Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = =

Size: px
Start display at page:

Download "Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = ="

Transcription

1 20. Assume ha df/d sill equals = F RF. df dr df/ d F RF = = 2 dr/ d R 0. 04RF 0. 01R 10 df R= 70 and F = 1 = = K dr F (70, 30) (70, 1) R 100 Noe ha he slope a (70, 1) is abou The fo and rabbi populaions spiral oward a fied poin. Again, and even more surprisingl, he rabbis sabilize a R = 40 (4000). Bu he sable fo populaion is reduced o or. Along he wa, he model shows ha he foes are reduced o abou 1, hus becoming in danger of eincion! 23. See he graph in Problem 21 wih iniial condiion (70, 30). Wih his man foes and huners chasing rabbis, he rabbis become einc. A his poin, he foes have been reduced o jus. Afer he rabbis become einc, he foes decrease eponeniall wih ime, evenuall becoming einc hemselves. Problem Se 7-7 Review Problems R0. Answers will var. R1. P() = 3(0. ) P () = 3(0. ) ln 0. P() P () P ()/P() P () 3( 0. )ln 0. = = ln 0. P () 3( 0. ) = , which is a consan, Q.E.D. R2. a. V = speed in mi/h; = ime in s dv = V d b. dv = d V ln V = + C + C C V = e = e e V = C 1 e C 1 can be posiive or negaive, so he absolue value sign is no needed for V. In he real world, V is posiive, which also maes he absolue value sign unnecessar. c. 400 = Ce 0 C = = 400e 40 ln 1. 2 = = V = 400e d. 70 = 400e ln 1. 7 = = s / 2 R3. a. = 6 = ( 3+ C) b. = (3 4) 2 ( = (3 14) 2 does no wor because a (3, ), / = 30 bu 6 1/2 = 30.) c. 10 (3, 2) d. A = 2, = 12 and = 4. See graph in par c. A line hrough (2, 4) wih slope 12 is angen o he graph. e. i. dn/d = 100 N dn = d 100 N (1/) ln 100 N = + C Using (0, 0) gives (1/) ln 100 = C. Subsiuing his value for C gives (1/) ln 100 N = (1/) ln 100. ln 100 N ln 100 = ln 1 (/100)N = 1 ( / 100) N = e N = ( 100 / )( 1 e ) Using (7, 600) and solving numericall gives N = (1 e ) ii. = 30: Abou 42 names 0 Problem Se 7-7 Calculus Soluions Manual 200 Ke Curriculum Press

2 iii. lim N = (1 0) = The brain sauraes a abou 2211 names. iv. Le dn/d = = 100 N N = = names. Subsiuing his for N gives K= K( 1 e ) e = K = 03. (eacl) K ln 03. = = das K or: 30 = N() N( 1) ( 1) = K[ e + e ] ( 1) = Ke ( e + 1) 27 das 20 R4. a. = A (2, ), / = 1.7. A (10, ), / = The slopes a (2, ) and (10, ) agree wih hese numbers. b. Iniial condiions (1, ) and (1, 12) (1, 12) (10, ) Table wih iniial condiion (1, ), = 1: ( = 1) ( = 0.1) M M (1, 10) (1, ) (2, ) (1, ) R. a. The soluion conaining (1, ) crosses he -ais near = 7, converges asmpoicall o he -ais as approaches zero, and is smmeric across he -ais. The soluion conaining (1, 12) goes o infini as goes o infini. c. See he graph in par b wih iniial condiion (1, 10). The soluion conaining (1, 10) behaves more lie he one conaining (1, 12), alhough a sligh discrepanc in ploing ma mae i seem o go he oher wa. 20 = = 0.1 = 1 For = 1, he graph crosses he -ais a abou = 11. b. See he able in par a for = 0.1. See he graph in par a. c. The accurac far awa from he iniial condiion is ver sensiive o he size of he incremen. For insance, in par a he firs sep aes he graph so far down ha i crosses he -ais before running off he edge of he grid. The greaer accurac wih = 0.1 shows ha he graph acuall does no cross he -ais before = 20. Calculus Soluions Manual Problem Se Ke Curriculum Press

