E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

Size: px
Start display at page:

Download "E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1"

Transcription

1 E40M Devce Models, Resstors, Voltage and Current Sources, Dodes, Solar Cells M. Horowtz, J. Plummer, R. Howe 1

2 Understandng the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave n crcuts 2. Electrcal devces constran current and voltage 3. Dodes ncludng solar cells work 4. Voltage converter works (later n the quarter). M. Horowtz, J. Plummer, R. Howe 2

3 Readng For These Topcs Chapter 2 n the course reader A&L Two termnal elements Voltage source; resstor; wres M. Horowtz, J. Plummer, R. Howe 3

4 Devce Models A general way to show the relatonshp between two varables That s what we wll do for our dfferent types of electrcal devces 1 A + Sgn conventon: postve current flows nto the termnal wth the + voltage label +, v - +, v + 5 V v - -, v - -, v + M. Horowtz, J. Plummer, R. Howe 4

5 Devce Models Note that the energy s dsspated by the devce n quadrants 1 and 3, and power s generated by the devce n quadrants 2 and 4. 1 A + +, v - +, v + 5 V v -, v - -, v + M. Horowtz, J. Plummer, R. Howe 5

6 Devce Models Battery, Voltage Source A battery or a voltage source provde a fxed out put voltage no matter what current they are asked to provde or consume ( snk ). In quadrant 1 energy s consumed, n quadrant 4 energy s provded. Quadrant 1 = battery chargng, quadrant 4 = battery dschargng V v 5 V M. Horowtz, J. Plummer, R. Howe 6

7 Devce Models Resstors Current s proportonal to voltage V = R Ohm s Law The book also uses G Conductance = 1/R = G V Symbol v + V M. Horowtz, J. Plummer, R. Howe 7

8 Why Does Resstance Exst? (What Physcal Effect Does t Model?) Conductors are not perfect They use a lttle energy to get current to flow through a wre 1 Snce the energy flow nto the wre s ( ΔV) There must be a voltage drop along the wre Generally ths drop s proportonal to the current V = k We call the constant of proportonalty Resstance Make resstors by usng materal that doesn t conduct well 1 Well except for superconductors whch are magcal. They have nterestng propertes, ncludng that current can flow n a loop forever! Superconductors are used n MRI machnes to generate large magnetc felds effcently. M. Horowtz, J. Plummer, R. Howe 8

9 Resstors You ll begn to work wth these ths Frday n the Prelab lecture. M. Horowtz, J. Plummer, R. Howe 9

10 Resstance Problem #1 =? What current flows n the loop? 1kΩ 1 V + 1kΩ What s the voltage across the bottom resstor? M. Horowtz, J. Plummer, R. Howe 10

11 Resstance Problem #2 What s the current? =? + 1 V 1kΩ 1kΩ M. Horowtz, J. Plummer, R. Howe 11

12 New Devce: Current Source Current s constant, ndependent of voltage; s negatve n ths case because t flows out of the + termnal In quadrant 4 the current source s provdng energy, n quadrant 3 the current source consumes energy v -, v - -, v + M. Horowtz, J. Plummer, R. Howe 12

13 New Devce Dode Dode s a one-way street for current Current can flow n only one drecton An deal dode If the current s postve Voltage drop s zero ndependent of current Looks lke a wre (short crcut) If the voltage s negatve Current s always zero ndependent of voltage Looks lke the devce s not there (open crcut) v The plus end of the dode s called the anode The mnus end of the dode s called the cathode M. Horowtz, J. Plummer, R. Howe 13

14 There Are Many Types of Dodes M. Horowtz, J. Plummer, R. Howe 14

15 Real Dodes Do conduct current n only one drecton But they have some forward voltage drop And ther voltage does ncrease wth current, but Current s exponental on voltage! and voltage s logarthmc on current. So the voltage s not very dependent on current level I = I o exp qv kt Ther drop depends on the type of dode Schottky dodes are around 0.3 V Normal slcon PN dodes are generally around 0.6 V Other semconductor materals have larger voltages M. Horowtz, J. Plummer, R. Howe 15

