3, so θ = arccos

Size: px
Start display at page:

Download "3, so θ = arccos"

Transcription

1 Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2, 4) (2, 7, 3) (5, 2, 4) cos θ, so 8 62 ( ) cos θ, cos θ 3, so θ arccos Find vecor parameric, scalar parameric and scalar symmeric equaions for he line hrough he poin (5, 3, 1) and orhogonal o he plane 3x 7y + 2z 8 Soluion: The normal o he plane is in he direcion of he line, so he vecor (3, 7, 2) is in he direcion of he line Vecor Equaion: x (5, 3, 1) + (3, 7, 2) Scalar Parameric Equaions: x 5 + 3, y 3 7, z Scalar Symmeric Equaions: x 5 y z Find an equaion of he plane hrough he poins (1, 5, 4), (4, 9, 1) and (5, 17, 5) Exra Credi: Obain he same equaion using an enirely differen mehod Soluion: Le v (4, 9, 1) (1, 5, 4) (3, 4, 3), w (5, 17, 5) (1, 5, 4) (4, 12, 1), i j k n v w (3, 4, 3) (4, 12, 1) (40, 15, 20) 5(8, 3, 4) Since we can use any vecor in he same direcion as a normal o he plane, we redefine n (8, 3, 4) We ge an equaion for he plane n x n (1, 5, 4) Wriing x (x, y, z), we ge (8, 3, 4) (x, y, z) (8, 3, 4) (1, 5, 4) or 8x 3y + 4z 9 Alernaively, we know he hree poins saisfy an equaion of he form ax + by + cz d We may hus ry o solve he following sysem for a, b, c, d a(1) + b(5) + c(4) d a(4) + b(9) + c(1) d a(5) + b(17) + c(5) d Since we have an exra variable, if we so desire we can arbiarily choose a value for one of hem If we le d 9, we will obain a 8, b 3, c 4 If we chose any oher value for d, we would have obained an equivalen equaion Page 1 of 5

2 Page 2 of 5 4 Find he disance beween he poin (1, 2, 3) and he plane 4x + 5y + 6z 7 Exra Credi: Find he disance using an enirely differen mehod Soluion: If we le (x, y, z) represen a vecor whose ip is in he plane, he disance (4, 5, 6) (4, 5, 6) The is he projecion of (x, y, z) (1, 2, 3) ono he uni normal lengh will be (4, 5, 6) ((x, y, z) (1, 2, 3)) x + 5y + 6z ( ) Alernaively, one could find where he line x (1, 2, 3) + (4, 5, 6) inersecs he plane and find he disance beween ha poin and (1, 2, 3) 5 An an walks on he paraboloid z x 2 +y 2 Using he usual orienaion for he coordinae axis, he an sars a he origin and is rising a a rae of 4 unis per second Looking from above, i looks as if he an is spiralling around he z-axis, saring by he x-axis and making a complee revoluion every 5 seconds (a) Find a vecor parameric equaion for he pah of he an Soluion: Clearly, z 4, where represens ime Since x 2 + y 2 z, we have x 2 + y 2 4 If θ is he angle we visualize looking sraigh down beween he x-axis and he line from he origin o he an, x 4 cos θ and y 4 sin θ Since θ sars a 0 and increases by 2π every 5 seconds, θ 2π We hus obain 5 r (2 cos( 2π), 2 ), 4) 5 5 (b) Find he velociy of he an Soluion: v r ( 1 cos( 2π 5 ) 4π 5 5 ), 1 5 ) + 4π (c) Find he acceleraion of he an Soluion: a v ( cos( 2π 5 5 ), 4) 2π cos( ) 4π 5 5 2π sin( ) 8π2 cos( 2π), π sin( 4π 5 2π cos( ) 8π2 ), 0) 5 Represen ime by Each of your conclusions should be in erms of 6 Consider he vecor funcion x (, 3 sin, 4 cos ), 0 (a) Skech he graph 5 ) + (b) Find he lengh of he porion of he curve for which π 2π Give your answer in erms of a definie inegral You do no need o evaluae he inegral bu may do so for exra credi Soluion: Since dx d (1, 3 cos, 4 sin ), he lengh is 2π π cos sin 2 d

