Translational-Rotational Motion of Earth Artificial Satellite (EAS) in Hill's Gravity Field

Size: px
Start display at page:

Download "Translational-Rotational Motion of Earth Artificial Satellite (EAS) in Hill's Gravity Field"

Transcription

1 Translaional-Roaional Moion of Earh Arificial Saellie (EAS) in Hill's Graviy Field Asemessova alamkas,a, Bekov Askar,b, Shinibaev Maksu, Ussipbekova Dinara Republic of azakhsan, Almay, Sapaev Sree, azakh Naional Technical Universiy afer I Sapayev Republic of azakhsan, Almay, 5 Shevchenko Sree, Join Sock Company Naional Cener of Space Researches and Technologies a naucha@mailru, b bekov@mailru *Asemessova alamkas eywords: Hill's graviy field, proofmass, a funcion of ime, he Moon, Moon moion heory Absrac The mehod presened below makes i possible o obain an approximae soluion o he problem of ranslaional-roaional moion of proofmass in Hill's graviy field, as explici funcions of ime Inroducion The problem of sudying he Moon's moion araced and keeps aracing aenion of many researchers [-6] In course of creaing he heory of he Moon's moion, GV Hill suggesed wo mehods of building he inermediae orbi of he Moon [7] The firs mehod was described in works published in [8] The dynamic meaning of he problem was in he following simplificaions: ) The Sun moves away o an infinie disance ) Simulaneously increasing is mass infiniely ) In he relaive geocenric moion, he Sun moves along epler's circular orbi Based on his formalizaion, Hill replaced he power funcion of an exac bodies problem wih a simplified one This mehod of building an inermediae orbi was subsequenly used in by EV Brown in order o finalize building of a complee analyical heory of lunar moion The second mehod of building an inermediae orbi of he Moon was proposed in 897, and was subsequenly called by BM Schigolev [9] "he second inermediae Hill's orbi" Here Hill considers i necessary ha he inermediae orbi conains perigee and ascending node secular movemen To his end, he proposed a simplified power funcion of he following form U vr ( v v) z, () r here is he produc of muliplying graviaional consan by he sum of he Earh and he Moon masses; and are properly seleced consan mulipliers If he perurbing and he perurbed bodies are on he same side from he cenral body, hen () corresponds o realiy and gives a good approximaion The defec occurs when he perurbing and he perurbed bodies are on opposie sides of he cenral body, bu i is miigaed by he fac ha he Sun a his poin is far away from he Moon Differenial equaions of proofmass orbial moion in Hill's variables In Hill's problem, he Moon is considered a passively graviaing body, and he cenral body is Earh, he perurbed body is he Moon and he perurbing body is he Sun, ie, he Moon's moion is considered in he "Earh-Moon-Sun" sysem In our problem, we consider orbial moion in he "Earh - proofmass- Moon" sysem, and he proofmass, AES model, is considered as he passively graviaing body In he Oxyz geocenric coordinae sysem, differenial equaions of proofmass orbial moion

2 have he form d x x d y y d z z vx, vy, vz () r r r They allow he area inegral dy dx x y C () and he energy inegral dx dy dz ( U h), () whereas C is he area inegral consan, h is he energy inegral consan In Hill's variables, equaions () ake he form: d w w, (5) / d w ( s ) d s d s,, (6) d w C whereas w 6, vc 6 ( v v) C,, (7) C here: is he projecion of radius-vecor r on he Oxy plane, is rue longiude, s - is laiude angen,, cons, w is Hill's variable If we resric ourselves o he orbis of small inclinaion o he Oxy plane, s, s, hen (5) allows reducion approximaely wdw d, (8) Hw w w whereas H is he consan of inegraion defined by he relaion H hc (9) Changing consans and H, we obain he following classificaion of ypes of moion: I Recilinear moion, H = II Parabolic moion, H III Ellipic moion, H IV Hyperbolic moion, H Inegraing differenial equaions (5) and (6) in case of ellipic moion This case corresponds o he following parameers values, H Equaion (8) akes he form wdw d () w w Hw Subradical polynomial has hree posiive l, l, l and one negaive l roos Le's arrange hem in descending order For acual movemens, he subradical polynomial mus be posiive Previously, in [] i was found ha i is posiive wihin wo inervals А) w, В) w