3 R6. a. d. Coninuing he compuaions in par c, he graph crosses he -ais close o = 2.. See he able in par a. 10 (hundred beavers) (Noe ha he general soluion o he differenial equaion is ( 6) 2 + 2( 7) 2 = C, and he specific soluion for he given iniial condiion is ( 6) 2 + 2( 7) 2 = 0, whose graph is a single poin.) e. Iniial condiion (, 7) (6, 7) (, 7) (1, 7) (1, 7) 10 (ears) The populaion is decreasing because i is above he maimum susainable, 00 beavers ( = ). B Euler s mehod,.3, or abou 36 beavers, a = 3 ears. b. See he graph in par a wih iniial condiion (3, 100), showing ha he populaion is epeced o increase slowl, hen more rapidl, hen more slowl again, leveling off asmpoicall oward 00. This happens because he iniial populaion of 100 is below he maimum susainable. c. = 06. = ae Subsiue ino he general equaion. Subsiue he iniial 1 = ae. condiion (3, 1). a = e 1. = Solve for a. = + = 1 e 1. e e 06.. K The poin of inflecion is halfwa beween he asmpoes a = 0 and =. 4. = 1 + e e Subsiue 4. for. = ln (e 1. )/0.6 = r d. =.( 0 6 ) ( 7) = 0 when = 6, and = 0 when = 7. So he sable poin is (6, 7), corresponding o he presen populaion of 600 Xalos naives and 7000 as. Suddenl here are oo man predaors for he number of pre, so he a populaion declines. Because is decreasing from (, 7), he graph follows a clocwise pah. f. See he graph in par e wih iniial condiion (1, 7). The graph crosses he -ais a 14.4, indicaing ha he as are huned o eincion. (The Xalos would hen sarve or become vegearian!) g. See he graph in par e wih iniial condiion (1, 7). The graph never crosses he -ais, bu crosses he -ais a 2.3, indicaing ha he a populaion becomes so sparse ha he predaors become einc. (The a populaion would hen eplode!) Concep Problems C1. a. 12 = / = 2 2 = + C, so = [ 0. ( + C)]. b. The differenial equaion would have o become 13 / afer i is inegraed. So he original equaion would have o conain 23 / afer he variables have been separaed. Conjecure: 23 / = c. Confirmaion: 23 = / 23 / = 3 1/ 3 = + C = [(1/3)( + C)] 3, a cubic funcion, Q.E.D. d. For n 0, ( n 1) / = n ( n 1) / n 1/ n = n = + C = [(1/n)( + C)] n 2 Problem Se 7-7 Calculus Soluions Manual 200 Ke Curriculum Press

