V V. This calculation is repeated now for each current I.

Size: px
Start display at page:

Download "V V. This calculation is repeated now for each current I."

Transcription

1 Page1

2 Page2 The power supply oltage V = +5 olts and the load resstor R = 1 k. For the range of collector bas currents, I = 0.5 ma, 1 ma, 2.5 ma, 4 ma and 4.5 ma, determne the correspondng collector-to-emtter oltages V E and oltage gans A for each of the collector currents. Place answers n the table below. For I = 0.5 ma, we caculate I R 0.5 A VT V V I R V E Ths calculaton s repeated now for each current I. V V I (ma) V E (olts) A (V/V) 0.5 ma 4.5 V V/V 1 ma 4.0 V V/V 2.5 ma 2.5 V V/V 4 ma 1.0 V V/V 4.5 ma 0.5 V V/V Problem 3 Bpolar Transstor Operaton (10 ponts) The essence of transstor operaton s that for change n be, represent t by be, results n a change n collector current c, represented by c. The small-sgnal approxmaton means keepng be small enough to allow c to be lnearly related to be by the relatonshp, c = g m be. The parameter g m s the transconductance of

3 Page3 the transstor. When passng c through resstor R, a chanage n output oltage o s generated. (a) Usng the expresson, A = - [I /V T ]R, where V T s the thermal oltage kt/q = olt (not MOSFET threshold oltage), dere a smple expresson for transconductance g m. A I R VT We also know R out A g R m BE Therefore, g m I BE / V T (b) alculate the alue of g m when I = 0.5 ma. 0.5 For I = 0.5 ma, we calculate g 19.3 ma m V Problem 4 Usng Grahcal Analyss (20 ponts) You are presented wth the NPN bpolar transstor crcut shown below: In ths problem you are to construct a graphcal drawng of the E characterstc of the BJT, wth base current alues of B = 10 A, 20 A, 30 A, 40 A and 50 A, to estmate amplfer parameters. To smplfy the problem we gnore the Early effect ; meanng the output resstance s nfnte (.e., horzontal lnes on the E characterstc) and take the BJT s current gan = 100 at all current leels. Gen: V = +5 olts and R = 1 k; these two parameters allow you to construct and draw the load lne upon the BJT s E characterstc cure.

4 Page4 (a) Draw the collector current lnes on the graph and then draw the load lne establshed by the collector load resstor R. (b) Estmate the peak-to-peak collector oltage swng resultng from drng the base current B oer the range of 10 A (mnmum) to 40 A (maxmum). Use the drawng aboe to estmate ths peak-to-peak oltage swng. Peak-to-peak swng = 4 olts 1 olt = 3 olts (c) Assumng the BJT based at V E = ½V, fnd the alues of I and I B at ths Q-pont (.e., Q s the quesent bas pont). The best bas pont Q s mdway between the total oltage range of (that would oltage V. Thus, V E = ½ V correspondng to V E = 2.5 olts. From the aboe plot pont Q corresponds to I = 2.5 ma. Base current I B = 2.5 ma/ = 2.5 ma/100 = 25 A. (d) Assumng the currrent alue at bas pont Q from part (c), gen that V BE = olt and R B = 100 k, fnd the requred alue of power supply V BB. V BB = I B R B = ( )(100,000) = = 3.2 olts

5 Yes, they agree. Page5

6 Page6 Problem 6 Usng the T-equalent Model (20 ponts) For the NMOS transtor embedded wthn the schematc crcut, you are to use the T- equalent model (but assume that = 0 whch means that the output resstance s nfnte and can be gnored) to dere equatons for ts small-sgnal oltage gan behaor. (a) Draw the crcut wth the T-equalent model substtuted for the MOSFET symbol and n the format to be used for performng a small-sgnal analyss. Label all elements. (b) Dere a oltage gan expresson for s /.

7 Page7 1 gm gs RS gm g R and d m gs D g R s m gs S, s RS gmrs 1 1 gmrs RS gm Note ( / ) s non-nertng and less than unty. s (c) Dere a oltage gan expresson for d /. 1 gm gs RS gm g R d m gs D, d RD gmrd 1 1 gmrs RS gm Note ( / ) s nertng and often greater than unty d (dependng upon the alue of R ). D

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014 OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)

More information

Copyright 2004 by Oxford University Press, Inc.

