-type semconductor s neutralzaton atom. t just shows the ablty to share or receve the free-electron

10 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

11 Chapter. Semconductor ode.. Semconductor ode... Symbol and shape... Structure OE PN juncton U =0.3V or 0.7V (potental barrer) P - + N Anode or P-type Holes Cathode or N-type Electrons Holes epleton regon Electrons Fg... Semconductor dode

12 Chapter. Semconductor ode..3. Forward Bas ode allow the current through t P N Where, qu kt s e s e qu kt P U C - U C N Fg..3. Forward bas voltage s reverse saturaton current (leakage current, typcally 0 - A ) e Euler s constant (.78888) q charge of electron ( coulombs or J/V) U voltage appled across dode (V) K Boltzmann s constant ( J/K) T=tC+73 juncton temperature (Kelvn)

13 Chapter. Semconductor ode..4. everse Bas When reverse bas, ode does not allow the current through t, therefore the current flow through the depleton regon very small P N s e qu kt s P S N - + U C Fg... everse bas voltage U C

14 Chapter. Semconductor ode..5. Volt-Ampere characterstcs of ode Fg..4. V-A characterstc curve

15 Chapter. Semconductor ode.. rect current load lne (C) The crcut has only C source V C V-A of ode + V s / V S (t) V - When v s not change n tme, the capacty C opened Q 0 Q C V S V V V. V. V VS V S V Q V s Fg..5. ntersecton between V-A characterstc curve and C V

16 Chapter. Semconductor ode.3. Alternatng current load lne (AC) The crcut has only AC source V C V s /( // ) AC V-A of ode + V s / V S (t) V - Q Q C When v S capacty C shorted: v alternates n tme, the ( t) ( // ). ( t) v ( t) v // s ( t) v ( t) ( t). t // v t v s S t // 0 V Q Q ( // U V s Fg..6. ntersecton between V-A characterstc curve, C and AC V

17 Chapter. Semconductor ode.4. Parameters of ode.4.. Off resstance or C resstance r f U Ur r f f (forward resstance, few ohms to tens of ohms) (reverse resstance, several hundred k).4.. On resstance or AC resstance r d du d qu kt kt s e U q du f kt kt rd d q q f s ln S s

18 Chapter. Semconductor ode kt q 5mV 5mV rd ( ) ( ma) The more r d decreases, the more forward current ncreases. r d du d r When reverse bas, the current r kt q s about zeros.4.3. Several of parameters Maxmum peak reverse voltage U rmax Maxmum average forward rectfed current max Maxmum power P max Maxmum frequency f max

19 Chapter. Semconductor ode.5 Applcaton crcuts of ode.5.. Half-wave rectfer crcut N : N U U Waveform U T 0 t(s) U 0ut 0 t(s) Fg..7. Half-ware rectfer and ts waveform

20 Chapter. Semconductor ode.5.. Half-wave rectfer crcut wth flter capactor N : N U U C Waveform U T 0 t(s) U 0ut 0 t(s) Fg..8. Half-ware rectfer wth flter capactor and ts waveform

21 Chapter. Semconductor ode.5.3. Full-wave rectfer crcut N ; N U U U 3 T U Waveform 0 t(s) U 0ut 0 Fg..9. Full-ware rectfer t(s)

22 Chapter. Semconductor ode.5.4. Full-wave rectfer crcut wth flter capactor N ; N U U U 3 C T Waveform U 0 t(s) U 0ut 0 t(s) Fg..0. Full-ware rectfer wth flter capactor

23 Chapter. Semconductor ode.5.5. Full wave brdge rectfer crcut U N ; N U - + Waveform T U 0 t(s) U 0ut 0 t(s) Fg... Full-ware brdge rectfer

24 Chapter. Semconductor ode.5.6. Full wave brdge rectfer crcut wth flter capactor N ; N U U - + C Waveform T U 0 t(s) U 0ut 0 t(s) Fg... Full-ware brdge rectfer wth flter capactor

25 Chapter. Semconductor ode.5.7. Voltage multpler crcut U U m N : N C C 0 -U m U C t(s) U T U U m 0 -U m t(s) U C U m 0 t(s) -U m Fg..3. Voltage multpler

26 Chapter. Semconductor ode.5.8. Postve clpper crcut N : N U U E U 0ut T Waveform U U m E U U 0ut 0 t(s) U m Fg..4. Postve clpper crcut

27 Chapter. Semconductor ode.5.9. Postve and negatve clpper crcut N : N U U U0ut T E E Waveform U U m U E U 0ut 0 t(s) U m -E Fg..5. Postve & negatve clpper crcut

28 Chapter. Semconductor ode.5.0. Clampng crcut N : N C Waveform U U U 0ut E T U U m E 0 t(s) U 0ut U m +E U 0utC E 0 t(s) Fg..6. Clampng crcut

29 Chapter. Semconductor ode.6 Problems Problem : ode wth threshold voltage U = 0.V, r d s nsgnfcant. oad resstor = 9, source nternal resstor r =.. Power supply U wth sne waveform, ampltude V. Plot the waveform and determne the load voltage U (t). Calculate U (t=/) Soluton At the tme that U > U, dode on: r = U =9 U U 9 ( t) ( U U ) U r r 9 At the tme that U < U, dode off: t U t 0. U t 9 t 0 0 U

30 Chapter. Semconductor ode When U (t) small, need consder the U. ode only on at the tme that U > U U t t ( U r U ) sn t At the tme / ( 0.)9 t U t V U U 0 U t 0 t t t 3 t 4 t (s) T

31 Chapter. Semconductor ode Problem : The crcut s gven as follows. Use the Thevenn transform to solve the crcut. Plot the waveform of the current and the voltage of the oad, gve the saturaton current of ode s = 0-6 ma A K A K A K =k U =5V r =.5k U =0snt U =.4k U u r U U Th Th U U Soluton U only, u = 0V: u only, U = 0V: Both of them: U U U AK AK AK U u U Th r r r U r r u r.5 0snt 5 3 4snt.5.5 V

32 Chapter. Semconductor ode Thevenn equvalent resstance At the tme r.5 Th / / r.4 k r.5 t 0; ; ;...; 3 U Th = 3V; 6.46V; 7V;.. et U to be a forward voltage on ode, to be a current of ode, and s the oad. U Th U Th UTh 3 4snt U U Th Th ma The relatonshp between and U s the lne, ntersecton wth the vertcal axs at U th / th, ntersecton wth the horzontal axs at U Th, wth the slope s / th, called the C.