4 C2. a. b. For eample: 7 / 7 / = = / = + C = [( 1/ )( + C)] Tice Price People N 00 P 6 Limi is 10, indicaing maimum possible populaion. b. a = , c = , and = , eiher b wice aing logarihms as suggesed, or b his mehod: Taing ln once ln a ce = ln P, so ln a ce 10 = ln 17 ln a c = ln 203 ln a ce = ln 226 Then subsiuing ln a = c + ln 203 ino he firs and hird equaions gives c(1 e 10 ) = ln 17 ln 203 c( 1 e ) = ln 226 ln Subsiuing c( 1 e ) = c( e 1) e = e ( ln17 ln 203) ino he previous equaion ields ln 226 ln 203 ln 226 ln 203 e = = ln 17 ln 203 ln 203 ln 17 1 ln 226 ln 203 so = ln = 0. 01K. 10 ln 203 ln 17 Then find c using c( 1 e ) = ln 226 ln 203 and find a using 203 = ae c. c = and a = g() Funcion behaves (more or less) linearl. Le N = number of ices and P = number of $/ice. B linear regression, N 0.3P , wih correlaion coefficien r = c. Le M = oal number of dollars. M P N = P( 0.3P ) M 0.3P P d. Maimize M: M 11.66P M = 0 P = Maimum M a P because M changes from posiive o negaive here (or because he graph of M is a parabola opening downward). Charge $3.30 or $3.3. e. M has a local maimum a his price because charging more han he opimum price reduces aendance enough o reduce he oal amoun made, whereas charging less han he opimum price increases aendance, bu no enough o mae up for he lower price per ice e C3. a. g () = 10e The graph does loo lie Figure 7-7e e lim e 0 lim 10e = 10e 00 e. = 10 = Noe ha his model predics an ulimae populaion of lim P ( ) 421 million. c. Now a = 1., c = 0.21, = , and he ulimae populaion is lim P ( ) 1 million. Thus, he Gomperz model is quie sensiive o a small change in iniial condiions. The prediced ulimae populaion increased b 130 million wih onl a 1 million change in one daa poin! C4. dv/d = 2V 1/ 2 + F, where F is a consan. dv = d F 2V The inegral on he righ is no he inegral of he reciprocal funcion because he numeraor canno be made he differenial of he denominaor. A slope field gives informaion abou he soluions. The following graph is for F = 20 f 3 /min flowing in. (The dashed line shows he soluion wih F = 0, he original condiion.) Saring wih f 3 in he ub, he volume levels off near 100 f 3. Saring below 100 f 3, he volume would increase oward 100. Calculus Soluions Manual Problem Se Ke Curriculum Press

5 V F = 20 F = 0 14 If he inflow rae is oo high, he ub will overflow. The ne graph is for F = 40 f 3 /min. In his case, he sable volume is above he iniial f 3. V F = 40 F = 0 14 I is possible o anidiffereniae he lef side b he algebraic subsiuion mehod of Problem Se -11, Problems The general soluion is F + C= ln ( F 2V ) V 2 and he paricular soluion for V = a = 0 is F F 2 14 = ln V 2 F 2V Unforunael, i is difficul or impossible o solve for V. The volume will asmpoicall approach F 2 /4, overflowing he ub if F 2 /4 > ub capaci. Chaper Tes T1. = T2. Solving a differenial equaion means finding he equaion of he funcion whose derivaive appears in he differenial equaion. T3. The general soluion involves an arbirar consan of inegraion, C. A paricular soluion has C evaluaed a a given iniial condiion. T4. (0, 4) T. The concave side of he graph is up, so he acual graph curves up from he Euler s angen lines, maing he Euler s mehod values an underesimae. (Or: The conve side of he graph is down, so he Euler s angen lines are below he acual graph.) T6. General logisic differenial equaion: M = M T7. = 04. = 04. ln = C = e C e 0.4 = C 1 e 0.4 = C 1 e 0.4(0) = C 1 = e 0.4 T. = 12 = 12 2 = 12+ C dp T. a. = P P = Ce d P = 3000 a = 0 P = 3000e b. P = 2300 a = = ln = K 3000 P(2) = 74.6 Phoebe will no quie mae i because he pressure has dropped jus below 00 psi b ime = 2. or: 00 = e 0314 K 1 00 = ln = 24. 7K K 3000 Phoebe will no quie mae i because he pressure has dropped o 00 jus before = 2. T10. a. = number of grams of chlorine dissolved = number of hours since chlorinaor was sared = 30 d = d 30 1 ln 30 = + C ln 30 = + C 1 30 = C 2 e = 0 when = 0 C 2 = 30 = 30(1 e ) e = 30 ( 1 ) The rae of escape is = 13 when = 100. So = = e = e ( ). K( 13 ). 4 Problem Se 7-7 Calculus Soluions Manual 200 Ke Curriculum Press