Copyright 2004 by Oxford University Press, Inc. JT as an Amplfer &a Swtch, Large Sgnal Operaton, Graphcal Analyss, JT at D, asng JT, Small Sgnal Operaton Model, Hybrd P-Model, TModel. Lecture # 7 1 Drecton of urrent Flow & Operaton for Amplfer Applcaton

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

College of Engineering Department of Electronics and Communication Engineering. Test 2

College of Engineering Department of Electronics and Communication Engineering. Test 2 Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng

More information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth

More information

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol: Dode Materal: Desgnaton: Symbol: Poste Current flow: ptype ntype Anode Cathode Smplfed equalent crcut Ideal dode Current HmAL 0 8 6 4 2 Smplfed model 0.5.5 2 V γ eal dode Voltage HVL V γ closed open V

More information

Lecture 27 Bipolar Junction Transistors

Lecture 27 Bipolar Junction Transistors Lecture 27 polar Juncton Transstors ELETRIAL ENGINEERING: PRINIPLES AND APPLIATIONS, Fourth Edton, by Allan R. Hambley, 2008 Pearson Educaton, Inc. polar Juncton Transstors 1. Understand bpolar juncton

More information

Transfer Characteristic

Transfer Characteristic Eeld-Effect Transstors (FETs 3.3 The CMS Common-Source Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.-L. Wu Lesson 8&9 Eeld-Effect Transstors

More information

Week 11: Differential Amplifiers

Week 11: Differential Amplifiers ELE 0A Electronc rcuts Week : Dfferental Amplfers Lecture - Large sgnal analyss Topcs to coer A analyss Half-crcut analyss eadng Assgnment: hap 5.-5.8 of Jaeger and Blalock or hap 7. - 7.3, of Sedra and

More information

ELCT 503: Semiconductors. Fall 2014

ELCT 503: Semiconductors. Fall 2014 EL503 Semconductors Fall 2014 Lecture 09: BJ rcut Analyss Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu EL 503: Semconductors ntroducton npn transstor pnp transstor EL 503: Semconductors ntroducton

More information

VI. Transistor Amplifiers

VI. Transistor Amplifiers VI. Transstor Amplfers 6. Introducton In ths secton we wll use the transstor small-sgnal model to analyze and desgn transstor amplfers. There are two ssues that we need to dscuss frst: ) What are the mportant

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 205 Two-Port Theory, Slde Two-Port Networks Note, the BJT s all are hghly

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

55:141 Advanced Circuit Techniques Two-Port Theory

55:141 Advanced Circuit Techniques Two-Port Theory 55:4 Adanced Crcut Technques Two-Port Theory Materal: Lecture Notes A. Kruger 55:4: Adanced Crcut Technques The Unersty of Iowa, 03 Two-Port Theory, Slde What Are Two-Ports? Basc dea: replace a complex

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH 241 ANALO LTRONI I Lectures 2&3 ngle Transstor Amplfers R NORLAILI MOH NOH 3.3 Basc ngle-transstor Amplfer tages 3 dfferent confguratons : 1. ommon-emtter ommon-source Ib B R I d I c o R o gnal appled

More information

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014 OLLEGE OF ENGNEERNG PUTRAJAYA AMPUS FNAL EXAMNATON SEMESTER 013 / 014 PROGRAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electrocs Egeerg (Hoours) Bachelor of Electrcal Power Egeerg (Hoours) : EEEB73

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001 Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence Read Chapters 11 through 12. 6.002 Crcuts and Electroncs Sprng 2001 Homework #5 Handout S01031 Issued: 3/8/2001

More information

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS ELG 35 ELECTONICS I SECOND CHAPTE: OPEATIONAL AMPLIFIES Sesson Wnter 003 Dr. M. YAGOUB Second Chapter: Operatonal amplfers II - _ After reewng the basc aspects of amplfers, we wll ntroduce a crcut representng

More information

5.6 Small-Signal Operation and Models

5.6 Small-Signal Operation and Models 3/16/2011 secton 5_6 Small Sgnal Operaton and Models 1/2 5.6 Small-Sgnal Operaton and Models Readng Assgnment: 443-458 Now let s examne how we use BJTs to construct amplfers! The frst mportant desgn rule