33 Chapter. Semconductor ode At the tme t=0; /3; /, we have the lnes AB, C, and EF. (ma) 6 4 E C Q Q A Q 0 B F U Th U t V Th =3+4snt

34 Chapter. Semconductor ode Except for ths relatonshp, and U characterstc of ode stll mutually dependent accordng to the The ntersecton between C and the characterstc curves of ode gve us the nstantaneous values of, U. s e qu kt (ma) 6 4 E C Q Q A Q 0 U e B F U Th U t V Th =3+4snt

35 Chapter. Semconductor ode Problem 3: ode wth reverse saturaton current S =30A. etermne the On resstor of ode r at the temperature of 5C wth forwardng bas voltage 0.V n both the forward and reverse drectons. Soluton: For ON and OFF states: wth S = 30A, S e qu KT qu KT,38.0, U U e 9U

36 Chapter. Semconductor ode n forward drecton, U 0.V e e 9 U r d du e U Smen r n reverse drecton, U 0.V e r r d du 0 0Smen

37 Chapter. Semconductor ode Problem 4: A rectfer power supply conssts of a transformer, a dode wth r = 5, and a load = 400. The waveform of the AC source at two ends of the secondary wndngs s sne wth an effectve value of U = 300V. etermne: The average current through the oad. The effectve current through the oad. The shape factor of the current. The wave factor of the current. T r max (A) U 0 t

38 Chapter. Semconductor ode Soluton: Suppose that, the transformer s deal, the load s provded by generator wth e=300 t V, and the nternal resstor r=r =5 m m m avg m sn t. dt cost 0 avg 0 m Em 300 0,38A r 3,

39 The shape factor 3,4,57 m m avg F The wave factor wave avg avg wave avg F,,57 F F wth and 4 4 sn 4 cos. sn m m m m m t t t d t t d t A m m 0, Chapter. Semconductor ode

40 Chapter. Semconductor ode Problem 5: The crcut s gven as follows. The V-A characterstc of ode s an exponental functon Plot the C. u 0,, U U 0 0 Plot the AC 00 C Calculate the On resstor of ode Calculate the voltage on oad E=0V u=0,coswt(v) U

41 Chapter. Semconductor ode Soluton C source only: E = 0V, u(t) = 0, the capactor C opened E U E 0 U U ma U 5mA (C) 0,4 0,4 0,4 The ntersecton between C and V-A curves s the stable operatng pont Q wth coordnate Q(8mA, 3V) U E AC source only: E=0V, u(t)=0.cost(v), the capactor C shorted td / / , 5k t u t 0, t u 5 u t t u t 0,5 0,5 (AC) ths curves s lmted by two lnes

42 Chapter. Semconductor ode t t u 0,5 U 0,5 U 0,5 max t u 0,5 mn t (ma) Q The On resstor of ode U(V) 3 g 4u. Smen u d du The value of the voltage on the oad Q u 0 3V r 83, 33 g u r t u t 0,cos t 0,045 cosv ,33

43 Chapter. Semconductor ode Problem 6: Usng a resstor k, a power supply V and a deal ode. esgn the crcut wth V-A curves as bellow fgures (ma) (ma) u (V) 0 Fg u (V) - Fg (ma) (ma) u (V) 0 u (V) - Fg 3 Fg 4

44 Chapter. Semconductor ode Soluton Fgure Segment : U<, wth =0 Segment : U>, wth U=+ Fgure Segment : U=-, wth U<- Segment : =0, wth U>- + U _ k V + U _ k V Fgure 3 Segment : U=+, wth <- Segment : U=0, wth >- + + Fgure 4 Segment : U=0, wth < Segment : U=-, wth > U _ k V U _ k V

45 Chapter. Semconductor ode.7. Zener ode Zener ode s a partcular type of ode, wth P-N juncton, suffer very hgh temperature, Therefore, when havng the reverse voltage t wll not break down. Base on ths advantage, ode Zener usually used as a voltage stablzer. Note : Zener ode operatng when reverse bas. Fg..7. V-A characterstc curve of Zener ode

46 Chapter. Semconductor ode.7.. Parameters of Zener ode Stablty voltage U z On resstor r d = duz/d, the smaller r d the hgher stable Off resstor t = Uz/z Stablty factor S d du z / z d z U z t when r d smaller than t then stablty hgher z / U z du Temperature coeffcent of stablty voltage z z r d T U z du dt z const ependng on the avalanche breakdown or tunnel breakdown T negatve. n general, T = (4)0-3 /C n fact, Zener dode wth U z < 4V: T <0 U z > 6V: T > 0 4 < U z < 6: T maybe negatve or postve z postve or

47 Chapter. Semconductor ode To mnmum the temperature coeffcent we connect a normal ode seral to Zener Table: Several of Zener dode Name Materal Maxmum dsspaton power (W) z U fw +Uz Stablty voltage U z (V) everse current(ma) N 70 S N 703 S N 706 S N 707A S N 708 S N 7A S N 74 S N 758 S N 55 S On resstor r d

48 Chapter. Semconductor ode.8 Problems of Zener ode Problem : The crcut s gven as follows. = 300, = 00. etermnes the voltage change range U to keep stable the voltage of load at0v =300 K Soluton U +U z A =.k U Choose the type of Zener dode N758 wth U z = 0V, P max = 0.4W Choose mn = 0mA, max = 30mA U U 0 8. ma 00 U U V 3 mn mn z z mn z 5 U V U max max U z z max z 5 Thus U = 5.5V.5V

49 Chapter. Semconductor ode Problem : The crcut s gven as follows, U = V + U, = 300, = 00. Zener ode zener N708 wth U z = 5.6V, and r d = 3.6 Calculate the stablty coeffcent and the voltage change on the load etermnes the range of change of operaton pont when U = 0% Soluton: Usng Thevenn method between A and K 00 U AK U Th U 9. 6V U+U K A z U Th // U Th Th K z A

50 Chapter. Semconductor ode Th K U AK =U U Th z Call to be a current through zener dode A U Th U Th Th U V Th Th 0.4 U U 40 ma The -U curve subject to ths equaton s the load lne MN ntersects the vertcal axs at 40mA, and ntersects the horzontal axs at 9.6V On the other hands, and U z (or U ) have the relatonshp accordng to the characterstc of zener dode The ntersecton of two curves s the operaton pont Q when U = V

51 Chapter. Semconductor ode K Th K U+U z U U Th z A A When U = U + U = 0% = 0.8V 3.V the load lne change from AB to C, the operaton pont change from Q to Q Stablty coeffcent S: S U U r r d d // // r r d d U U S 0% %

52 Chapter. Semconductor ode Problem 3: The crcut s shown as follows. U =30V, varable. U z = 5V, max = 65mA, = 00. Calculate the range of change of to keep stable the voltage on load at 5V K U z Soluton: The nput voltage small, so when small then U small, can not breakdown dode U U U U U When ncrease then U (or U z ) ncrease untl s broke down zener mn U Z 5 00 U U Z A U U Z mA 00 We consder = 0 when zener breakdown

53 Chapter. Semconductor ode K U z A Contnues to ncrease then ncrease ( = const) decrease, but the current through dode mn Z max mA U 5 max. 5k 0 mn Therefore = (00.5k)

54 Chapter. Semconductor ode Problem 4: The crcut s shown as bellow. etermne the change of voltage of zener V Z V 0 V max 0 mn 470 V= 9-49(V) Z V Z = 9V P Z = W Z = 30 V 0 Soluton 49V 9V Z max 0. 08A V 9V Z mn 0. 0A V V VZ. Z max Z V 0 max VZ. Z mn Z V 0 mn VZ VZ max VZ mn V

55 Chapter. Semconductor ode Advantages of zener dode Power dsspaton capacty s very hgh Hgh accuracy Small sze ow cost.8 Applcaton crcuts of Zener ode t s normally used as voltage reference Zener dodes are used n voltage stablzers or shunt regulators. Zener dodes are used n swtchng operatons Zener dodes are used n clppng and clampng crcuts. Zener dodes are used n varous protecton crcuts

56 Chapter. Semconductor ode.8.. Seres voltage regulator Q V Opamp 6 - V 0 4 Z 3 Operaton prncple Suppose that V ncreases, the output voltage ncreases (V 0 = V S ), the amount of feedback voltage on voltage dvder, 3 large. Opamp wll compare the voltage of Zener to the feedback voltage, the output of Opamp negatve saturaton, transstor Q off, then the output voltage decreased. On contrary, f the V decreases, the output voltage decreases (V 0 = V S ), the amount of feedback voltage on voltage dvder, 3 small. Opamp wll compare the voltage of Zener to the feedback voltage, the output of Opamp postve saturaton, transstor Q on, then the output voltage ncreased Therefore the output voltage s kept stable