6 0. 13 b. 200 = ( 1 e ) e = 1 = K K ln K = = 1. 4K 1. hr T11. a. = 0. = = a = 7 1 ae ae = + 1 7e. 0 b. A = 0, = 2: = 0.(2)( 2)/()(0.1) = 0.07 A = 0.1, = 2.07, so = 0.(2.07)( 2.07)/()(0.1) = A = 0.2, = The precise soluion is = = 1 + 7e , which is greaer han 2.172, as epeced because he graph is concave up (conve side downward). c. 4 = e. 0 = [ln (3/7)]/ 0. = 1.64 Abou 1 monh 21 das d. T12. a. (hundred lilies) (monhs) The graph shows ha he number of lilies is epeced o decrease oward 00 ( = ) because of overcrowding. The graph sars going downward and o he righ from (0, 700) because he cooe populaion is relaivel high, hus decreasing he number of roadrunners. b. There can be wo differen values for he roadrunner populaion for a paricular cooe populaion because he wo evens happen a wo differen imes. For eample, cooes are increasing from 0 when here are 700 roadrunners, bu laer he are decreasing from 0 when here are abou 200 roadrunners. T13. Answers will var. Problem Se 7- Cumulaive Review, Chapers v() 200 (, v()) v() d represens he disance raveled in ime d. 2. Definie inegral ( ) d = = 120 mi 4. M 100 = M 1000 = The Riemann sums seem o be approaching 120 as n increases. Thus, he 120 ha was found b purel algebraic mehods seems o give he correc value of he limi of he Riemann sum. v() 200 (, v()) 0 R (roadrunners) (0, 700) 6. An Riemann sum is bounded b he corresponding lower and upper sums. Tha is, L n R n U n. C (cooes) B he definiion of inegrabili, he limis of L n and U n are equal o each oher and o he definie inegral. B he squeeze heorem, hen, he limi of R n is also equal o he definie inegral. Calculus Soluions Manual Problem Se Ke Curriculum Press

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

1 st order ODE Initial Condition

1 st order ODE Initial Condition Mah-33 Chapers 1-1 s Order ODE Sepember 1, 17 1 1 s order ODE Iniial Condiion f, sandard form LINEAR NON-LINEAR,, p g differenial form M x dx N x d differenial form is equivalen o a pair of differenial

More information

CHAPTER 2: Mathematics for Microeconomics

CHAPTER 2: Mathematics for Microeconomics CHAPTER : Mahemaics for Microeconomics The problems in his chaper are primarily mahemaical. They are inended o give sudens some pracice wih he conceps inroduced in Chaper, bu he problems in hemselves offer

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

MA 366 Review - Test # 1

MA 366 Review - Test # 1 MA 366 Review - Tes # 1 Fall 5 () Resuls from Calculus: differeniaion formulas, implici differeniaion, Chain Rule; inegraion formulas, inegraion b pars, parial fracions, oher inegraion echniques. (1) Order

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

ASTR415: Problem Set #5

ASTR415: Problem Set #5 ASTR45: Problem Se #5 Curran D. Muhlberger Universi of Marland (Daed: April 25, 27) Three ssems of coupled differenial equaions were sudied using inegraors based on Euler s mehod, a fourh-order Runge-Kua

More information

Math 116 Second Midterm March 21, 2016

Math 116 Second Midterm March 21, 2016 Mah 6 Second Miderm March, 06 UMID: EXAM SOLUTIONS Iniials: Insrucor: Secion:. Do no open his exam unil you are old o do so.. Do no wrie your name anywhere on his exam. 3. This exam has pages including

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information

AP CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES. Question 1. 1 : estimate = = 120 liters/hr

AP CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES. Question 1. 1 : estimate = = 120 liters/hr AP CALCULUS AB/CALCULUS BC 16 SCORING GUIDELINES Quesion 1 (hours) R ( ) (liers / hour) 1 3 6 8 134 119 95 74 7 Waer is pumped ino a ank a a rae modeled by W( ) = e liers per hour for 8, where is measured

More information

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions Mah b. Calculus, Series, and Differenial Equaions. Final Exam Soluions Spring 6. (9 poins) Evaluae he following inegrals. 5x + 7 (a) (x + )(x + ) dx. (b) (c) x arcan x dx x(ln x) dx Soluion. (a) Using

More information

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y

Review - Quiz # 1. 1 g(y) dy = f(x) dx. y x. = u, so that y = xu and dy. dx (Sometimes you may want to use the substitution x y Review - Quiz # 1 (1) Solving Special Tpes of Firs Order Equaions I. Separable Equaions (SE). d = f() g() Mehod of Soluion : 1 g() d = f() (The soluions ma be given implicil b he above formula. Remember,

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

Note: For all questions, answer (E) NOTA means none of the above answers is correct.