16 Dode v v M. Horowtz, J. Plummer, R. Howe 16

17 Idealzed Dode v Ths s the model we wll mostly use n E40M Matches the behavor of a real dode pretty well Just need to choose the rght value of V f For any postve current The voltage drop across the dode s V f V f For any voltage less than V f The current through the devce s zero v M. Horowtz, J. Plummer, R. Howe 17

18 Dodes n Smple Crcuts =? =? 1 V + 1kΩ V f = V + 1kΩ V f = 0.6 M. Horowtz, J. Plummer, R. Howe 18

19 Some Dodes Are Lght Senstve These dodes are called solar cells When you shne lght on the cell The lght generates a current whch runs n parallel to the dode The value of the current s proportonal to the lght Ths generates electrcal energy Actually converts energy n the lght to electrcal form M. Horowtz, J. Plummer, R. Howe 19

20 Solar Cell Remember a solar cell s a dode So we represent t by a dode symbol When lght shnes on the dode The lght generates a current We represent ths current by a current source. The value of ths current s proportonal to the lght shnng on the dode Notce the drecton of the current Flows out of + termnal of dode M. Horowtz, J. Plummer, R. Howe 20

21 Solar Cell -V Curve V Optcally generated current M. Horowtz, J. Plummer, R. Howe 21

22 Open Crcut Voltage Short Crcut Current What s the voltage when zero current flows out of the devce? What s the current when there s no voltage across the devce? Open Crcut Voltage v Short Crcut Current M. Horowtz, J. Plummer, R. Howe 22

23 What Sets the Open Crcut Voltage and the Short Crcut Current? If there s no path for current (open source voltage case) It wll flow nto the dode KCL must stll hold V dode = V F If you short the dode out (short crcut current) You measure all the optcally generated current M. Horowtz, J. Plummer, R. Howe 23

24 Extractng Power from a Dode Power s V So n nether of these cases do we get power from the dode Open Crcut Voltage v Actual power wll be less than: V OC, SC You ll actually measure these parameters on your solar array next week. Short Crcut Current M. Horowtz, J. Plummer, R. Howe 24

25 FYI How Do Lght Emttng Dodes and Solar Cells Actually Work? M. Horowtz, J. Plummer, R. Howe 25

26 Generatng Enough Voltage There s one weak pont for solar cells Each cell provdes < 0.5 V We need around 5 V, so we bought a panel wth many cells stacked n seres Commercal photovoltac arrays also use ths approach How do we fgure out voltages and currents here? M. Horowtz, J. Plummer, R. Howe 26

27 Or Here? Dode Solar Cell L Bat Volt Conv R In the next set of lecture notes we ll develop methods to analyze crcuts by extendng the KCL and KVL deas we ve already dscussed. M. Horowtz, J. Plummer, R. Howe 27

28 Learnng Objectves for These Notes Understand the devce -V curve of a resstor Understand the devce -V curve of a voltage source Understand the devce -V curve of a current source Understand the operaton of a dode, and ts symbol M. Horowtz, J. Plummer, R. Howe 28

Introduction to circuit analysis. Classification of Materials

Introduction to circuit analysis. Classification of Materials Introducton to crcut analyss OUTLINE Electrcal quanttes Charge Current Voltage Power The deal basc crcut element Sgn conventons Current versus voltage (I-V) graph Readng: 1.2, 1.3,1.6 Lecture 2, Slde 1

More information

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week.

