The role of the error function in three-dimensional singularly perturbed convection-diffusion problems with discontinuous data

Size: px
Start display at page:

Download "The role of the error function in three-dimensional singularly perturbed convection-diffusion problems with discontinuous data"

Transcription

1 The role of he error funcion in hree-dimensional singularl perurbed convecion-diffusion problems wih disconinuous daa José Luis López García, Eser Pérez Sinusía Depo. de Maemáica e Informáica, U. Pública de Navarra jl.lopez@unavarra.es, eser.perez@unavarra.es Nico M. Temme Cenrum Voor Wiskunde en Informáica, Amserdam Nico.Temme@cwi.nl Resumen We consider singularl perurbed convecion-diffusion problems defined in hree-dimensional domains, problems of parabolic pe: ε(u + u ) + u + v u + v u = and of ellipic pe: ε(u + u + u zz ) + v u + v u + v 3 u z =, where v, v and v are real consans. For ever one of hese wo kind of problems we consider several hree-dimensional domains. We also consider for all of hese problems Dirichle daa disconinuous a cerain regions of he boundaries of he domains. For each problem, an asmpoic approimaion of he soluion is obained from an inegral represenaion when he singular parameer ε +. The soluion is approimaed b producs of error funcions, and his approimaion characerizes he effec of he disconinuiies on he small ε behaviour of he soluion and is derivaives in he boundar laers or he inernal laers. Palabras clave: singular perurbaion problem, disconinuous boundar daa, asmpoic epansions, error funcion. Clasificación para el Ceda 5: EDPs.. Inroducion As i has been shown recenl []-[5], he error funcion plas a fundamenal role in he approimaion of D singularl perurbed convecion-diffusion problems wih disconinuous Dirichle daa. In he problems here analzed i is shown ha he soluion is approimaed b a finie combinaion of error funcions as ε +. For eample, in he problem defined on he firs quadran Ω (, ) (, ) and wih a disconinuous Dirichle boundar condiion a he corner poin (, ) (see Figure ) []: { ε U + v U =, (, ) Ω, (P ) U(, ) =, U(, ) =, U C( Ω) D (Ω), where Ω Ω \ {(, )}, he soluion can be approimaed, for < β < /, b wih U β (, ) = U β(, )( + O( ε)) as ε +, r r > Uβ(, ) [ ( )] r φ β erfc sin. () We have used he polar coordinaes = r sin φ, = r cos φ ( r <, φ /). Afer he wo-dimensional sud performed in []-[], we wonder if i is possible o eend our wo-dimensional analsis o hree-dimensional problems wih disconinuous daa and if he error funcion is also useful in he approimaion of hese kind of problems. Then, we analze several 3D parabolic and ellipic problems defined on differen domains. We onl deail here a 3D parabolic problem defined on a half space (,, ) Ω (, ) (, ) (, ) wih a disconinuous iniial condiion over a recangle and a 3D ellipic problem defined on he firs ocan Ω = (, ) (, ) (, ), wih a disconinuous Dirichle daa a he X and Y aes.

2 β Ω Figura : Domain Ω and boundar condiions in problem (P ). U (,) β v Figura : Graph of he firs order approimaion U /4(, ) o he soluion of problem (P ) for ε =, and β = /4. The convecion vecor v drags he disconinui of he boundar condiion a (, ) originaing a parabolic laer along he characerisic defined b v and emanaing from (, )... A 3D parabolic problem in a half space We consider a problem defined in he upper half space: (,, ) Ω (, ) (, ) (, ), wih a recangular source of conaminaion locaed on he recangle (a, b) (c, d) (see Figure 3): U C( Ω ), U, U, U, U, U C(Ω ), U bounded on bounded subses of Ω, ε(u + U ) + v U + v U + U =, in Ω, U(,, ) = χ (a,b) ()χ (c,d) (), for (, ) R. In his formula, a < b, c < d and he posiive numbers b a and d c represen he lengh of he sides of he source of conaminaion. Observe ha he iniial condiion is disconinuous a { = a, =, c < < d}; { = b, =, c < < d}; { = c, =, a < < b} and { = d, =, a < < b}. The se Ω is he closed se Ω wih he regions of disconinui of he boundar daa removed: Ω Ω \ {{(, c, ), (, d, ), a b} {(a,, ), (b,, ), c d}}. () (,c,) (b,,) (a,,) (,d,) Figura 3: Domain Ω and iniial condiions of problem (). The change of variable U(,, ) = e [v +v /]/() F (,, ) in () ields he following pro-