57 Chapter. Semconductor ode.8.. Parallel voltage regulator S V Z Opamp 6 Q V 0 3 Operaton prncple: Suppose that V ncreases, the output voltage ncreases (V 0 = V S ), the amount of feedback voltage on voltage dvder, 3 large. Opamp wll compare the voltage of Zener to the feedback voltage, the output of Opamp postve saturaton, transstor Q on, then the output voltage decreased. On contrary, f the V decreases, the output voltage decreases (V 0 = V S ), the amount of feedback voltage on voltage dvder, 3 small. Opamp wll compare the voltage of Zener to the feedback voltage, the output of Opamp negatve saturaton, transstor Q off, then the output voltage ncreased Therefore the output voltage s kept stable

58 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

59 Chapter 3. Bpolar juncton transstor 3.. Structure of Transstor 3... Structure 3... Symbol 3... structure Q NPN Q PNP N P N P N P E N B P N C E P B N P C E B C E B C Fg.3.. Symbol, shape and structure of transstor

60 Chapter 3. Bpolar juncton transstor 3... Operaton prncple E N P N C N P N E C B E B C _ + _ + _ B + _ + Fg.3.. Operaton prncple of transstor

61 3..3. Transstor parameters, for example C85

62 Chapter 3. Bpolar juncton transstor 3.. Bas transstor crcuts For transstors, basng means to set the proper voltage and current of the transstor base, thus settng the operatng pont, also known as quescent pont (Q) Fxed bas Ths s the most rarely used basng method wth transstor amplfers, but t s wdely used when the transstor operates as a swtch. The base current B s controlled by the base resstor B. V CC =0V K: V V V V, h CC BE B B BE B C B fe B =80K C =00 B VCC VBE A B B C β=300 6 Vout V Cc BC V C Fg.3.3. Fxed bas

63 Chapter 3. Bpolar juncton transstor Now suppose that the temperature rses, ths wll ncrease the current gan. An ncrement by 5% s a realstc and rather small value. β= %=345 C =β B =345.5=38.7mA V out = C C =7.7V (hgher than before) B =80K B V CC =0V C =00 C That s why ths basng method s not used for transstor amplfers. On the other hand, due to the fact that ths method s very smple and costeffectve, t s wdely used when the transstor operates as a load swtch, for example as a relay or E drver. That s because the Q pont operates from cut-off to hard saturaton, and even large current gan changes have lttle or no effect at the output.

64 Chapter 3. Bpolar juncton transstor 3.. Emtter feedback bas Ths s the frst method that used to fx the problem of the unstable current gan f C s ncreased due to a temperature ncrement, E s also ncreased. The voltage drop across E (V E ) s ncreased whch eventually ncreases the base voltage (V B ). Ths base voltage ncrement has as a result the decrement of the voltage across the base resstor B, whch eventually decreases B. B =80K B V CC =0VC C =00 C Β=300 C VCC VBE mA / / 300 E B Suppose that the current gan s ncreased by 5%: E =00 E Fg.3.4. Emtter feedback bas

65 Chapter 3. Bpolar juncton transstor B =80K B E =00 V CC =0VC C =00 C Β=300 E Suppose that the current gan s ncreased by 5%: So, a 5% current gan ncrement caused a 5.% output current ncrement. By addng a 00 Ohms feedback resstor at the emtter, a 5% current gan ncrement caused a 0.6% output current ncrement. The ncrement s 4.5% less whch means that ths method works somehow, but stll the shftng of the Q-pont s too large to be acceptable.

66 Chapter 3. Bpolar juncton transstor 3..3 Collecter feedback bas (negatve feedback) Ths method used to stablze the Q pont. f the current gan s ncreased due to temperature ncrement, the current through the collector s ncreased as well, and ths decreases the voltage on the collector V C. But the base resstor s connected at ths pont, so less current wll go through the resstor n the base. ess current through the base means less current through the collector. C =00 B =80K B E C V CC =0V C VCC VBE / / 300 C B 5.3mA Β=300 Fg.3.5. Collector feedback bas

67 Chapter 3. Bpolar juncton transstor C =00 B =80K E C B V CC =0V Β=300 Fg.3.6. collector feedback bas When the current gan s ncreased by 5%: C = 8 ma The effectveness of ths method compared to the emtter resstor feedback bas shown before s exactly the same. The dfference s that, C s usually much larger than E, whch results n hgher stablty. Nevertheless, quescent pont Q cannot be consdered stable.

68 Chapter 3. Bpolar juncton transstor 3..3 Collecter feedback bas (cont.) The stablzaton s much better than before C VCC VBE mA / / 300 C E B Wth a 5% current gan ncrement: C =.3 ma B =80K B E =00 So, a 5% current gan ncrement causes a 7% output V CC =0VC current ncrement. Although t s better than the prevous C =00 crcuts, stll the Q pont s not stable enough. Add to ths C that h fe s extremely senstve to temperature changes and β=h fe =300 the transstor generates a lot of heat when t operates as a E power amplfer. So we need a much better stablzaton technque. Fg.3.7. Emtter & collector feedback bas

69 Chapter 3. Bpolar juncton transstor 3..4 Voltage dvder bas The most effcent and commonly used basng method for transstor amplfers, t s the voltage dvder bas (VB) C B C C B B B E C B E E BB EBB E V CC Fg.3.8. VB crcut M Fg.3.9. Thevenn equvalent crcut

70 Chapter 3. Bpolar juncton transstor 3..4 Voltage dvder bas The voltage dvder mantans a very stable voltage at the base, and snce the B s many tmes smaller than the current through the dvder, the base voltage remans practcally unchanged. The resstor E provdes the negatve feedback. ue to the base voltage remans unchanged, the negatve feedback works very effectvely and any unwanted ncrement of the current gan produces analmost-equal negatve feedback. The collector and emtter currents change just a few, and the Q pont remans practcally stable

71 Chapter 3. Bpolar juncton transstor C B B C B C C B BB E B E E EBB M E V CC Two transstors wth dfferent current gans can VB VCC V V C CC C C V V V E B BE V V CE CC C C E operate as amplfers wth exactly the same amplfcaton, only because they are based wth a voltage dvder. Moreover, snce V BE s many tmes smaller than V B and V B remans unchanged all the tme, the emtter voltage VE remans also unchanged, hence mantanng a stable emtter current.