Sections begin this week. Cancelled Sections: Th Labs begin this week. Attend your only second lab slot this week. Announcements Sectons begn ths week Cancelled Sectons: Th 122. Labs begn ths week. Attend your only second lab slot ths week. Cancelled labs: ThF 25. Please check your Lab secton. Homework #1 onlne Due

More information

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

DC Circuits. Crossing the emf in this direction +ΔV

DC Circuits. Crossing the emf in this direction +ΔV DC Crcuts Delverng a steady flow of electrc charge to a crcut requres an emf devce such as a battery, solar cell or electrc generator for example. mf stands for electromotve force, but an emf devce transforms

More information

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad A. M. Nknejad Unversty of Calforna, Berkeley EE 100 / 42 Lecture 4 p. 1/14 EE 42/100 Lecture 4: Resstve Networks and Nodal Analyss ELECTRONICS Rev B 1/25/2012 (9:49PM) Prof. Al M. Nknejad Unversty of Calforna,

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Key component in Operational Amplifiers

Key component in Operational Amplifiers Key component n Operatonal Amplfers Objectve of Lecture Descrbe how dependent voltage and current sources functon. Chapter.6 Electrcal Engneerng: Prncples and Applcatons Chapter.6 Fundamentals of Electrc

More information

Announcements. Lecture #2

Announcements. Lecture #2 Announcements Lectures wll be n 4 LeConte begnnng Frday 8/29 Addtonal dscusson TA Denns Chang (Sectons 101, 105) Offce hours: Mo 2-3 PM; Th 5-6 PM Lab sectons begn Tuesday 9/2 Read Experment #1 onlne Download

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Chapter 6 Electrical Systems and Electromechanical Systems

Chapter 6 Electrical Systems and Electromechanical Systems ME 43 Systems Dynamcs & Control Chapter 6: Electrcal Systems and Electromechancal Systems Chapter 6 Electrcal Systems and Electromechancal Systems 6. INTODUCTION A. Bazoune The majorty of engneerng systems

More information

Physics 2102 Spring 2007 Lecture 10 Current and Resistance

Physics 2102 Spring 2007 Lecture 10 Current and Resistance esstance Is Futle! Physcs 0 Sprng 007 Jonathan Dowlng Physcs 0 Sprng 007 Lecture 0 Current and esstance Georg Smon Ohm (789-854) What are we gong to learn? A road map lectrc charge lectrc force on other

More information

Physics 1202: Lecture 11 Today s Agenda

Physics 1202: Lecture 11 Today s Agenda Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:3-3:3

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

Electrical Circuits 2.1 INTRODUCTION CHAPTER

Electrical Circuits 2.1 INTRODUCTION CHAPTER CHAPTE Electrcal Crcuts. INTODUCTION In ths chapter, we brefly revew the three types of basc passve electrcal elements: resstor, nductor and capactor. esstance Elements: Ohm s Law: The voltage drop across

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect.

Electricity and Magnetism Lecture 07 - Physics 121 Current, Resistance, DC Circuits: Y&F Chapter 25 Sect. 1-5 Kirchhoff s Laws: Y&F Chapter 26 Sect. Electrcty and Magnetsm Lecture 07 - Physcs Current, esstance, DC Crcuts: Y&F Chapter 5 Sect. -5 Krchhoff s Laws: Y&F Chapter 6 Sect. Crcuts and Currents Electrc Current Current Densty J Drft Speed esstance,

More information

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Electrochemistry Thermodynamics

Electrochemistry Thermodynamics CHEM 51 Analytcal Electrochemstry Chapter Oct 5, 016 Electrochemstry Thermodynamcs Bo Zhang Department of Chemstry Unversty of Washngton Seattle, WA 98195 Former SEAC presdent Andy Ewng sellng T-shrts

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

8.022 (E&M) Lecture 8

8.022 (E&M) Lecture 8 8.0 (E&M) Lecture 8 Topcs: Electromotve force Crcuts and Krchhoff s rules 1 Average: 59, MS: 16 Quz 1: thoughts Last year average: 64 test slghtly harder than average Problem 1 had some subtletes math

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A col of wre wth a VOLTAGE across each end wll have a current n t - Wre doesn t HAVE to have voltage source, voltage can be INDUCED V Common ways