3 Nex, le's look a he firs of moion inervals In he inerval w, he following ransformaion of expression (9) o he Legendre's normal form [] is valid * w dh d, () k sin h whereas Wih w, h, sin h w, ik k i sin h w, h,,, k,,, k, k, i, () *, k is he module of ellipic inegral of he s kind, h is an inermediae variable: h Le's inroduce ino () and () Jacobian funcions and use sandard developmens [], hen, keeping in developmens by powers of O ( k ) he module of ellipic inegral of he s kind, we have he following expressions for,, w, u : ( k k ) ( k k )cos u k cos u, () * ( w kw k w) u ( kw k w)sin u k w sin u, () w ( w kw k w) ( kw k w)cos u k w cos u, (5) whereas is he complee ellipic inegral of he s kind, u ( u ku k u) ( ku k u)sin k u sin k u cos, (6) whereas is ime Consan coefficiens,w, u are wrien in [] Expressions () and () define polar coordinaes, via (5) as explici funcions of ime for he proofmass in inerval w The same mehod can be applied in inerval w Roaional moion of he proofmass relaive o he cener of mass in case of A B mc Le he proofmass be fixed in he cener of mass x C yc zc and he main momens of ineria be relaed via A B mc, m cons, hen he full se of differenial equaions shall have form []: dp dq dr nqr n, npr n,, r cons, (7) arccos, sin sin, sin cos, cos, (8) p q m arcg,, n,, (9) m R p cos, q sin, r, () d d d r q, p r, q p () Differenial equaions (7), () and () allow he following firs inegrals p q C n, (), ()

4 p q C ( ) r n, () r r cons (5) In hese equaions ( p, q, r) is he graviaional consan, is he disance o he cener of mass of he Earh, R is he normalized angular velociy vecor; he fixed coordinaes sysem Cxyz is associaed wih he moving coordinaes of he sysem Cx yz according o he following able: Table Moving coordinaes of he sysem х у z x y z where,,,,, are direcion cosines;,, are Euler's angles Excluding from he firs inegrals and equaion p q ( ) values p q,, we obain d (6) a b b b Nex, le's reduce (6) o Legendre's normal form [] Subradical polynomial is posiive in wo inervals: ), ; ) Le's consider he second inerval, arranging polynomial roos in descending order In accordance wih [7] we have here d a, k, k, (7) k sin / ( ), ik k i wih, Le's inroduce noaions n a and move from (7) o Jacobian ellipic func- ions From (8) le's find u sin sin n,,, k,,, b n i, wih,, (8) k k cosq k cosq k cos6q, n, (9) q consequenly, he nuaion angle is: arccos[ k k cosq k cosq k cos6q] () From (9) le's find he precession angle k ) q k sin q k sin q k sin 6q () ( From () le's find he proper roaion angle ( k ) q k sin q k sin q k sin 6q ()

5 Thus, in he inerval le's find Euler's angles as funcion of ime wih accuracy O ( k ) Euler's kinemaic equaions and he Poisson's equaions considering ransferable angular velociy of proofmass cener of graviy in orbial movemen Le's inroduce he following coordinae sysems O * xyz, pu he sar O * o he cener of he Earh's mass, align axis O * z wih is axis of roaion, and axes x, y complemen he sysem o he righ and remain moionless, hen le's place he cener of proofmass O in he reference poin of wo coordinae sysems Oxyz and Ox yz, wih ha le's poin axis z o he coninuaion R O* O, and le's poin axes x, y so ha hey complemen he sysem o he righ, and poin y en normal o he orbi, x e along he angen o he orbi, z - along e R R, x, y, z should be direced along he main cenral axes of ineria of he proofmass x z X Z O * r R dm Y x e O e n e R Figure Coordinaes of he sysem y y z Le's define posiion of he coordinae sysems Oxyz and direcing cosines: Ox yz using he following able of Table Table of direcing cosines х у z e x e n y e R z Then he srengh funcion afer discarding members of order O ( ) shall have he form whereas - is he proofmass U m, () R Direcing cosines are relaed o Euler's angles by he following equaions 5

6 coscos sin sin cos, cossin cossin cos, sin sin, cossin sin coscos, sin sin coscoscos, sin cos, sin sin, sin cos, cos () inemaic equaions ake he form: p cos e, q sin e, (5) r e Poisson's equaions, aking ino accoun e, have he form: d d d r q e, p r e, q p e, d d d r q e, p r e, q p e, (6) d d d r q, p r, q p From (6) and (5) we shall obain: e, e, d e (7) Inegraion of differenial equaions of ranslaional-roaional moion of he proofmass in Hill's graviy field (inervals w and ) Le he proofmass make ranslaional-roaional moion in Hill's graviy field, hen in accordance wih [] differenial equaions shall have he form: d x x d y y d z z vx, vy, vz, r r r (8) dp dq dr A ( C B) qr M x B ( A C) pr M y, C ( B A) pq M z Now, assuming ha he proofmass moves along ellipic orbi ype wih a sligh inclinaion o he main plane (Oxy), we have he soluion for he firs hree differenial equaions in form () and (), (5) (in he w inerval): ( k k ) ( k k )cos u k cos u, (9) * ( w kw k w) u ( kw k w)sin u k w cos u, () u ( u ku k u) ( ku k u)sin k u sin k u cos, () Le us consider he roaional moion of he proofmass in relaion o he cener of masses in he inerval in case A B mc In case e we ge Euler's angles (), () and () arccos [ k k cos k cos k cos6 ] ; () 6 ( k ) k sin k sin k sin ; () 6