3 blem for F (,, ): F C( Ω ), F, F, F, F, F C(Ω ), F bounded on bounded subses of Ω, F + F ɛ F =, in Ω, F (,, ) = e [v+v]/() χ (a,b) ()χ (c,d) (), for (, ) R. (3) We add a radiaion condiion o () in order o assure he uniqueness of he soluion. Hence, we consider he following problem: U C( Ω ), U, U, U, U, U C(Ω ), U bounded on bounded subses of Ω, ε(u + U ) + v U + v U + U =, in Ω, U(,, ) = χ (a,b) ()χ (c,d) (), for (, ) R, U, U, U, U, U, U = o (/r), as r, where r +. This problem has a mos one soluion. A soluion of problem (3) ma be derived b using he Fourier ransform in (3) wih respec o and. Therefore, we obain he soluion of (P ) epressed in erms a double inegral: U(,, ) = 4ɛ e[v+v /]/() b a e ( s) /(4ɛ) e vs/() ds Tha ma be evaluaed eacl in erms of error funcions: U(,, ) = { ( ) ( )} v + a erfc 4 v + b erfc ε ε { ( ) ( )} v + c erfc v + d erfc ε. ε d c (P ) e ( u) /(4ɛ) e vu/() du, (4) (5) U(,,.) U(,,) Figura 4: Graphs of he soluion of problem (P ) given in (5) for ε =,, a = b =, c = d =, v =,5 and differen values of..3. A 3D ellipic problem in an ocan We consider he firs ocan of R 3 wih disconinuiies a one-dimensional corners of he boundar of he domain Ω = (, ) (, ) (, ), wih an infinie source of conaminaion locaed a he plane z = (see Figure 5) and wih he convecion vecor v = (,, ): U C( Ω ) D (Ω ), U bounded on bounded subses of Ω, ε U + U z =, in Ω, (6) U(,, ) =, U(,, z) = U(,, z) =, for (,, z) Ω. Observe ha he Dirichle daa are disconinuous a he X and Y aes. The se Ω is he closed se Ω wih he X and Y aes removed: Ω Ω {(,, );, > } {(,, z);, z > } 3

4 z Figura 5: Domain Ω and Dirichle condiions of problem (6). {(,, z);, z > }. Afer he change U(,, z) = e v r /() F (,, z), problem (6) is ransformed ino he Yukawa equaion for F (,, z): F C( Ω ) D (Ω ), F bounded on bounded subses of Ω, F 4ɛ F =, in Ω, (7) F (,, ) =, F (,, z) = F (,, z) =, for (,, z) Ω. This problem ma have no a unique soluion unless we impose a convenien condiion upon U(,, z) (or upon F (,, z)) concerning is growh a infini. Then, we add a radiaion condiion o (6) and consider he following problem: U C( Ω ) D (Ω ), U bounded on bounded subses of Ω, ε U + U z =, in Ω, U(,, ) =, ( U(,, z) = U(,, z) =, for (,, z) Ω, ) (P ) U(,, z) = o e (r k+z)/(), as r k wih k =,, 3, rk where r + z, r + z and r 3 +. As a difference wih problem (P ), he soluion of (P ) canno be evaluaed in erms of known funcions, bu ma be approimaed in erms of error funcions when ɛ +. For his purpose we define he region: Ω Ω \ {{(,, z) Ω, <, < z z } {(,, z) Ω, <, < z z }}. The unique soluion of problem (P ) ma be derived b using he Fourier sine ransform wih respec o and : U(,, z) = ez/() d ds sin(/()) sin(s/()) e z + +s /(). (8) s Afer he change of variable s u defined b s = + u in he s inegral we obain: U(,, z) = ez/() sin(/()) d sin( + u/()) u e z + +u /() du. The inegral in he u variable is jus he soluion of a similar wo-dimensional convecion-diffusion problem defined on he quarer plane (, z) (, ) (, ) where i is shown ha: e z/() sin(u/()) e z +u /() + z du = erf z + u R(, z, ɛ), wih R(, z, ɛ) = O( ɛ) uniforml in, z for + z r > : R(, z, ɛ) C ɛ ( + z ) 3/4 e[z +z ]/(). (9) 4