More information

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy ..2 nt Crcut Bascs KVL, KCL, Ohm's Law LED Outputs Buttons/Swtch Inputs VOLTAGE AND CRRENT..4 Current and Voltage Current / Voltage Analogy Charge s measured n unts of Coulombs Current Amount of charge

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

INDUCTANCE. RC Cicuits vs LR Circuits

INDUCTANCE. RC Cicuits vs LR Circuits INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e -t/ R ) = / R(1 - e -(R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02 EE 2006 Electrc Crcut Analyss Sprng 2015 January 23, 2015 Lecture 02 1 Lab 1 Dgtal Multmeter Lab nstructons Aalable onlne Prnt out and read before Lab MWAH 391, 4:00 7:00 pm, next Monday or Wednesday (January

More information

Physics 114 Exam 2 Spring Name:

Physics 114 Exam 2 Spring Name: Physcs 114 Exam Sprng 013 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red wth the amount beng

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

Kirchhoff second rule

Kirchhoff second rule Krchhoff second rule Close a battery on a resstor: smplest crcut! = When the current flows n a resstor there s a voltage drop = How much current flows n the crcut? Ohm s law: Krchhoff s second law: Around

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1 4V I 2V (I + ) 0 0 --- 3V 1 2 4Ω 6Ω 3Ω 3/27/2006 Crcuts ( F.obllard) 1 Introducton: Electrcal crcuts are ubqutous n the modern world, and t s dffcult to oerstate ther mportance. They range from smple drect

More information

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction.

EMF induced in a coil by moving a bar magnet. Induced EMF: Faraday s Law. Induction and Oscillations. Electromagnetic Induction. Inducton and Oscllatons Ch. 3: Faraday s Law Ch. 3: AC Crcuts Induced EMF: Faraday s Law Tme-dependent B creates nduced E In partcular: A changng magnetc flux creates an emf n a crcut: Ammeter or voltmeter.

More information

MAE140 Linear Circuits (for non-electrical engs)

MAE140 Linear Circuits (for non-electrical engs) MAE4 Lnear Crcuts (for non-electrcal engs) Topcs coered Crcut analyss technques Krchoff s Laws KVL, KCL Nodal and Mesh Analyss Théenn and Norton Equalent Crcuts Resste crcuts, RLC crcuts Steady-state and

More information

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior!

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior! 1/25/2012 secton3_1the_ideal_ode 1/2 4.1 The Ideal ode Readng Assgnment: pp.165-172 Before we get started wth deal dodes, let s frst recall lnear dece behaor! HO: LINEAR EVICE BEHAVIOR Now, the deal dode

More information

Midterm Examination. Regression and Forecasting Models

Midterm Examination. Regression and Forecasting Models IOMS Department Regresson and Forecastng Models Professor Wllam Greene Phone: 22.998.0876 Offce: KMC 7-90 Home page: people.stern.nyu.edu/wgreene Emal: wgreene@stern.nyu.edu Course web page: people.stern.nyu.edu/wgreene/regresson/outlne.htm

More information

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02 EE 2006 Electrc Crcut Analyss Fall 2014 September 04, 2014 Lecture 02 1 For Your Informaton Course Webpage http://www.d.umn.edu/~jngba/electrc_crcut_analyss_(ee_2006).html You can fnd on the webpage: Lecture:

More information

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.6-1.7 -

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation ELECTRONIC EVICES Assst. prof. Laura-Ncoleta IVANCIU, Ph.. C13 MOSFET operaton Contents Symbols Structure and physcal operaton Operatng prncple Transfer and output characterstcs Quescent pont Operatng

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

CHAPTER II THEORETICAL BACKGROUND

CHAPTER II THEORETICAL BACKGROUND 3 CHAPTER II THEORETICAL BACKGROUND.1. Lght Propagaton nsde the Photonc Crystal The frst person that studes the one dmenson photonc crystal s Lord Raylegh n 1887. He showed that the lght propagaton depend