7 ( k ) k sin k sin k sin 6 () Now le's consider ha, hen e e * n ( w kw k w) ( kw k w)cos k w cos 7, (5) and le's use (7), ie, e ( ), e, e (6) Having inegraed (6), we have ( k k )sin k cos ; (7) ( k k )sin k cos ; (8) arccos [( v kv k v) ( v kv k v)cos ] (9) Consan coefficiens,, v are wrien in [] The soluion obained provides he possibiliy o define he effec of he orbial moion of proof mass cener on is roaional moion: ( k k )sin k cos ; ( k k )sin k cos ; arccos [( v kv k v) ( v kv k v)cos ], here,,, obviously, he value of hese incremens depends on iniial condiions of proofmass moion REFERENCES [] olb, EW and MS Turner, 99 The Early Universe Wesview Press, pp: -8 [] Guh, A, 998 The Inflaionary Universe Basic, pp: - [] Turner, MS, 7Quarks and he Cosmos Science, 5: 59-6 [] Frieman, J, MS Turner and D Huerer, 8 Dark Energy and he Acceleraing Universe Annual Reviews of Asronomy and Asrophysics, 6: 85- [5] Barcelo, C, S Liberai, S Sonego and M Visser, 8Fae of Graviaional Collapse in Semiclassical Graviy Physical Review, 77(): 7-79 [6] Susskind, L, 8 The Black Hole War: My Bale wih Sephen Hawking o Make he World Safe for Quanum Mechanics Lile Brown, pp: -9 [7] Shchigolev, BM, 95 Inermediae orbis in a hree-body problem Bul Sernberg Asronomical Insiue Moscow Universiy, : 59-9 [8] Hill, GW, 878 Researchesin he Lunar heory Journal of Mahemaics, pure and applied,: 5- [9] Shchigolev, BM, 96 Abou inermediae orbi in Hill's hree-body problem Pub Sernberg Asronomical Insiue Moscow Universiy, 8: 9-98 [] Shinibaev, MD e al, 999 Ellipic ype of body movemen in second fla Hill's orbi In he Proceedings of he 999 Pracical Conference"Auezov Readings-", Shymken, Vol, pp: -5 [] orn, ZG and T orn, 97Mahemaical reference book for Scieniss and Engineers Moscow: Nauka, pp: 7 [] Aksenov, EP, 986 Special funcions in celesial mechanics Moscow: Nauka, pp: [] Shinibaev, MD, Translaional-roaional moion of a rigid body in saionary and nonsaionary Earh's graviy field Almay: Gylym, pp:

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Indusrial Robos Kinemaics 1 Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Kinematics and kinematic functions

Kinematics and kinematic functions ROBOTICS 01PEEQW Basilio Bona DAUIN Poliecnico di Torino Kinemaic funcions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions(called kinemaic funcions or KFs) ha mahemaically

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC Ch.. Group Work Unis Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Uni 2 Jusify wheher he following saemens are rue or false: a) Two sreamlines, corresponding o a same insan of ime, can never inersec

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Math Final Exam Solutions

Math Final Exam Solutions Mah 246 - Final Exam Soluions Friday, July h, 204 () Find explici soluions and give he inerval of definiion o he following iniial value problems (a) ( + 2 )y + 2y = e, y(0) = 0 Soluion: In normal form,

More information

Interpretation of special relativity as applied to earth-centered locally inertial

Interpretation of special relativity as applied to earth-centered locally inertial Inerpreaion of special relaiviy as applied o earh-cenered locally inerial coordinae sysems in lobal osiioning Sysem saellie experimens Masanori Sao Honda Elecronics Co., Ld., Oyamazuka, Oiwa-cho, Toyohashi,

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Single and Double Pendulum Models

Single and Double Pendulum Models Single and Double Pendulum Models Mah 596 Projec Summary Spring 2016 Jarod Har 1 Overview Differen ypes of pendulums are used o model many phenomena in various disciplines. In paricular, single and double

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

The Influence of Gravitation on the Speed of Light and an Explanation of the Pioneer 10 & 11 Acceleration Anomaly

The Influence of Gravitation on the Speed of Light and an Explanation of the Pioneer 10 & 11 Acceleration Anomaly www.ccsene.org/apr Applied Physics Research Vol. 3, No. 2; November 2011 The Influence of Graviaion on he Speed of Ligh and an Explanaion of he Pioneer 10 & 11 Acceleraion Anomaly Gocho V. Sharlanov Sara