72 Chapter 3. Bpolar juncton transstor 3.3. Problems of bas transstor C Problem C 3k C (ma) C V BB 3V B B 0k E V CC V 3 0 Q B =40A B =30A B =0A B =0A Soluton B V BB V B BE V 0.6V 0A 0K C E. B 00 0A ma V CE (V) ma 3K V VCE VCC C. C V 6 P VCE. C 6V ma mw

73 Chapter 3. Bpolar juncton transstor Problem C C (ma) C V BB 3V B B 70k C E 0.5k.5k E V CC V 3 0 Q B =40A B =30A B =0A B =0A Soluton V BB B U CE (V) VBB VBE 3V 0.7V. B VBE E. E B. 70K K C E. B 00 0A ma VE E. E ma 0.5K V VB VE VBE V 0.6V. 6V B E ma.5k V VC VCC C. C V 7 V V V ma.5k 0.5K V CE CC C C E 6 0A

74 Chapter 3. Bpolar juncton transstor Problem 3 B 50k C.5k B C V CC V E 0.5k E Soluton V CC B VCC VBE V 0.6V. B VBE E. E B. 50K K C E. B 00 0A ma V. ma 0.5K V E E E VB VE VBE V 0.6V. 6V B E ma.5k V VC VCC C. C V 7 0A

75 Chapter 3. Bpolar juncton transstor Problem 4 C 56k 0k B B C.5k B 0.5k E C E Vcc V V BB.8V B B C 8.5k E 0.5k.5k E V CC V Soluton B 0K VBB VCC. V. 8V 56K 0K B B B B // B 8. 5K V BB B VBB VBE.8V 0.7V. B VBE E. E B. 8.5K K B E 0A

76 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

77 U near two-port Network U du U U d U du Í du U d d Í ; Í U h h r ; U h h U ; f Í h h 0 h h U u h h u h h u 4.. Parameter H Chapter 4. Parameter H and transstor equvalent crcut Fg.4.. Two-port network ), ( ), ( U f U f U Í Í

78 Chapter 4. Parameter H and transstor equvalent crcut u h h h h u u. h h. U / h U h U.. Fg.4.. Hybrd equvalent

79 Chapter 4. Parameter H and transstor equvalent crcut 4.. Transstor bass crcuts 4... Common emtter crcut Vcc B C C s C B C s Vs B V E E C E V Equvalent crcut u h h u u h h u u h u h h h u h h u h r EB b e rb CB EB B E EB B E f o C fb e ob CB C fb E C. E

80 Chapter 4. Parameter H and transstor equvalent crcut 4... Common emtter crcut Equvalent crcut S M B B C C h fe B S B B V h E C V V S N Fg.4.3. Common emtter & equvalent crcut E Total nput mpedance Z // h B // B E h E h fe 5( mv) ( ma) E Total output mpedance Z 0 C // h 0E C

81 Chapter 4. Parameter H and transstor equvalent crcut Voltage amplfcaton coeffcent V V A ve BE B h E S fe B B ( C // V h // h V V h fe ( Full voltage amplfcaton coeffcent h C E // ) // B E ) V S S Z Z V V A V full S S Z Z h V S fe V B S ( C // ) V ( / / ) fe( C / / ) C h Z hfe V h Z h S E S S E Z Z B h E S Z Z

82 Chapter 4. Parameter H and transstor equvalent crcut 4... Common base crcut S C C S c B V V S E C B Vcc B V Equvalent crcut u h h u u h h u u h h h u h h u h r BC C B rc EC BC e B f o E fc B oc EC E fc B

83 Chapter 4. Parameter H and transstor equvalent crcut 4... Common base crcut Equvalent crcut S E E C V S S h B h fb E C E V B C Z / / h h E B B Z0 C // h0 B C Fg.4.4. Common base & equvalent crcut h B he h fe h h E fe

84 Chapter 4. Parameter H and transstor equvalent crcut 4... Common base crcut V h ( / / ), h fb E C fb V V h ( / / h ) A A EB E B S E B vb full V hfb( C / / ) ( C / / ) V h h B B Z Z Z V V V V h S S S S E B Z S Z Z V ( / / ) Z h fb V ( Z ) h C S S B C E C / / C / / A h h B fb fb S C E S

85 Chapter 4. Parameter H and transstor equvalent crcut Common collector crcut B C Q C 0 r s V CC v s E Equvalent crcut u h h u u h h u u h h h u h h u h r BC C B rc EC BC C B f o E fc B oc EC E fc B

86 Chapter 4. Parameter H and transstor equvalent crcut Common collector crcut B B C B B h C E r s hc h fc B r s h fc B v s B E E B E v s C Fg.4.5. Common collector & equvalent crcut Z B // r VBC VBE VEC r C hc hfc E // B B 5mV hc he mh. fe eq Z // r C B C B C

87 Chapter 4. Parameter H and transstor equvalent crcut 0 //r 0 Z E ) // ( 0 fc B S C B fc BC EB E EC h h h V V V r ) // ( ) ( ) // ( E B fc E E h V B E fc C B BC h h r V V ) // ( )( ) // )( ( ) // )( ( E fc C E fc v h h h V V A full S V A V C E C E S B B E E S h h A // // E fc C h A ) // ( ( ) Common collector crcut

88 Chapter 4. Parameter H and transstor equvalent crcut Problems Vcc=VC etermne the resstors, of the followng crcut to C reach the Max-swng. Calculate the output current? h fe =80, V BE =0.7V Vn C snt k k 3 k Q C3 C 6 k Soluton: 4 0.5k 5 0.k C resstor: AC resstor: C 3 4.5k / / / / 0.75 k AC V CC CQ max swng 3.7 C AC 0 4 BB hfe 4k ma

89 Chapter 4. Parameter H and transstor equvalent crcut VBB BBB VBE C4.735V VCC BB 7.5 k V BB BB 5.k VBB VCC 3 max CQ max swng.47 ma 3 6 t t ma max sn

90 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

91 Chapter 5. Unjuncton transstor (UJT) 5.. Classfcaton JFET type N type P Self-conductor UJT MOSFET EMOSFET MOSFET type N type P type N type P Self-break Fg.5.. UJT Classfcaton

92 Chapter 5. Unjuncton transstor (UJT) fference between JFET and MOSFET JFET Juncton Feld Effect Transstor t only operates n depleton mode t has less nput mpedance than a MOSFET (about 0 9 ohm) Manufacturng process s smple and less sophstcated whch makes them cheaper t s less susceptble to damage because of the hgh nput capactance t s manly used n low nose applcatons MOSFET Metal Oxde Semconductor Feld Effect Transstor t operates n both depleton mode and enhancement mode t offers hgher nput mpedance than JFET (about 0 4 ohm) Manufacturng process s complex plus the addtonal metal oxde layer adds to the hgh cost The metal oxde nsulator reduces the nput capactance makng t more susceptble to damage t s mostly used n hgh nose applcatons

93 Chapter 5. Unjuncton transstor (UJT) 5.. Symbol G G G G G G S S S S S S type N type P type N type P type N type P JFET epleton mode MOSFET Enhancement mode MOSFET Fg.5.. Symbol

94 Chapter 5. Unjuncton transstor (UJT) 5.3. Structure G P N P G N P N S JFET type N S JFET type P Fg.5.3. Structure

95 Chapter 5. Unjuncton transstor (UJT) V characterstc curve V V GS SS A V GS = 0 Saturaton regon near regon Breakdown regon B 0 V p V S Fg V characterstc curve

96 Chapter 5. Unjuncton transstor (UJT) SS V GS = 0 3 V GS = - V GS = - V GS = -3 0 V S V p V p V GS Fg V characterstc curve

97 Chapter 5. Unjuncton transstor (UJT) 5.5. FET transstor basng C bas of a FET devce needs settng of gate-source voltage V GS to gve desred dran current Fxed bas Z n G 0 V V V V 0 V GS G S GG GG Vout VS V G -V GG V V S V p SS V GS V V GS p Fg.5.5. Fxed basng crcut for N-channel JFET

98 Chapter 5. Unjuncton transstor (UJT) Fxed bas wth resstor feedback V S S S S G S V V V V V 0 V GS G S GG GG S V p SS -V GG Fg.5.6. Fxed basng crcut for JFET wth resstor feedback