More information

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power

Title Chapters HW Due date. Lab Due date 8 Sept Mon 2 Kirchoff s Laws NO LAB. 9 Sept Tue NO LAB 10 Sept Wed 3 Power Schedule Date Day Class No. Ttle Chapters HW Due date Lab Due date 8 Sept Mon Krchoff s Laws..3 NO LAB Exam 9 Sept Tue NO LAB 10 Sept Wed 3 Power.4.5 11 Sept Thu NO LAB 1 Sept Fr Rectaton HW 1 13 Sept

More information

Surface Charge and Resistors

Surface Charge and Resistors Surface Charge and Resstors Just after connecton: E may be the same everywhere nav naue thn thck na na thn thck ue ue After steady state s reached: thn thck na thn thck na thn thck ue thn ue thck E thn

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

3.2 Terminal Characteristics of Junction Diodes (pp )

3.2 Terminal Characteristics of Junction Diodes (pp ) /9/008 secton3_termnal_characterstcs_of_juncton_odes.doc /6 3. Termnal Characterstcs of Juncton odes (pp.47-53) A Juncton ode I.E., A real dode! Smlar to an deal dode, ts crcut symbol s: HO: The Juncton

More information

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction Phscs 1, Fall 01 6 Noember 01 Toda n Phscs 1: applcatons of nducton Generators, motors and back EMF Transformers Edd currents Vote toda! Hdropower generators on the Nagara Rer below the Falls. The ste

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Inductor = (coil of wire)

Inductor = (coil of wire) A student n 1120 emaled me to ask how much extra he should expect to pay on hs electrc bll when he strngs up a standard 1-strand box of ccle holday lghts outsde hs house. (total, cumulatve cost)? Try to

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017) Advanced rcuts Topcs - Part by Dr. olton (Fall 07) Part : Some thngs you should already know from Physcs 0 and 45 These are all thngs that you should have learned n Physcs 0 and/or 45. Ths secton s organzed

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

Over-Temperature protection for IGBT modules

Over-Temperature protection for IGBT modules Over-Temperature protecton for IGBT modules Ke Wang 1, Yongjun Lao 2, Gaosheng Song 1, Xanku Ma 1 1 Mtsubsh Electrc & Electroncs (Shangha) Co., Ltd., Chna Room2202, Tower 3, Kerry Plaza, No.1-1 Zhongxns

More information

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH 241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH 3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

13. One way of expressing the power dissipated by a resistor is P = ( V)

13. One way of expressing the power dissipated by a resistor is P = ( V) Current and esstance 9. One way of expressng the power dsspated by a resstor s ( ). Thus, f the potental dfference across the resstor s doubled, the power wll be ncreased by a factor of 4, to a value of

More information

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED? 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons

More information

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4

Physics Electricity and Magnetism Lecture 12 - Inductance, RL Circuits. Y&F Chapter 30, Sect 1-4 Physcs - lectrcty and Magnetsm ecture - Inductance, Crcuts Y&F Chapter 30, Sect - 4 Inductors and Inductance Self-Inductance Crcuts Current Growth Crcuts Current Decay nergy Stored n a Magnetc Feld nergy

More information

MAGNETISM MAGNETIC DIPOLES

MAGNETISM MAGNETIC DIPOLES MAGNETISM We now turn to magnetsm. Ths has actually been used for longer than electrcty. People were usng compasses to sal around the Medterranean Sea several hundred years BC. However t was not understood

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

Current and Resistance

Current and Resistance 7 Current and esstance Clcker Questons Queston N. Descrpton: Developng an understandng of resstance and resstvty. Queston n ohmc conductor s carryng a current. The cross-sectonal area of the wre changes

More information

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica

DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA. 1. Matrices in Mathematica demo8.nb 1 DEMO #8 - GAUSSIAN ELIMINATION USING MATHEMATICA Obectves: - defne matrces n Mathematca - format the output of matrces - appl lnear algebra to solve a real problem - Use Mathematca to perform