5 wih C a posiive consan independen of, z and ɛ. Therefore, we can wrie wih and U (,, z) ez/() U(,, z) = U (,, z) + U (,, z), () U (,, z) ez/() sin(/()) e z + + /() erf [ + z z]d sin(/()) e z + /() R(, z, / + )d. The funcion U admis he following bound uniforml valid in Ω wih + z r > : On he oher hand we wrie wih and U (,, z) erf U (,, z) C + z e[z +z ]/(). () U (,, z) = U (,, z) + U (,, z), () z + z e z/() sin(/()) e z + /() d U (,, z) ez/() sin(/()) e z + /() + erf [ z + z + z] erf z d. From here we can obain a bound for U similar o () and use he soluion of a similar D problem defined on a quarer plane o analze U. We finall obain ha, for (,, z) Ω, he soluion U(,, z) of problem (P ) is (3) U(,, z) = erf z + z erf z + z [ + O( ɛ) ]. (4) U(,,) U(,,4) (a) z = (b) z = 4 Bibliografía [] J.L. López and E. Pérez Sinusía, Asmpoic epansions for wo singularl perurbed convecion-diffusion problems wih disconinuous daa: he quarer plane and he infinie srip, Sud. Appl. Mah., 3 (4), [] J.L. López and E. Pérez Sinusía, Asmpoic approimaions for a singularl perurbed convecion-diffusion problem wih disconinuous daa in a secor, JCAM, o be published. [3] S.-D. Shih, A novel uniform epansion for a singularl perurbed parabolic problem wih corner singulari, Meh. Appl. Anal., 3 (996), n., 3-7. [4] N.M. Temme, Analical mehods for a singular perurbaion problem in a secor, SIAM J. Mah. Anal., 5 (974), n. 6, [5] N.M. Temme, Analical mehods for a selecion of ellipic singular perurbaion problems, Recen advances in differenial equaions (Kunming, 997), 3-48, Piman Res. Noes Mah. Ser., 386, Longman, Harlow,

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

And the solution to the PDE problem must be of the form Π 1

And the solution to the PDE problem must be of the form Π 1 5. Self-Similar Soluions b Dimensional Analsis Consider he diffusion problem from las secion, wih poinwise release (Ref: Bluman & Cole, 2.3): c = D 2 c x + Q 0δ(x)δ() 2 c(x,0) = 0, c(±,) = 0 Iniial release

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Chapter 4. Truncation Errors

Chapter 4. Truncation Errors Chaper 4. Truncaion Errors and he Taylor Series Truncaion Errors and he Taylor Series Non-elemenary funcions such as rigonomeric, eponenial, and ohers are epressed in an approimae fashion using Taylor

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

arxiv: v1 [math.fa] 3 Jan 2019

arxiv: v1 [math.fa] 3 Jan 2019 DAMPED AND DIVERGENCE EXACT SOLUTIONS FOR THE DUFFING EQUATION USING LEAF FUNCTIONS AND HYPERBOLIC LEAF FUNCTIONS A PREPRINT arxiv:9.66v [mah.fa] Jan 9 Kazunori Shinohara Deparmen of Mechanical Sysems

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Applicable Mathematics 2A

Applicable Mathematics 2A Applicable Mahemaics A Lecure Noes Revised: Augus 00 Please noe ha hese are my lecure noes: hey are no course noes. So I will be following hese noes very closely, supplemened by he homework eamples ec

More information

A New Perturbative Approach in Nonlinear Singularity Analysis

A New Perturbative Approach in Nonlinear Singularity Analysis Journal of Mahemaics and Saisics 7 (: 49-54, ISSN 549-644 Science Publicaions A New Perurbaive Approach in Nonlinear Singulariy Analysis Ta-Leung Yee Deparmen of Mahemaics and Informaion Technology, The

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4)

(1) (2) Differentiation of (1) and then substitution of (3) leads to. Therefore, we will simply consider the second-order linear system given by (4) Phase Plane Analysis of Linear Sysems Adaped from Applied Nonlinear Conrol by Sloine and Li The general form of a linear second-order sysem is a c b d From and b bc d a Differeniaion of and hen subsiuion

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Outline of Topics. Analysis of ODE models with MATLAB. What will we learn from this lecture. Aim of analysis: Why such analysis matters?