99 Chapter 5. Unjuncton transstor (UJT) Self-bas Ths s the most common method for basng a JFET 0 V 0 G G G G V V S S S S V GS V V 0 V G S S S JFET N V V S S G S S V p SS Fg.5.7. Fxed basng crcut for JFET wth resstor feedback

100 Chapter 5. Unjuncton transstor (UJT) Potental-vder Basng The crcut s so desgned that S s greater than V G so that V GS s negatve. Ths provdes correct bas voltage. VG V V VGS VG VS VG S 0 V V V S S S V V V GS S S S Fg.5.8. Potental-dvder basng crcut for N-channel JFET

101 Chapter 5. Unjuncton transstor (UJT) 5.6. ow-frequency small-sgnal equvalent crcut model SS V V GS P g V GS SS V V V P GS P V GS V GS V S V S gv GS V r S G G = 0 G G = 0 r G r gv GS gv GS S S

102 Chapter 5. Unjuncton transstor (UJT) 5.7. Common Source JFET Amplfer V s C C 0 r s v s S C S s G G r s r G r v s g.v GS S

103 Chapter 5. Unjuncton transstor (UJT) s G G = 0 r s r v s g.v GS Z // rg // // GS V gv r // // 0 S Z // r 0 V V GS V0 A V gr // // V V / / A g r / / / / 0 full vs rs / / V V GS v s r s // // v s V GS r s // // A V // // GS g // s VGS s r

104 Chapter 5. Unjuncton transstor (UJT) 5.8. Common ran JFET Amplfer V C s r s C 0 v s S s G G r s r G r g.v GS v s S S

105 Chapter 5. Unjuncton transstor (UJT) s G G S s G G = 0 S r s r G r s r G r S r S v s g.v GS vs g.v GS Z // Z S // r 0 V gv r // V // 0 S GS S A full V v V S 0 s gv GS r // S // V V V V V gv r // // G GS S GS GS S V GS s // A V V V 0 V GS gv GS gv r GS // r // // // A s g r // S // //

106 Chapter 5. Unjuncton transstor (UJT) 5.8. Common Gate JFET Amplfer V C n JFET N C out + V n s C G - V out n S s gv GS v n Vout + G _

107 Chapter 5. Unjuncton transstor (UJT) 5.8. Common Gate JFET Amplfer v n v GS v gv o GS ( // ) v A vg 0 g // vn v v gvgs gv S S v S Z g Z // o r ds S S // v g S g

108 Chapter 5. Unjuncton transstor (UJT) 5.9. Problems When we desgn the crcuts wth FET, we can choose: V SS VS 3 V GS V 3 P Problem : esgn the bellow crcut. SS =6mA, V p =-4V, A V =0 V =V s C C 0 r s v s S C S

109 Chapter 5. Unjuncton transstor (UJT) Soluton: SS SS 3mA 3 V VGS VP, V VS 6V 3 SS V GS.6, g,( ma / V ) V p V p 4 4 V V S S V VS 6 S k 3 A V / / / /0 k / /0k 0 / g /,,5 S

110 Chapter 5. Unjuncton transstor (UJT).0k 0k k (5 0 )( 0 k) k selected 6.35k k 0, k choose 0 S S 3 VG VGS S,, V

111 Chapter 5. Unjuncton transstor (UJT) V G V choose / / 00K G G 00 06k choose 00k VG 0.74 V G 00 V 6k choose.5m V 0.74 G

112 Chapter 5. Unjuncton transstor (UJT) Problem : The crcut s gven as follows. V =30V, =k, V GG =V, po =0mA, V po =-6V, U =0.5snt(V) etermne the quescent pont Q etermne the voltage gan V C C Vo G U V G G

113 Chapter 5. Unjuncton transstor (UJT) V GSQ VGSQ VGG V SQ po 7mA V po V V 6V Q 7 ma,6v Soluton: SQ SQ U U 0,5sn t V Vgs U max mn 0,5V 0,5V VGS max V GSQ U max 0,5V VGS mn V GSQ U mn,5v V GS max 0,5 S max po 0 8, 4mA V po 6 V GS mn,5 S mn po 0 5, 6mA V po 6

114 Chapter 5. Unjuncton transstor (UJT) VS mn V S max V VS max V S mn 30 5, 6 8,8V V0max VS max VSQ 8,8 6,8V V0mn VS mn VSQ 3, 6,8V V0 t,8sn t,8sn t V V0,8 Av 5,6 V 0,5

115 Chapter 5. Unjuncton transstor (UJT) Problem 3: The crcut s gven as follows. V =0V, V SQ =0V, G =M, V GG =V, po =6mA, V po =-4V, U =0.snt(V), r S. etermne etermne the voltage gan V C C Vo G U V GG

116 Chapter 5. Unjuncton transstor (UJT) V GSQ VGSQ VGG V SQ po.5ma V po V VSQ 0 V VSQ SQ k 3 Soluton: G SQ G gv G r S V 0 V S S d S po V GSQ 3 g ms dvgs V po V po V gv 0 GS rs / / Av g 0 V V GS

117 Chapter 5. Unjuncton transstor (UJT) Problem 4: The crcut s gven as follows. V =0V, V GG =V, G =M, =k, po =0mA, V po =-5V, r S. etermne S subject to SQ =0mA etermne the voltage gan V C C Vo G U V GG S C

118 Chapter 5. Unjuncton transstor (UJT) Soluton: V GSQ SQ po 0mA V po VGS SS V GSQ S SQ G S 46 ( selected ) S S 853 G gv GS r S V 0 g A v V S d S po V GSQ 5,66mS dvgs V po V po V gv 0 GS rs / / g 5,66 5,66 V V GS

119 Chapter 5. Unjuncton transstor (UJT) Wthout capactor C: gv GS G S r S G S V 0 U G S gv GS G S V 0 U

120 Chapter 5. Unjuncton transstor (UJT) U V V V gv g V GS S GS GS S S GS V0 gvgs A v V0 g 3, V g S

121 Chapter 5. Unjuncton transstor (UJT) Problem 5: The crcut s gven as follows. V =0V, V GG =V, =0k, =30k, =70k, =k, r S =0k, V T =V, K=mA/V. etermne quescent pont Q wth S =0.5k etermne the voltage gan V C C V 0 U S C

122 Chapter 5. Unjuncton transstor (UJT) Soluton: V V GS S S 30 V V 0 6V K V V V S GS T GS V GS S S 6 V V V V 6 GS GS GS GS VGSQ SQ,79V 6, 4mA 4 V V V SQ S SQ

123 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

124 Chapter 6. C coupled amplfer Example : The crcut s gven as follows. Calculate the resstors value. Calculate total nput mpedance, output mpedance, voltage gan, current gan of each stage and entre of crcut. V S (t) s small and medum frequency, capactes wth large capactance VCE VCE 3 V; VBE VBE 0. 7V Cmax Cmax 3 ma; hre hre 0; h0 E h0 E 0; V CC =4V C 4 C C C O C n s 0 =00 =00 K V s E C E 3 E C E

125 Chapter 6. C coupled amplfer Calculate from the fnal stage to the frst Stage 4 Choose VE V CC VCC. 4V VE VE.4V E 0.8K K 3mA E C V V 4V 3.4 VCC CE E V C 6.K 6. 8K 3mA C VCC VB VBE VE 0.7V.4V 3. V

126 Chapter 6. C coupled amplfer Choose BB // E K Choose = 0K.48K = 68K.. 00 K K Smlar to stage Thus C = C = 6.8K E = E = K 3 = = 0K 4 = = 68K