More information

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

Analytical Chemistry Calibration Curve Handout

Analytical Chemistry Calibration Curve Handout I. Quck-and Drty Excel Tutoral Analytcal Chemstry Calbraton Curve Handout For those of you wth lttle experence wth Excel, I ve provded some key technques that should help you use the program both for problem

More information

1.4 Small-signal models of BJT

1.4 Small-signal models of BJT 1.4 Small-sgnal models of J Analog crcuts often operate wth sgnal levels that are small compared to the bas currents and voltages n the crcut. Under ths condton, ncremental or small-sgnal models can be

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( )

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( ) I I T / P M T A C A D E M Y IN D IA JEE ADVANCE : 5 P PHASE TEST (.8.7) ANSWER KEY PHYSICS CHEMISTRY MATHEMATICS Q.No. Answer Key Q.No. Answer Key Q.No. Answer Key. () () (). () () (). (9) () (). () ()

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

IV. Diodes. 4.1 Energy Bands in Solids

IV. Diodes. 4.1 Energy Bands in Solids I. Dodes We start our study of nonlnear crcut elements. These elements (dodes and transstors) are made of semconductors. A bref descrpton of how semconductor devces work s frst gven to understand ther

More information

3.6 Limiting and Clamping Circuits

3.6 Limiting and Clamping Circuits 3/10/2008 secton_3_6_lmtng_and_clampng_crcuts 1/1 3.6 Lmtng and Clampng Crcuts Readng Assgnment: pp. 184-187 (.e., neglect secton 3.6.2) Another applcaton of juncton dodes Q: What s a lmter? A: A 2-port

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Built in Potential, V 0

Built in Potential, V 0 9/5/7 Indan Insttute of Technology Jodhur, Year 7 nalog Electroncs (Course Code: EE34) Lecture 3 4: ode contd Course Instructor: hree Prakash Twar Emal: stwar@tj.ac.n Webage: htt://home.tj.ac.n/~stwar/

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

MAE140 - Linear Circuits - Fall 10 Midterm, October 28 M140 - Lnear rcuts - Fall 10 Mdterm, October 28 nstructons () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Physics Courseware Electronics

Physics Courseware Electronics Physcs ourseware Electroncs ommon emtter amplfer Problem 1.- In the followg ommon Emtter mplfer calculate: a) The Q pot, whch s the D base current (I ), the D collector current (I ) and the voltage collector

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Dr. Fritz Wilhelm, Physics 230 E:\Excel files\230 lecture\ch26 capacitance.docx 1 of 13 Last saved: 12/27/2008; 8:40 PM. Homework: See website.

Dr. Fritz Wilhelm, Physics 230 E:\Excel files\230 lecture\ch26 capacitance.docx 1 of 13 Last saved: 12/27/2008; 8:40 PM. Homework: See website. Dr. Frtz Wlhelm, Physcs 3 E:\Excel fles\3 lecture\ch6 capactance.docx of 3 Last saved: /7/8; 8:4 PM Homework: See webste. Table of ontents: h.6. Defnton of apactance, 6. alculatng apactance, 6.a Parallel

More information

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals I. INTRODUCTION 1.1 Crcut Theory Fundamentals Crcut theory s an approxmaton to Maxwell s electromagnetc equatons n order to smplfy analyss of complcated crcuts. A crcut s made of seeral elements (boxes

More information

IV. Diodes. 4.1 Energy Bands in Solids

IV. Diodes. 4.1 Energy Bands in Solids I. Dodes We start our study of nonlnear crcut elements. These elements (dodes and transstors) are made of semconductors. A bref descrpton of how semconductor devces work s frst gven to understand ther

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Fields, Charges, and Field Lines

Fields, Charges, and Field Lines Felds, Charges, and Feld Lnes Electrc charges create electrc felds. (Gauss Law) Electrc feld lnes begn on + charges and end on - charges. Lke charges repel, oppostes attract. Start wth same dea for magnetc

More information