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erckson Department of Electrcal, Computer, and Energy Engneerng Unersty of Colorado, Boulder 3.5. Example: ncluson of semconductor conducton losses n the boost conerter model Boost conerter example

More information

Key component in Operational Amplifiers

Key component in Operational Amplifiers Key component n Operatonal Amplfers Objectve of Lecture Descrbe how dependent voltage and current sources functon. Chapter.6 Electrcal Engneerng: Prncples and Applcatons Chapter.6 Fundamentals of Electrc

More information

6.01: Introduction to EECS 1 Week 6 October 15, 2009

6.01: Introduction to EECS 1 Week 6 October 15, 2009 6.0: ntroducton to EECS Week 6 October 5, 2009 6.0: ntroducton to EECS Crcuts The Crcut Abstracton Crcuts represent systems as connectons of component through whch currents (through arables) flow and across

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introducton to MEM Desgn Fall 7 Prof. Clark T.C. Nguyen Dept. of Electrcal Engneerng & Computer cences Unersty of Calforna at Berkeley Berkeley, C 947 Dscusson: eew of Op mps EE C45: Introducton

More information

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d) Massachusetts Insttute of Technology Department of Electrcal Engneerng and Computer Scence 6.002 í Electronc Crcuts Homework 2 Soluton Handout F98023 Exercse 21: Determne the conductance of each network

More information

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation ELECTRONIC EVICES Assst. prof. Laura-Ncoleta IVANCIU, Ph.. C13 MOSFET operaton Contents Symbols Structure and physcal operaton Operatng prncple Transfer and output characterstcs Quescent pont Operatng

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V Bpolar Juncton ransstors (BJs).5 he Emtter-oupled Par By usng KL: + + 0 Wth the transstors based n the forward-acte mode, the reerse saturaton current of the collector-base juncton s neglgble. / α F ES

More information

Energy Storage Elements: Capacitors and Inductors

Energy Storage Elements: Capacitors and Inductors CHAPTER 6 Energy Storage Elements: Capactors and Inductors To ths pont n our study of electronc crcuts, tme has not been mportant. The analyss and desgns we hae performed so far hae been statc, and all

More information

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω S-00 Lnearty Superposton Prncple Superposton xample Dependent Sources Lecture 4. sawyes@rp.edu www.rp.edu/~sawyes 0 kω 6 kω 8 V 0 V 5 ma 4 Nodes Voltage Sources Ref Unknown Node Voltage, kω If hae multple

More information

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,, 196 E TUTORIAL PROBLEMS E.1 KCL, KVL, Power and Energy Q.1 Determne the current n the followng crcut. 3 5 3 8 9 6 5 Appendx E Tutoral Problems 197 Q. Determne the current and the oltage n the followng

More information

3.2 Terminal Characteristics of Junction Diodes (pp )

3.2 Terminal Characteristics of Junction Diodes (pp ) /9/008 secton3_termnal_characterstcs_of_juncton_odes.doc /6 3. Termnal Characterstcs of Juncton odes (pp.47-53) A Juncton ode I.E., A real dode! Smlar to an deal dode, ts crcut symbol s: HO: The Juncton

More information

Physics Courseware Electronics

Physics Courseware Electronics Physcs ourseware Electroncs ommon emtter amplfer Problem 1.- In the followg ommon Emtter mplfer calculate: a) The Q pot, whch s the D base current (I ), the D collector current (I ) and the voltage collector

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Desgn f Analg Integrated Crcuts I. Amplfers Desgn f Analg Integrated Crcuts Fall 2012, Dr. Guxng Wang 1 Oerew Basc MOS amplfer structures Cmmn-Surce Amplfer Surce Fllwer Cmmn-Gate Amplfer Desgn f Analg

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010 FE REVEW OPERATONAL AMPLFERS (OP-AMPS)( ) 1 The Op-amp 2 An op-amp has two nputs and one output. Note the op-amp below. The termnal labeled l wth the (-) sgn s the nvertng nput and the nput labeled wth

More information

Electrical Engineering Department Network Lab.