127 Chapter 6. C coupled amplfer How to choose the rght capactor sze? n order for a couplng or bypassng capactor to operate effectvely, t must have the rght sze. The capactor acts lke a resstor n AC current. The resstance of a capactor s called "mpedance". Unlke resstors, capactors do not have a fxed mpedance. nstead, the mpedance s determned by the frequency of the AC sgnal. The equaton to calculate the mpedance s the followng: X C C fc Where, C s the capactance n Farads, and f s the AC sgnal frequency n Hertz. So, a 0uF capactor connected n seres wth a KHz sgnal generator, wll present an mpedance of: XC=5.9Ohms There are two factors that must be taken nto account: The frequency and the crcuts total resstance

128 Chapter 6. C coupled amplfer How to choose the rght capactor sze? The optmum capactor value that we choose must be 0 tmes smaller than the total crcut resstance, calculated for the worst case scenaro C s nput r Example. A crcut wth a couplng capactor, s =50, r =.K, and f= 0Hz0KHz. The total resstance : = = 50Ohms The worst case scenaro s 0Hz (lowest frequency), so the resstance of capactor must be less than 5 (=/0) : C = / ( * 3.4 * 0 * 5) = 35.3uF So, the capactor must have at least 35uF capactance. Ths makes sure that the capactor wll have less than % effect on the total resstance of the crcut. We choose the value s 47uF.

129 Chapter 6. C coupled amplfer V CC =4V s C n 0 C 4 C =00 C =00 C O K V s E C E 3 E C E s B C B C r s h fe B h fe B h e C 3 4 h e C V s

130 Chapter 6. C coupled amplfer Stage : h Z E 5mV 5 hfe E 3 // 4 // h 0//68// E Z C 6. 8K A A h 0 // 6.8// C V hfe he h E AV Stage : Z E 87 5mV 5 hfe E 04 // // h 0//68// E

131 Chapter 6. C coupled amplfer Z C 6. 8K A A 0 // Z 6.8// C V hfe he h E AV Z Both of two stages: Z Z 760 Z Z 6. 8K A A V A V AV A A

132 Chapter 6. C coupled amplfer Example : The crcut s gven as follows. Calculate the resstors value. Calculate total nput mpedance, output mpedance, voltage gan, current gan of each stage and entre of crcut. V S (t) s small and medum frequency, capactes wth large capactance g g 3mA/ V r r 30K r G r G V =V C 3 K 6 0K C C 0 s 0 M K 4 M 5 K V s C C 5 0K 7

133 Chapter 6. C coupled amplfer The equvalent of FET V =V C 3 K 6 0K C C 0 s 0 M K 4 M 5 K V s C C 5 0K 7 r s v s g V GS g V GS 4 0k 7

134 Chapter 6. C coupled amplfer Stage Z M 4 Z // 0K //30K 7. 5K 0 6 V gv. GS // 6 // 7. 7 V VGS V AV g // 6 7 V A // 3 30//0//0 3 V // // GS g4 AV VGS 7 7 Stage Z M Z // K //30K 8. 6K

135 Chapter 6. C coupled amplfer V 0 gv. GS // 3 // V VGS V0 AV g // 3 // ////000 V A 5 V // // GS 3 4 g AV VGS 4 4 Both of two stages Z Z M Z Z 7. 5K A V A V AV A A A

136 Outlne Chapter Chapter Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Materal structure Semconductor and ode Bpolar juncton transstor H parameter & equvalent crcut Feld effect transstor C coupled amplfer Opamp & applcaton crcuts

137 Chapter 7. Opamp & applcaton crcuts 7.. C amplfer The C and the transformer coupled amplfer only response to the AC sgnal wth small ampltude, and low frequency at least greater than Hz. Although the drect coupled amplfer responses to the C sgnal, but the number of stages s lmted and complexty calculaton The C amplfer response to the small frequency sgnal (less than Hz, consderng as C sgnal) that s the reason we want to amplfy. C amplfer characterstc: The sgnal wth small ampltude (V) and low frequency (<Hz) Symmetry nput sgnal arge amplfcaton factor Good ant-nterference ablty nput and output bas voltage equals zeros Stablty basng, unmovng the quescent pont under change temperature

138 Chapter 7. Opamp & applcaton crcuts 7.3. nvertng Operatonal Amplfer V VA VA V V V GN 0V A B V V V A V V The mnus sgn ( ) ndcates a 80 o phase shft because the nput sgnal s connected drectly to the nvertng nput termnal of the Op-amp

139 Chapter 7. Opamp & applcaton crcuts 7.4. Non-nvertng Operatonal Amplfer 0 VB V0 V B V V V B A V V AV V 0

140 Chapter 7. Opamp & applcaton crcuts 7.5. Op-amp fferental Amplfer The dfferental amplfer amplfes the voltage dfference present on ts nvertng and non-nvertng nputs f 3 V V V a V b UA V out 4 V V V V V V,, a b a out f 3 4 Va Vb, Vb V 4

141 Chapter 7. Opamp & applcaton crcuts 7.5. Op-amp fferental Amplfer f 3 V V V a V b UA V out f V V V 3 0, then out ( a) 4 3 f V 0, then Vout ( b) V Vout Vout ( a) Vout ( b) V V 4 when ;, then V V V out 4

142 Chapter 7. Opamp & applcaton crcuts 7.6. Summng Amplfer Crcut V V V V

143 Chapter 7. Opamp & applcaton crcuts 7.6. Summng Amplfer Crcut V V V / / V A 4 4 / / / / / / V / / V V / / V V V V

144 Chapter 7. Opamp & applcaton crcuts 7.7. Op-amp ntegrator Crcut n f C + - V c V n n X UA -V out Q Vc, Vc VX Vout 0 Vout C dvout dq dq, but dq/dt s electrc current dt Cdt C dt Vn 0 Vn n n n dv dq dq dvout C dt Cdt dt dt out f C C

145 Chapter 7. Opamp & applcaton crcuts 7.7. Op-amp ntegrator Crcut n V V n out n f n n V V dt V out n n nc 0 0 To smplfy the math, ths can be rewrtten as: V out dt C V dvout C dt V j C n t n t dt C n V n n n f X C + - V c UA -V out The mnus sgn ( ) ndcates a 80 o phase shft because the nput sgnal s connected drectly to the nvertng nput termnal of the Op-amp

146 Chapter 7. Opamp & applcaton crcuts 7.8. Op-amp fferentator Crcut VA A 0 du d V C V V C C dt dt V V GN 0V A B dv V 0 C dt V 0 dv C dt The mnus sgn ( ) ndcates a 80 o phase shft because the nput sgnal s connected drectly to the nvertng nput termnal of the Op-amp

147 Chapter 7. Opamp & applcaton crcuts 7.9. Op-amp dode log amplfer qu q VA V0 V KT V A KT S e S e V V GN 0V A B V0q KT S e KT V V V0 ln q S

148 Chapter 7. Opamp & applcaton crcuts 7.0. Op-amp exponental Crcut qu q V V A V KT A V 0 KT S e S e V V GN 0V A B qv V KT 0 S e V 0 e S q V KT

149 Chapter 7. Opamp & applcaton crcuts Problems Problem : V V V3 K.5K 3 K X 00K +0VC UA -0VC Vout V 00sn t( mv ); V 80( mv ); V 50( mv ) 3 etermne the output voltage V o, Keepng V, V3. etermne the V that make postve and negatve sgnal dstorton

150 Chapter 7. Opamp & applcaton crcuts 7.. Problems Soluton V K 4 00K +0VC V V3.5K 3 K X UA -0VC Vout 00 V V mv 0 V V V mv 6.4 V V V mv.5 V V V V V 8.9V