3 Page 3 of 5 7 Consider he vecor funcion x (, 2, 3 ), 1 (a) Skech he graph (b) Find he uni angen vecor T a 2 Soluion: v (1, 2, 3 2 ), so T v v (1, 2, 32 ) When 2, T (1, 4, 12) (c) Find he normal vecor N a 2 Soluion: N T T (0, 2, 6) (1, 2, ) T (0, 2, 12) (1, 4, 12) When 2, we ge T 152 2( 76, 143, 54) ( 76, 143, 54) ( 76, 143, 54) Thus N ( 76, 143, 54) (d) Find he binormal vecor B a 2 (1, 4, 12) ( 76, 143, 54) Soluion: B T N i j k (1, 4, 12) ( 76, 143, 54) (1932, 966, ) (1932, 966, ) We hus have B We can simplify his by observing B is a uni vecor in he direcion of (1932, 966, ) (12, 6, 1) (12, 6, 1) (12, 6, 1), so B (12, 6, 1) 181 (e) Verify T, N and B are muually orhogonal Soluion: We calculae each of he do producs Each comes ou o be 0 (f) Find he curvaure κ a 2 Soluion: κ T ds d When 2, T 2( 76, 143, 54), so T Also, when 2, v (1, 4, 12), so ds d v ( 2 ) 181 We hus have κ 2 181

4 Page 4 of 5 8 A jogger runs leisurely a a consan pace of a six minue mile around a quarer mile rack The rack consiss of wo parallel sraighaways conneced by wo semicircles, each 110 yards long (a) Se up an appropriae coordinae sysem Soluion: We se he origin a he cener of he rack The x-axis is parallel o he sraigh porion, oriened in he direcion he jogger sars ou We orien he y-axis so he y-coordinae is negaive when he jogger begins Since each semicircle is of lengh 110 (measured in yards), we effecively have par of a circle wih circumference 220 Leing r be he radius, we have 2πr 220, so r 110 π We will consider he horizonal porion o be going eas-wes, wih he jogger saring ou going o he eas, hen counerclockwise around a semicircle, hen going

5 Page 5 of 5 (c) Find he acceleraion of he runner when he or she is exacly halfway hrough one of he semicircles Exra Credi: Obain he acceleraion again using an enirely differen mehod Soluion: Around he firs curve, r (55, 0) + 110(cos( π + 8π( 3)), sin( π + π π ( ))), so v ( sin( π + 8π( 3)), cos( π + 8π( 3))) 8π and a 3 8 π ( cos( π + 8π( 3)), sin( π + 8π( 3))) ( 8π π )2

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Roller-Coaster Coordinate System

Roller-Coaster Coordinate System Winer 200 MECH 220: Mechanics 2 Roller-Coaser Coordinae Sysem Imagine you are riding on a roller-coaer in which he rack goes up and down, wiss and urns. Your velociy and acceleraion will change (quie abruply),

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Answers to 1 Homework

Answers to 1 Homework Answers o Homework. x + and y x 5 y To eliminae he parameer, solve for x. Subsiue ino y s equaion o ge y x.. x and y, x y x To eliminae he parameer, solve for. Subsiue ino y s equaion o ge x y, x. (Noe:

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information

Math 221: Mathematical Notation

Math 221: Mathematical Notation Mah 221: Mahemaical Noaion Purpose: One goal in any course is o properly use he language o ha subjec. These noaions summarize some o he major conceps and more diicul opics o he uni. Typing hem helps you

More information

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e 66 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES SLUTIN We use a graphing device o produce he graphs for he cases a,,.5,.,,.5,, and shown in Figure 7. Noice ha all of hese curves (ecep he case a ) have

More information

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018 UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

More information

Trajectory planning in Cartesian space

Trajectory planning in Cartesian space Roboics 1 Trajecory planning in Caresian space Prof. Alessandro De Luca Roboics 1 1 Trajecories in Caresian space in general, he rajecory planning mehods proposed in he join space can be applied also in

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel 15. Biccle Wheel The graph We moun a biccle wheel so ha i is free o roae in a verical plane. In fac, wha works easil is o pu an exension on one of he axles, and ge a suden o sand on one side and hold he

More information

AP Calculus BC - Parametric equations and vectors Chapter 9- AP Exam Problems solutions

AP Calculus BC - Parametric equations and vectors Chapter 9- AP Exam Problems solutions AP Calculus BC - Parameric equaions and vecors Chaper 9- AP Exam Problems soluions. A 5 and 5. B A, 4 + 8. C A, 4 + 4 8 ; he poin a is (,). y + ( x ) x + 4 4. e + e D A, slope.5 6 e e e 5. A d hus d d