Electrical Engineering Department Network Lab. Electrcal Engneerng Department Network Lab. Objecte: - Experment on -port Network: Negate Impedance Conerter To fnd the frequency response of a smple Negate Impedance Conerter Theory: Negate Impedance

More information

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2 Lnearty An element s sad to be lnear f t satsfes homogenety (scalng) property and addte (superposton) property. 1. homogenety property Let x be the nput and y be the output of an element. x y If kx s appled

More information

Two Port Characterizations

Two Port Characterizations lectronc Crcuts Two Port Characterzatons Contents Input and output resstances Two port networks Models Prof. C.K. Tse: -port networks Impedances and loadng effects Voltage amplfers R s R out smaller the

More information

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are:

I. INTRODUCTION. There are two other circuit elements that we will use and are special cases of the above elements. They are: I. INTRODUCTION 1.1 Crcut Theory Fundamentals In ths course we study crcuts wth non-lnear elements or deces (dodes and transstors). We wll use crcut theory tools to analyze these crcuts. Snce some of tools

More information

6.01: Introduction to EECS I Lecture 7 March 15, 2011

6.01: Introduction to EECS I Lecture 7 March 15, 2011 6.0: Introducton to EECS I Lecture 7 March 5, 20 6.0: Introducton to EECS I Crcuts The Crcut Abstracton Crcuts represent systems as connectons of elements through whch currents (through arables) flow and

More information

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED? 0//00 rng your LE.doc / rng your LE s As we hae preously learned, n optcal communcaton crcuts, a dgtal sgnal wth a frequency n the tens or hundreds of khz s used to ampltude modulate (on and off) the emssons

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Electrcal Crcuts (ECE33b SteadyState Power Analyss Anests Dounas The Unersty of Western Ontaro Faculty of Engneerng Scence SteadyState Power Analyss (t AC crcut: The steady state oltage and current can

More information

Flyback Converter in DCM

Flyback Converter in DCM Flyback Converter n CM m 1:n V O V S m I M m 1 1 V CCM: wth O V I I n and S 2 1 R L M m M m s m 1 CM: IM 2 m 1 1 V 1 Borderlne: O VS I n wth V nv 2 1 R 2 L 1 M m s O S m CM f R > R 2n crt 2 L m 2 (1 )

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer S o S ε S o ( S β S ) o Negate feedback S S o + β β s the feedback transfer functon

More information

1.4 Small-signal models of BJT

1.4 Small-signal models of BJT 1.4 Small-sgnal models of J Analog crcuts often operate wth sgnal levels that are small compared to the bas currents and voltages n the crcut. Under ths condton, ncremental or small-sgnal models can be

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:04 Electronc Crcuts Feedback & Stablty Sectons of Chapter 2. Kruger Feedback & Stablty Confguraton of Feedback mplfer Negate feedback β s the feedback transfer functon S o S S o o S S o f S S S S fb

More information

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS Department o Electrcal and Computer Engneerng UNIT I EII FEEDBCK MPLIFIES porton the output sgnal s ed back to the nput o the ampler s called Feedback mpler. Feedback Concept: block dagram o an ampler

More information

( ) = ( ) + ( 0) ) ( )

( ) = ( ) + ( 0) ) ( ) EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.

More information

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals I. INTRODUCTION 1.1 Crcut Theory Fundamentals Crcut theory s an approxmaton to Maxwell s electromagnetc equatons n order to smplfy analyss of complcated crcuts. A crcut s made of seeral elements (boxes

More information

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad A. M. Nknejad Unversty of Calforna, Berkeley EE 100 / 42 Lecture 4 p. 1/14 EE 42/100 Lecture 4: Resstve Networks and Nodal Analyss ELECTRONICS Rev B 1/25/2012 (9:49PM) Prof. Al M. Nknejad Unversty of Calforna,

More information

The Decibel and its Usage

The Decibel and its Usage The Decbel and ts Usage Consder a two-stage amlfer system, as shown n Fg.. Each amlfer rodes an ncrease of the sgnal ower. Ths effect s referred to as the ower gan,, of the amlfer. Ths means that the sgnal