Outline of Topics. Analysis of ODE models with MATLAB. What will we learn from this lecture. Aim of analysis: Why such analysis matters? of Topics wih MATLAB Shan He School for Compuaional Science Universi of Birmingham Module 6-3836: Compuaional Modelling wih MATLAB Wha will we learn from his lecure Aim of analsis: Aim of analsis. Some

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Chapter 5 Kinematics

Chapter 5 Kinematics Chaper 5 Kinemaics In he firs place, wha do we mean b ime and space? I urns ou ha hese deep philosophical quesions have o be analzed ver carefull in phsics, and his is no eas o do. The heor of relaivi

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Second-Order Differential Equations

Second-Order Differential Equations WWW Problems and Soluions 3.1 Chaper 3 Second-Order Differenial Equaions Secion 3.1 Springs: Linear and Nonlinear Models www m Problem 3. (NonlinearSprings). A bod of mass m is aached o a wall b means

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.7. PLANE LINEAR ELASTICITY Coninuum Mechanics Course (MMC) - ETSECCPB - UPC Overview Plane Linear Elasici Theor Plane Sress Simplifing Hpohesis Srain Field Consiuive Equaion Displacemen Field The Linear

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

Solutions for homework 12

Solutions for homework 12 y Soluions for homework Secion Nonlinear sysems: The linearizaion of a nonlinear sysem Consider he sysem y y y y y (i) Skech he nullclines Use a disincive marking for each nullcline so hey can be disinguished

More information

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas

Math 527 Lecture 6: Hamilton-Jacobi Equation: Explicit Formulas Mah 527 Lecure 6: Hamilon-Jacobi Equaion: Explici Formulas Sep. 23, 2 Mehod of characerisics. We r o appl he mehod of characerisics o he Hamilon-Jacobi equaion: u +Hx, Du = in R n, u = g on R n =. 2 To

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Represenaion of Signals in Terms of Frequency Componens Chaper 4 The Fourier Series and Fourier Transform Consider he CT signal defined by x () = Acos( ω + θ ), = The frequencies `presen in he signal are

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Fall 2008 sections 001 and 003 Instructor: Scott Glasgow KEY Mah 334 Miderm III Fall 28 secions and 3 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS

CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.10 (22 (2014, 67 76 DOI: 10.5644/SJM.10.1.09 CERTAIN CLASSES OF SOLUTIONS OF LAGERSTROM EQUATIONS ALMA OMERSPAHIĆ AND VAHIDIN HADŽIABDIĆ Absrac. This paper presens sufficien

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = =

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = = 20. Assume ha df/d sill equals = F + 0.02RF. df dr df/ d F+ 0. 02RF = = 2 dr/ d R 0. 04RF 0. 01R 10 df 11. 2 R= 70 and F = 1 = = 0. 362K dr 31 21. 0 F (70, 30) (70, 1) R 100 Noe ha he slope a (70, 1) is

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

4. Advanced Stability Theory

4. Advanced Stability Theory Applied Nonlinear Conrol Nguyen an ien - 4 4 Advanced Sabiliy heory he objecive of his chaper is o presen sabiliy analysis for non-auonomous sysems 41 Conceps of Sabiliy for Non-Auonomous Sysems Equilibrium

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Vector Calculus. Chapter 2

Vector Calculus. Chapter 2 Chaper Vecor Calculus. Elemenar. Vecor Produc. Differeniaion of Vecors 4. Inegraion of Vecors 5. Del Operaor or Nabla (Smbol 6. Polar Coordinaes Chaper Coninued 7. Line Inegral 8. Volume Inegral 9. Surface

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

(π 3)k. f(t) = 1 π 3 sin(t)

(π 3)k. f(t) = 1 π 3 sin(t) Mah 6 Fall 6 Dr. Lil Yen Tes Show all our work Name: Score: /6 No Calculaor permied in his par. Read he quesions carefull. Show all our work and clearl indicae our final answer. Use proper noaion. Problem

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus)

f t te e = possesses a Laplace transform. Exercises for Module-III (Transform Calculus) Exercises for Module-III (Transform Calculus) ) Discuss he piecewise coninuiy of he following funcions: =,, +, > c) e,, = d) sin,, = ) Show ha he funcion ( ) sin ( ) f e e = possesses a Laplace ransform.

More information

Existence of positive solutions for second order m-point boundary value problems

Existence of positive solutions for second order m-point boundary value problems ANNALES POLONICI MATHEMATICI LXXIX.3 (22 Exisence of posiive soluions for second order m-poin boundary value problems by Ruyun Ma (Lanzhou Absrac. Le α, β, γ, δ and ϱ := γβ + αγ + αδ >. Le ψ( = β + α,

More information