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Name: Total Points: Multiple choice questions [120 points]

Name: Total Points: Multiple choice questions [120 points] Name: Toal Poins: (Las) (Firs) Muliple choice quesions [1 poins] Answer all of he following quesions. Read each quesion carefully. Fill he correc bubble on your scanron shee. Each correc answer is worh

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

Differential Geometry: Revisiting Curvatures

Differential Geometry: Revisiting Curvatures Differenial Geomery: Reisiing Curaures Curaure and Graphs Recall: hus, up o a roaion in he x-y plane, we hae: f 1 ( x, y) x y he alues 1 and are he principal curaures a p and he corresponding direcions

More information

Starting from a familiar curve

Starting from a familiar curve In[]:= NoebookDirecory Ou[]= C:\Dropbox\Work\myweb\Courses\Mah_pages\Mah_5\ You can evaluae he enire noebook by using he keyboard shorcu Al+v o, or he menu iem Evaluaion Evaluae Noebook. Saring from a

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

PHYS 100: Lecture 2. Motion at Constant Acceleration. Relative Motion: Reference Frames. x x = v t + a t. x = vdt. v = adt. x Tortoise.

PHYS 100: Lecture 2. Motion at Constant Acceleration. Relative Motion: Reference Frames. x x = v t + a t. x = vdt. v = adt. x Tortoise. a PHYS 100: Lecure 2 Moion a Consan Acceleraion a 0 0 Area a 0 a 0 v ad v v0 a0 v 0 x vd 0 A(1/2)( v) Area v 0 v v-v 0 v 0 x x v + a 1 0 0 2 0 2 Relaive Moion: Reference Frames x d Achilles Toroise x Toroise

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

AP CALCULUS BC 2016 SCORING GUIDELINES

AP CALCULUS BC 2016 SCORING GUIDELINES 6 SCORING GUIDELINES Quesion A ime, he posiion of a paricle moving in he xy-plane is given by he parameric funcions ( x ( ), y ( )), where = + sin ( ). The graph of y, consising of hree line segmens, is

More information

Homework sheet Exercises done during the lecture of March 12, 2014

Homework sheet Exercises done during the lecture of March 12, 2014 EXERCISE SESSION 2A FOR THE COURSE GÉOMÉTRIE EUCLIDIENNE, NON EUCLIDIENNE ET PROJECTIVE MATTEO TOMMASINI Homework shee 3-4 - Exercises done during he lecure of March 2, 204 Exercise 2 Is i rue ha he parameerized

More information

DIFFERENTIAL GEOMETRY HW 5

DIFFERENTIAL GEOMETRY HW 5 DIFFERENTIAL GEOMETRY HW 5 CLAY SHONKWILER 3. Le M be a complee Riemannian manifold wih non-posiive secional curvaure. Prove ha d exp p v w w, for all p M, all v T p M and all w T v T p M. Proof. Le γ

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version):

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS 6 cos Secon Funamenal Theorem of Calculus: f a 4 a f 6 cos Secon Funamenal Theorem of Calculus (Chain Rule Version): g f a E. Use he Secon

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Distance Between Two Ellipses in 3D

Distance Between Two Ellipses in 3D Disance Beween Two Ellipses in 3D David Eberly Magic Sofware 6006 Meadow Run Cour Chapel Hill, NC 27516 eberly@magic-sofware.com 1 Inroducion An ellipse in 3D is represened by a cener C, uni lengh axes

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applications of the Basic Equations Chapter 3. Paul A. Ullrich Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

More information

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions Mah b. Calculus, Series, and Differenial Equaions. Final Exam Soluions Spring 6. (9 poins) Evaluae he following inegrals. 5x + 7 (a) (x + )(x + ) dx. (b) (c) x arcan x dx x(ln x) dx Soluion. (a) Using

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

SINUSOIDAL WAVEFORMS

SINUSOIDAL WAVEFORMS SINUSOIDAL WAVEFORMS The sinusoidal waveform is he only waveform whose shape is no affeced by he response characerisics of R, L, and C elemens. Enzo Paerno CIRCUIT ELEMENTS R [ Ω ] Resisance: Ω: Ohms Georg