More information

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or

matter consists, measured in coulombs (C) 1 C of charge requires electrons Law of conservation of charge: charge cannot be created or Basc Concepts Oerew SI Prefxes Defntons: Current, Voltage, Power, & Energy Passe sgn conenton Crcut elements Ideal s Portland State Unersty ECE 221 Basc Concepts Ver. 1.24 1 Crcut Analyss: Introducton

More information

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier EE 0 Lecture 4 Small Sgnal Analss Small Sgnal Analss o BJT Ampler Eam Frda March 9 Eam Frda Aprl Revew Sesson or Eam : 6:00 p.m. on Thursda March 8 n Room Sweene 6 Revew rom Last Lecture Comparson o Gans

More information

Lecture 5: Operational Amplifiers and Op Amp Circuits

Lecture 5: Operational Amplifiers and Op Amp Circuits Lecture 5: peratonal mplers and p mp Crcuts Gu-Yeon We Dson o Engneerng and ppled Scences Harard Unersty guyeon@eecs.harard.edu We erew eadng S&S: Chapter Supplemental eadng Background rmed wth our crcut

More information

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit. Physcs 4B Solutons to Chapter 7 HW Chapter 7: Questons:, 8, 0 Problems:,,, 45, 48,,, 7, 9 Queston 7- (a) no (b) yes (c) all te Queston 7-8 0 μc Queston 7-0, c;, a;, d; 4, b Problem 7- (a) Let be the current

More information

MAE140 Linear Circuits (for non-electrical engs)

MAE140 Linear Circuits (for non-electrical engs) MAE4 Lnear Crcuts (for non-electrcal engs) Topcs coered Crcut analyss technques Krchoff s Laws KVL, KCL Nodal and Mesh Analyss Théenn and Norton Equalent Crcuts Resste crcuts, RLC crcuts Steady-state and

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

ELE B7 Power Systems Engineering. Power Flow- Introduction

ELE B7 Power Systems Engineering. Power Flow- Introduction ELE B7 Power Systems Engneerng Power Flow- Introducton Introducton to Load Flow Analyss The power flow s the backbone of the power system operaton, analyss and desgn. It s necessary for plannng, operaton,

More information

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior!

4.1 The Ideal Diode. Reading Assignment: pp Before we get started with ideal diodes, let s first recall linear device behavior! 1/25/2012 secton3_1the_ideal_ode 1/2 4.1 The Ideal ode Readng Assgnment: pp.165-172 Before we get started wth deal dodes, let s frst recall lnear dece behaor! HO: LINEAR EVICE BEHAVIOR Now, the deal dode

More information

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS) FE EIEW OPEATIONAL AMPLIFIES (OPAMPS) 1 The Opamp An opamp has two nputs and one output. Note the opamp below. The termnal labeled wth the () sgn s the nvertng nput and the nput labeled wth the () sgn

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING TaChang Chen Unersty of Washngton, Bothell Sprng 2010 EE215 1 WEEK 8 FIRST ORDER CIRCUIT RESPONSE May 21 st, 2010 EE215 2 1 QUESTIONS TO ANSWER Frst order crcuts

More information

Motion in One Dimension

Motion in One Dimension Moton n One Dmenson Speed ds tan ce traeled Aerage Speed tme of trael Mr. Wolf dres hs car on a long trp to a physcs store. Gen the dstance and tme data for hs trp, plot a graph of hs dstance ersus tme.

More information

Selected Student Solutions for Chapter 2

Selected Student Solutions for Chapter 2 /3/003 Assessment Prolems Selected Student Solutons for Chapter. Frst note that we know the current through all elements n the crcut except the 6 kw resstor (the current n the three elements to the left

More information

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017)

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017) Pae1 Nae Solutons ES 330 Electroncs II Hoework 04 (Fall 2017 Due Wednesday, Septeer 27, 2017) Prole 1 onsder the FET aplfer of F. 7.10 for the case of t =0.4, kn = 5 A/ 2, GS =0.6, DD = 1.8 and RD = 10

More information

Common Base Configuration

Common Base Configuration ommon Base onfguraton nput caracterstcs: s. B wt B const Output caracterstc: s. B wt const Pcture from ref [2] S. Lneykn, ntroducton to electroncs Slde [53] ommon Base Termnal caracterstcs [2] α BO FB