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

Integration Over Manifolds with Variable Coordinate Density

Integration Over Manifolds with Variable Coordinate Density Inegraion Over Manifolds wih Variable Coordinae Densiy Absrac Chrisopher A. Lafore clafore@gmail.com In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page

dy dx = xey (a) y(0) = 2 (b) y(1) = 2.5 SOLUTION: See next page Assignmen 1 MATH 2270 SOLUTION Please wrie ou complee soluions for each of he following 6 problems (one more will sill be added). You may, of course, consul wih your classmaes, he exbook or oher resources,

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Analytical Effective Method for Verification of a Satellite Pass over a Region of the Earth Surface Atanas Marinov Atanassov

Analytical Effective Method for Verification of a Satellite Pass over a Region of the Earth Surface Atanas Marinov Atanassov Analyical Effecive Mehod for Verificaion of a Saellie Pass over a Region of he Earh Surface Aanas Marinov Aanassov Solar Terresrial Influences Insiue, Bulgarian Academy of Sciences, Sara Zagora Deparmen,

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

The Paradox of Twins Described in a Three-dimensional Space-time Frame

The Paradox of Twins Described in a Three-dimensional Space-time Frame The Paradox of Twins Described in a Three-dimensional Space-ime Frame Tower Chen E_mail: chen@uguam.uog.edu Division of Mahemaical Sciences Universiy of Guam, USA Zeon Chen E_mail: zeon_chen@yahoo.com

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Linear Surface Gravity Waves 3., Dispersion, Group Velocity, and Energy Propagation

Linear Surface Gravity Waves 3., Dispersion, Group Velocity, and Energy Propagation Chaper 4 Linear Surface Graviy Waves 3., Dispersion, Group Velociy, and Energy Propagaion 4. Descripion In many aspecs of wave evoluion, he concep of group velociy plays a cenral role. Mos people now i

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7].

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7]. Chaper Numerical Tess We here collec a few numerical ess, in order o pu ino evidence he poenialiies of HBVMs [4, 6, 7]. Tes problem Le us consider he problem characerized by he polynomial Hamilonian (4.)

More information

Roller-Coaster Coordinate System

Roller-Coaster Coordinate System Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

More information

Homework Set 2 Physics 319 Classical Mechanics

Homework Set 2 Physics 319 Classical Mechanics Homewor Se Physics 19 Classical Mechanics Problem.7 a) The roce velociy equaion (no graviy) is m v v ln m Afer wo minues he velociy is m/sec ln = 79 m/sec. b) The rae a which mass is ejeced is ( 1 6-1

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

Effects of Coordinate Curvature on Integration

Effects of Coordinate Curvature on Integration Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1. Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Kinematics in One Dimension

Kinematics in One Dimension Kinemaics in One Dimension PHY 7 - d-kinemaics - J. Hedberg - 7. Inroducion. Differen Types of Moion We'll look a:. Dimensionaliy in physics 3. One dimensional kinemaics 4. Paricle model. Displacemen Vecor.

More information

Today: Falling. v, a

Today: Falling. v, a Today: Falling. v, a Did you ge my es email? If no, make sure i s no in your junk box, and add sbs0016@mix.wvu.edu o your address book! Also please email me o le me know. I will be emailing ou pracice

More information

arxiv: v1 [math.na] 23 Feb 2016

arxiv: v1 [math.na] 23 Feb 2016 EPJ Web of Conferences will be se by he publisher DOI: will be se by he publisher c Owned by he auhors, published by EDP Sciences, 16 arxiv:163.67v1 [mah.na] 3 Feb 16 Numerical Soluion of a Nonlinear Inegro-Differenial

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information

18 Biological models with discrete time

18 Biological models with discrete time 8 Biological models wih discree ime The mos imporan applicaions, however, may be pedagogical. The elegan body of mahemaical heory peraining o linear sysems (Fourier analysis, orhogonal funcions, and so

More information

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg Oscillaions PHY 207 - oscillaions - J. Hedberg - 2017 1. Periodic Moion 2. Sinusoidal Moion 3. How do we ge his kind of moion? 4. Posiion - Velociy - cceleraion 5. spring wih vecors 6. he reference circle

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Chapter 11 VIBRATORY MOTION

Chapter 11 VIBRATORY MOTION Ch. 11--Vibraory Moion Chaper 11 VIBRATORY MOTION Noe: There are wo areas of ineres when discussing oscillaory moion: he mahemaical characerizaion of vibraing srucures ha generae waves and he ineracion

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Generalized Chebyshev polynomials

Generalized Chebyshev polynomials Generalized Chebyshev polynomials Clemene Cesarano Faculy of Engineering, Inernaional Telemaic Universiy UNINETTUNO Corso Viorio Emanuele II, 39 86 Roma, Ialy email: c.cesarano@unineunouniversiy.ne ABSTRACT

More information