151 Chapter 7. Opamp & applcaton crcuts 4 V K 00K +0VC Postve sgnal dstorton V V3.5K 3 K X UA -0VC Vout 00V 80V 50V 0V 00V max 3 max 8.9 Vmax V 89mV 00 Negatve sgnal dstorton 00V 80V 50V 0V 00V max 3 max. Vmax V mv 00

152 Chapter 7. Opamp & applcaton crcuts 7.. Problems Problem : V V K K 3 +0VC 8 UA + - Vout V3 3 3K 4-0VC 5 4 0K 00K V ( V ); V ( V ); V 3( V ) 3 etermne the output voltage V o, Keepng V, V3. etermne the V that make postve and negatve sgnal dstorton

153 Chapter 7. Opamp & applcaton crcuts Soluton 5 / / 3 00 / /3 V0 V V 6V 6V 4 / / 3 0 / /3 5 / / 3 00 / /3 V0 V V 3V 6V 4 / / 3 0 / /3 5 / / 00 / / V03 V3 V3 V 3 6V 4 3 / / 0 3 / / V0 V0 V0 V V

154 Chapter 7. Opamp & applcaton crcuts Postve sgnal dstorton 6V 3V V 0V 6V 0 V max 3 max max 8 V 6 Negatve sgnal dstorton 6V 3V V 0V 6V 0 V max 3 max max 3 6 V

155 eferences. PGS-TS. ê Ph Yến, Kỹ thuật đện tử. PGS-TS. ê Tến Thường, Mạch đện tử & 3. KS. Nguyễn Tấn Phước, nh kện đện tử 4. onald.schllng Electronc Crcuts Some webste:. Software:. Proteus 8.6. Orcard

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation ELECTRONIC EVICES Assst. prof. Laura-Ncoleta IVANCIU, Ph.. C13 MOSFET operaton Contents Symbols Structure and physcal operaton Operatng prncple Transfer and output characterstcs Quescent pont Operatng

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1 E40M Devce Models, Resstors, Voltage and Current Sources, Dodes, Solar Cells M. Horowtz, J. Plummer, R. Howe 1 Understandng the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH 241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH 3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

1.4 Small-signal models of BJT

1.4 Small-signal models of BJT 1.4 Small-sgnal models of J Analog crcuts often operate wth sgnal levels that are small compared to the bas currents and voltages n the crcut. Under ths condton, ncremental or small-sgnal models can be

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points) ENGR-43 Electronc Instrumentaton Quz 4 Fall 21 Name Secton Queston Value Grade I 2 II 2 III 2 IV 2 V 2 Total (1 ponts) On all questons: SHOW LL WORK. EGIN WITH FORMULS, THEN SUSTITUTE VLUES ND UNITS. No

More information

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given). Problem 5.37 Pror to t =, capactor C 1 n the crcut of Fg. P5.37 was uncharged. For I = 5 ma, R 1 = 2 kω, = 5 kω, C 1 = 3 µf, and C 2 = 6 µf, determne: (a) The equvalent crcut nvolvng the capactors for

More information

V V. This calculation is repeated now for each current I.

V V. This calculation is repeated now for each current I. Page1 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter

More information

Key component in Operational Amplifiers

Key component in Operational Amplifiers Key component n Operatonal Amplfers Objectve of Lecture Descrbe how dependent voltage and current sources functon. Chapter.6 Electrcal Engneerng: Prncples and Applcatons Chapter.6 Fundamentals of Electrc

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier EE 0 Lecture 4 Small Sgnal Analss Small Sgnal Analss o BJT Ampler Eam Frda March 9 Eam Frda Aprl Revew Sesson or Eam : 6:00 p.m. on Thursda March 8 n Room Sweene 6 Revew rom Last Lecture Comparson o Gans

More information

3.6 Limiting and Clamping Circuits

3.6 Limiting and Clamping Circuits 3/10/2008 secton_3_6_lmtng_and_clampng_crcuts 1/1 3.6 Lmtng and Clampng Crcuts Readng Assgnment: pp. 184-187 (.e., neglect secton 3.6.2) Another applcaton of juncton dodes Q: What s a lmter? A: A 2-port

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

VI. Transistor Amplifiers

VI. Transistor Amplifiers VI. Transstor Amplfers 6. Introducton In ths secton we wll use the transstor small-sgnal model to analyze and desgn transstor amplfers. There are two ssues that we need to dscuss frst: ) What are the mportant

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

Physics Courseware Electronics

Physics Courseware Electronics Physcs ourseware Electroncs ommon emtter amplfer Problem 1.- In the followg ommon Emtter mplfer calculate: a) The Q pot, whch s the D base current (I ), the D collector current (I ) and the voltage collector

More information

DC Circuits. Crossing the emf in this direction +ΔV

DC Circuits. Crossing the emf in this direction +ΔV DC Crcuts Delverng a steady flow of electrc charge to a crcut requres an emf devce such as a battery, solar cell or electrc generator for example. mf stands for electromotve force, but an emf devce transforms

More information

Flyback Converter in DCM

Flyback Converter in DCM Flyback Converter n CM m 1:n V O V S m I M m 1 1 V CCM: wth O V I I n and S 2 1 R L M m M m s m 1 CM: IM 2 m 1 1 V 1 Borderlne: O VS I n wth V nv 2 1 R 2 L 1 M m s O S m CM f R > R 2n crt 2 L m 2 (1 )

More information

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

IV. Diodes. 4.1 Energy Bands in Solids

IV. Diodes. 4.1 Energy Bands in Solids I. Dodes We start our study of nonlnear crcut elements. These elements (dodes and transstors) are made of semconductors. A bref descrpton of how semconductor devces work s frst gven to understand ther

More information

Lecture 27 Bipolar Junction Transistors

Lecture 27 Bipolar Junction Transistors Lecture 27 polar Juncton Transstors ELETRIAL ENGINEERING: PRINIPLES AND APPLIATIONS, Fourth Edton, by Allan R. Hambley, 2008 Pearson Educaton, Inc. polar Juncton Transstors 1. Understand bpolar juncton

More information

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON

MPSA13 MPSA14 CASE 29-02, STYLE 1 TO-92 (TO-226AA) DARLINGTON TRANSISTOR MAXIMUM RATINGS THERMAL CHARACTERISTICS ON CHARACTERISTICS) 1) NPN SILICON MAXMUM RATNGS Ratng Symbol Value Unt Collector-Emtter Voltage V CES 30 Collector-Base Voltage VCBO 30 Emtter-Base Voltage Vebo 0 Collector Current Contnuous c 500 madc Total Devce Dsspaton @ Ta = 25 C

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

IV. Diodes. 4.1 Energy Bands in Solids

IV. Diodes. 4.1 Energy Bands in Solids I. Dodes We start our study of nonlnear crcut elements. These elements (dodes and transstors) are made of semconductors. A bref descrpton of how semconductor devces work s frst gven to understand ther

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

College of Engineering Department of Electronics and Communication Engineering. Test 2

College of Engineering Department of Electronics and Communication Engineering. Test 2 Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 205 Two-Port Theory, Slde Two-Port Networks Note, the BJT s all are hghly

More information

Output Stages and Power Amplifiers

Output Stages and Power Amplifiers Output Stages and Power Aplfers Output stages wth a low output resstance can delver the output voltage to the load wthout loss of gan. arge sgnal aplfer are used to drve a CT, a loud speaker, a servootor,