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo olantono a.a. 3 4 Let s consder a two ports network o Two ports Network o L For passve network (.e. wthout nternal sources or actve devces), a general representaton can be made by a sutable

More information

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016 ME140 - Lnear rcuts - Wnter 16 Fnal, March 16, 2016 Instructons () The exam s open book. You may use your class notes and textbook. You may use a hand calculator wth no communcaton capabltes. () You have

More information

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: December 13, E Main Suite D Pullman, WA (509) Voice and Fax .9.1: AC power analyss Reson: Deceber 13, 010 15 E Man Sute D Pullan, WA 99163 (509 334 6306 Voce and Fax Oerew n chapter.9.0, we ntroduced soe basc quanttes relate to delery of power usng snusodal sgnals.

More information

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors Crcuts II EE1 Unt 3 Instructor: Ken D. Donohue Instantaneous, Aerage, RMS, and Apparent Power, and, Maxmum Power pp ransfer, and Power Factors Power Defntons/Unts: Work s n unts of newton-meters or joules

More information

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 3: Operating with Complex Numbers Instruction

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 3: Operating with Complex Numbers Instruction Prerequste Sklls Ths lesson requres the use of the followng sklls: understandng that multplyng the numerator and denomnator of a fracton by the same quantty produces an equvalent fracton multplyng complex

More information

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled nductor Ideal transformer Controlled sources Couplng Element and Coupled crcuts Coupled elements hae more that one branch and branch oltages or branch currents

More information

Circuit Variables. Unit: volt (V = J/C)

Circuit Variables. Unit: volt (V = J/C) Crcut Varables Scentfc nestgaton of statc electrcty was done n late 700 s and Coulomb s credted wth most of the dscoeres. He found that electrc charges hae two attrbutes: amount and polarty. There are

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

(8) Gain Stage and Simple Output Stage

(8) Gain Stage and Simple Output Stage EEEB23 Electoncs Analyss & Desgn (8) Gan Stage and Smple Output Stage Leanng Outcome Able to: Analyze an example of a gan stage and output stage of a multstage amplfe. efeence: Neamen, Chapte 11 8.0) ntoducton

More information

3.5 Rectifier Circuits

3.5 Rectifier Circuits 9/24/2004 3_5 Rectfer Crcuts empty.doc 1/2 3.5 Rectfer Crcuts A. Juncton ode 2-Port Networks - ( t ) Juncton ode Crcut ( t ) H: The Transfer Functon of ode Crcuts Q: A: H: teps for fndng a Juncton ode

More information

210 Calle Solana, San Dimas, CA Tel. (909) ; Fax (909)

210 Calle Solana, San Dimas, CA Tel. (909) ; Fax (909) 1 Crcuts and Systems Exposton THE GFT: A GENERAL YET PRACTICAL FEEDBACK THEOREM R. Dad Mddlebrook 210 Calle Solana, San Dmas, CA 91773 Tel. (909) 592-0317; Fax (909) 592-0698 EMal: rdm@rdmddlebrook.com

More information

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02

EE 2006 Electric Circuit Analysis Spring January 23, 2015 Lecture 02 EE 2006 Electrc Crcut Analyss Sprng 2015 January 23, 2015 Lecture 02 1 Lab 1 Dgtal Multmeter Lab nstructons Aalable onlne Prnt out and read before Lab MWAH 391, 4:00 7:00 pm, next Monday or Wednesday (January

More information

Week 9: Multivibrators, MOSFET Amplifiers

Week 9: Multivibrators, MOSFET Amplifiers ELE 2110A Electronc Crcuts Week 9: Multbrators, MOSFET Aplfers Lecture 09-1 Multbrators Topcs to coer Snle-stae MOSFET aplfers Coon-source aplfer Coon-dran aplfer Coon-ate aplfer eadn Assnent: Chap 14.1-14.5

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02 EE 2006 Electrc Crcut Analyss Fall 2014 September 04, 2014 Lecture 02 1 For Your Informaton Course Webpage http://www.d.umn.edu/~jngba/electrc_crcut_analyss_(ee_2006).html You can fnd on the webpage: Lecture:

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments.

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments. CE7 Structural Analyss II PAAR FRAE EEET y 5 x E, A, I, Each node can translate and rotate n plane. The fnal dsplaced shape has ndependent generalzed dsplacements (.e. translatons and rotatons) noled.