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Integration Over Manifolds with Variable Coordinate Density

Integration Over Manifolds with Variable Coordinate Density Inegraion Over Manifolds wih Variable Coordinae Densiy Absrac Chrisopher A. Lafore clafore@gmail.com In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure

More information

10.6 Parametric Equations

10.6 Parametric Equations 0_006.qd /8/05 9:05 AM Page 77 Secion 0.6 77 Parameric Equaions 0.6 Parameric Equaions Wha ou should learn Evaluae ses of parameric equaions for given values of he parameer. Skech curves ha are represened

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Physics 218 Exam 1 with Solutions Spring 2011, Sections ,526,528

Physics 218 Exam 1 with Solutions Spring 2011, Sections ,526,528 Physics 18 Exam 1 wih Soluions Sprin 11, Secions 513-515,56,58 Fill ou he informaion below bu do no open he exam unil insruced o do so Name Sinaure Suden ID E- mail Secion # Rules of he exam: 1. You have

More information

copper ring magnetic field

copper ring magnetic field IB PHYSICS: Magneic Fields, lecromagneic Inducion, Alernaing Curren 1. This quesion is abou elecromagneic inducion. In 1831 Michael Faraday demonsraed hree ways of inducing an elecric curren in a ring

More information

Lesson 3.1 Recursive Sequences

Lesson 3.1 Recursive Sequences Lesson 3.1 Recursive Sequences 1) 1. Evaluae he epression 2(3 for each value of. a. 9 b. 2 c. 1 d. 1 2. Consider he sequence of figures made from riangles. Figure 1 Figure 2 Figure 3 Figure a. Complee

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

Effects of Coordinate Curvature on Integration

Effects of Coordinate Curvature on Integration Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

More information

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2 7 Parameric equaions This chaer will show ou how o skech curves using heir arameric equaions conver arameric equaions o Caresian equaions find oins of inersecion of curves and lines using arameric equaions

More information

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5)

Physics 218 Exam 1. with Solutions Fall 2010, Sections Part 1 (15) Part 2 (20) Part 3 (20) Part 4 (20) Bonus (5) Physics 18 Exam 1 wih Soluions Fall 1, Secions 51-54 Fill ou he informaion below bu o no open he exam unil insruce o o so! Name Signaure Suen ID E-mail Secion # ules of he exam: 1. You have he full class

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average

Speed and Velocity. Overview. Velocity & Speed. Speed & Velocity. Instantaneous Velocity. Instantaneous and Average Overview Kinemaics: Descripion of Moion Posiion and displacemen velociy»insananeous acceleraion»insananeous Speed Velociy Speed and Velociy Speed & Velociy Velociy & Speed A physics eacher walks 4 meers

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 8, 2019

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 8, 2019 EN4: Dynamics and Vibraions Homework : Kinemaics and Dynamics of Paricles Due Friday Feb 8, 19 School of Engineering Brown Universiy 1. Sraigh Line Moion wih consan acceleraion. Virgin Hyperloop One is

More information

Solutions for homework 12

Solutions for homework 12 y Soluions for homework Secion Nonlinear sysems: The linearizaion of a nonlinear sysem Consider he sysem y y y y y (i) Skech he nullclines Use a disincive marking for each nullcline so hey can be disinguished

More information

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC Ch.. Group Work Unis Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Uni 2 Jusify wheher he following saemens are rue or false: a) Two sreamlines, corresponding o a same insan of ime, can never inersec

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r. Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Physics for Scieniss and Engineers I PHY 48, Secion 4 Dr. Beariz Roldán Cuenya Universiy of Cenral Florida, Physics Deparmen, Orlando, FL Chaper - Inroducion I. General II. Inernaional Sysem of Unis III.

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right?

t A. 3. Which vector has the largest component in the y-direction, as defined by the axes to the right? Ke Name Insrucor Phsics 1210 Exam 1 Sepember 26, 2013 Please wrie direcl on he exam and aach oher shees of work if necessar. Calculaors are allowed. No noes or books ma be used. Muliple-choice problems

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

Exercises: Similarity Transformation

Exercises: Similarity Transformation Exercises: Similariy Transformaion Problem. Diagonalize he following marix: A [ 2 4 Soluion. Marix A has wo eigenvalues λ 3 and λ 2 2. Since (i) A is a 2 2 marix and (ii) i has 2 disinc eigenvalues, we

More information