More information

3.2 Terminal Characteristics of Junction Diodes (pp )

3.2 Terminal Characteristics of Junction Diodes (pp ) /9/008 secton3_termnal_characterstcs_of_juncton_odes.doc /6 3. Termnal Characterstcs of Juncton odes (pp.47-53) A Juncton ode I.E., A real dode! Smlar to an deal dode, ts crcut symbol s: HO: The Juncton

More information

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator

Scroll Generation with Inductorless Chua s Circuit and Wien Bridge Oscillator Latest Trends on Crcuts, Systems and Sgnals Scroll Generaton wth Inductorless Chua s Crcut and Wen Brdge Oscllator Watcharn Jantanate, Peter A. Chayasena, and Sarawut Sutorn * Abstract An nductorless Chua

More information

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED? 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons

More information

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad A. M. Nknejad Unversty of Calforna, Berkeley EE 100 / 42 Lecture 4 p. 1/14 EE 42/100 Lecture 4: Resstve Networks and Nodal Analyss ELECTRONICS Rev B 1/25/2012 (9:49PM) Prof. Al M. Nknejad Unversty of Calforna,

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Lecture 10: Small Signal Device Parameters

Lecture 10: Small Signal Device Parameters Lecture 0: Small Sgnal Dece Parameters 06009 Lecture 9, Hgh Speed Deces 06 Lecture : Ballstc FETs Lu: 0, 394 06009 Lecture 9, Hgh Speed Deces 06 Large Sgnal / Small Sgnal e I E c I C The electrcal sgnal

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Electrcal Engneerng Department Network Lab. Objecte: - Experment on -port Network: Negate Impedance Conerter To fnd the frequency response of a smple Negate Impedance Conerter Theory: Negate Impedance

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

AGC Introduction

AGC Introduction . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a non-zero

More information

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ JEE-MAIN Date: Time: 07:30 AM to 10:30 AM Cumulative Test Max.Marks: 360

Narayana IIT Academy INDIA Sec: Sr. IIT_IZ JEE-MAIN Date: Time: 07:30 AM to 10:30 AM Cumulative Test Max.Marks: 360 INDIA Sec: Sr. IIT_IZ JEE-MAIN Date: 11-0-18 Tme: 07:30 AM to 10:30 AM Cumulatve Test Max.Marks: 360 KEY SHEET PHYSICS 1 4 1 3 4 5 4 6 3 7 8 3 9 10 1 11 3 1 4 13 14 15 1 16 4 17 1 18 19 1 0 1 1 3 3 3 4

More information

Over-Temperature protection for IGBT modules

Over-Temperature protection for IGBT modules Over-Temperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.1-1 Zhongxns

More information

ELCT 503: Semiconductors. Fall 2014

ELCT 503: Semiconductors. Fall 2014 EL503 Semconductors Fall 2014 Lecture 09: BJ rcut Analyss Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu EL 503: Semconductors ntroducton npn transstor pnp transstor EL 503: Semconductors ntroducton

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

II. PASSIVE FILTERS. H(j ω) Pass. Stop

II. PASSIVE FILTERS. H(j ω) Pass. Stop II. PASSIE FILTES Frequency-selectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called pass band). The ampltude of sgnals outsde ths range of frequences

More information

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V Bpolar Juncton ransstors (BJs).5 he Emtter-oupled Par By usng KL: + + 0 Wth the transstors based n the forward-acte mode, the reerse saturaton current of the collector-base juncton s neglgble. / α F ES

More information

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS ELG 35 ELECTONICS I SECOND CHAPTE: OPEATIONAL AMPLIFIES Sesson Wnter 003 Dr. M. YAGOUB Second Chapter: Operatonal amplfers II - _ After reewng the basc aspects of amplfers, we wll ntroduce a crcut representng

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3. ECE 6440 Summer 003 Page 1 Homework Assgnment No. 7 s Problem 1 (10 ponts) A fourstage rng oscllator used as the VCO n a PLL s shown. Assume that M1 and M are matched and M3 and M4 are matched. Also assume

More information

Common Base Configuration

Common Base Configuration ommon Base onfguraton nput caracterstcs: s. B wt B const Output caracterstc: s. B wt const Pcture from ref [2] S. Lneykn, ntroducton to electroncs Slde [53] ommon Base Termnal caracterstcs [2] α BO FB

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

Chapter 6 Electrical Systems and Electromechanical Systems

Chapter 6 Electrical Systems and Electromechanical Systems ME 43 Systems Dynamcs & Control Chapter 6: Electrcal Systems and Electromechancal Systems Chapter 6 Electrcal Systems and Electromechancal Systems 6. INTODUCTION A. Bazoune The majorty of engneerng systems

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect. Electrcty and Magnetsm Lecture 07 - Physcs Current, esstance, DC Crcuts: Y&F Chapter 5 Sect. -5 Krchhoff s Laws: Y&F Chapter 6 Sect. Crcuts and Currents Electrc Current Current Densty J Drft Speed esstance,

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

Electrochemistry Thermodynamics

Electrochemistry Thermodynamics CHEM 51 Analytcal Electrochemstry Chapter Oct 5, 016 Electrochemstry Thermodynamcs Bo Zhang Department of Chemstry Unversty of Washngton Seattle, WA 98195 Former SEAC presdent Andy Ewng sellng T-shrts

More information

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy ..2 nt Crcut Bascs KVL, KCL, Ohm's Law LED Outputs Buttons/Swtch Inputs VOLTAGE AND CRRENT..4 Current and Voltage Current / Voltage Analogy Charge s measured n unts of Coulombs Current Amount of charge

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Week 9: Multivibrators, MOSFET Amplifiers

Week 9: Multivibrators, MOSFET Amplifiers ELE 2110A Electronc Crcuts Week 9: Multbrators, MOSFET Aplfers Lecture 09-1 Multbrators Topcs to coer Snle-stae MOSFET aplfers Coon-source aplfer Coon-dran aplfer Coon-ate aplfer eadn Assnent: Chap 14.1-14.5

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor Mcoelectoncs Ccut Analyss and Desgn Donald A. Neamen Chapte 5 The pola Juncton Tanssto In ths chapte, we wll: Dscuss the physcal stuctue and opeaton of the bpola juncton tanssto. Undestand the dc analyss

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0 Chapter Problem Solutons. K γ.6, r f Ω For v, v.6 r + f ( 9.4) +. v 9..6 9.. v v v v v T ln and S v T ln S v v.3 8snωt (a) vs 3.33snωt 6 3.33 Peak dode current d (max) (b) P v s (max) 3.3 (c) T o π vo(

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 03 Two-Port Theory, Slde What Are Two-Ports? Basc dea: replace a complex

More information

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals I. INTRODUCTION 1.1 Crcut Theory Fundamentals Crcut theory s an approxmaton to Maxwell s electromagnetc equatons n order to smplfy analyss of complcated crcuts. A crcut s made of seeral elements (boxes

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Why working at higher frequencies?

Why working at higher frequencies? Advanced course on ELECTRICAL CHARACTERISATION OF NANOSCALE SAMPLES & BIOCHEMICAL INTERFACES: methods and electronc nstrumentaton. MEASURING SMALL CURRENTS When speed comes nto play Why workng at hgher

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week. Announcements Sectons begn ths week Cancelled Sectons: Th 122. Labs begn ths week. Attend your only second lab slot ths week. Cancelled labs: ThF 25. Please check your Lab secton. Homework #1 onlne Due

More information