More information

ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 1: Introduction and Three Phase Power

ECE 320 Energy Conversion and Power Electronics Dr. Tim Hogan. Chapter 1: Introduction and Three Phase Power ECE 3 Energy Conerson and Power Electroncs Dr. Tm Hogan Chapter : ntroducton and Three Phase Power. eew of Basc Crcut Analyss Defntons: Node - Electrcal juncton between two or more deces. Loop - Closed

More information

Laboratory 1c: Method of Least Squares

Laboratory 1c: Method of Least Squares Lab 1c, Least Squares Laboratory 1c: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly

More information

Chapter 9 Complete Response of Circuits with Two Storage Elements

Chapter 9 Complete Response of Circuits with Two Storage Elements hapter 9 omplete Response of rcuts wth Two Storage Elements In hapter 8, we had rreducble storage element and a frst order crcut. In hapter 9, we wll hae rreducble storage elements and therefore, a second

More information

Complex Numbers, Signals, and Circuits

Complex Numbers, Signals, and Circuits Complex Numbers, Sgnals, and Crcuts 3 August, 009 Complex Numbers: a Revew Suppose we have a complex number z = x jy. To convert to polar form, we need to know the magntude of z and the phase of z. z =

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Circuit Theorems. Introduction

Circuit Theorems. Introduction //5 Crcut eorem ntroducton nearty Property uperpoton ource Tranformaton eenn eorem orton eorem Maxmum Power Tranfer ummary ntroducton To deelop analy technque applcable to lnear crcut. To mplfy crcut analy

More information

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students.

[The following data appear in Wooldridge Q2.3.] The table below contains the ACT score and college GPA for eight college students. PPOL 59-3 Problem Set Exercses n Smple Regresson Due n class /8/7 In ths problem set, you are asked to compute varous statstcs by hand to gve you a better sense of the mechancs of the Pearson correlaton

More information

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton EES ntro. electroncs for S Sprng 003 Lecture : 0/03/03 A.R. Neureuther Verson Date 0/0/03 EES ntroducton to Electroncs for omputer Scence Andrew R. Neureuther Lecture # apactors and nductors Energy Stored

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

INDUCTANCE. RC Cicuits vs LR Circuits

INDUCTANCE. RC Cicuits vs LR Circuits INDUTANE R cuts vs LR rcuts R rcut hargng (battery s connected): (1/ )q + (R)dq/ dt LR rcut = (R) + (L)d/ dt q = e -t/ R ) = / R(1 - e -(R/ L)t ) q ncreases from 0 to = dq/ dt decreases from / R to 0 Dschargng

More information

Statistics MINITAB - Lab 2

Statistics MINITAB - Lab 2 Statstcs 20080 MINITAB - Lab 2 1. Smple Lnear Regresson In smple lnear regresson we attempt to model a lnear relatonshp between two varables wth a straght lne and make statstcal nferences concernng that

More information

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor Mcoelectoncs Ccut Analyss and Desgn Donald A. Neamen Chapte 5 The pola Juncton Tanssto In ths chapte, we wll: Dscuss the physcal stuctue and opeaton of the bpola juncton tanssto. Undestand the dc analyss

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points) ENGR-43 Electronc Instrumentaton Quz 4 Fall 21 Name Secton Queston Value Grade I 2 II 2 III 2 IV 2 V 2 Total (1 ponts) On all questons: SHOW LL WORK. EGIN WITH FORMULS, THEN SUSTITUTE VLUES ND UNITS. No

More information

Lecture 10: Small Signal Device Parameters

Lecture 10: Small Signal Device Parameters Lecture 0: Small Sgnal Dece Parameters 06009 Lecture 9, Hgh Speed Deces 06 Lecture : Ballstc FETs Lu: 0, 394 06009 Lecture 9, Hgh Speed Deces 06 Large Sgnal / Small Sgnal e I E c I C The electrcal sgnal

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Crcut Analyss Lesson 3 Chapter : AC Power Analyss (nstant & Ae Power; Max Ae Power Transfer; Effecte or RMS alue, Power Factor, Coplex Power, Power Trangle, Power Factor Correcton Danel M. Ltynsk,

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information