Note: For all questions, answer (E) NOTA means none of the above answers is correct. Thea Logarihms & Eponens 0 ΜΑΘ Naional Convenion Noe: For all quesions, answer means none of he above answers is correc.. The elemen C 4 has a half life of 70 ears. There is grams of C 4 in a paricular

More information

(π 3)k. f(t) = 1 π 3 sin(t)

(π 3)k. f(t) = 1 π 3 sin(t) Mah 6 Fall 6 Dr. Lil Yen Tes Show all our work Name: Score: /6 No Calculaor permied in his par. Read he quesions carefull. Show all our work and clearl indicae our final answer. Use proper noaion. Problem

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+

( ) 2. Review Exercise 2. cos θ 2 3 = = 2 tan. cos. 2 x = = x a. Since π π, = 2. sin = = 2+ = = cotx. 2 sin θ 2+ Review Eercise sin 5 cos sin an cos 5 5 an 5 9 co 0 a sinθ 6 + 4 6 + sin θ 4 6+ + 6 + 4 cos θ sin θ + 4 4 sin θ + an θ cos θ ( ) + + + + Since π π, < θ < anθ should be negaive. anθ ( + ) Pearson Educaion

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

Age (x) nx lx. Age (x) nx lx dx qx

Age (x) nx lx. Age (x) nx lx dx qx Life Tables Dynamic (horizonal) cohor= cohor followed hrough ime unil all members have died Saic (verical or curren) = one census period (day, season, ec.); only equivalen o dynamic if populaion does no

More information

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e 66 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES SLUTIN We use a graphing device o produce he graphs for he cases a,,.5,.,,.5,, and shown in Figure 7. Noice ha all of hese curves (ecep he case a ) have

More information

ln y t 2 t c where c is an arbitrary real constant

ln y t 2 t c where c is an arbitrary real constant SOLUTION TO THE PROBLEM.A y y subjec o condiion y 0 8 We recognize is as a linear firs order differenial equaion wi consan coefficiens. Firs we sall find e general soluion, and en we sall find one a saisfies

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Topics covered in tutorial 01: 1. Review of definite integrals 2. Physical Application 3. Area between curves. 1. Review of definite integrals

Topics covered in tutorial 01: 1. Review of definite integrals 2. Physical Application 3. Area between curves. 1. Review of definite integrals MATH4 Calculus II (8 Spring) MATH 4 Tuorial Noes Tuorial Noes (Phyllis LIANG) IA: Phyllis LIANG Email: masliang@us.hk Homepage: hps://masliang.people.us.hk Office: Room 3 (Lif/Lif 3) Phone number: 3587453

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Chapter 1 Limits, Derivatives, Integrals, and Integrals

Chapter 1 Limits, Derivatives, Integrals, and Integrals Chaper 1 Limis, Derivaives, Inegrals, and Inegrals Problem Se 1-1 1. a. 9 cm b. From o.1: average rae 6. 34 cm/s From o.01: average rae 7. 1 cm/s From o.001: average rae 7. 0 cm/s So he insananeous rae

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

and v y . The changes occur, respectively, because of the acceleration components a x and a y

and v y . The changes occur, respectively, because of the acceleration components a x and a y Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions MA 14 Calculus IV (Spring 016) Secion Homework Assignmen 1 Soluions 1 Boyce and DiPrima, p 40, Problem 10 (c) Soluion: In sandard form he given firs-order linear ODE is: An inegraing facor is given by

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp Exam Soluions Februar 0, 05 Quesion. Par (A) To find equilibrium soluions, se P () = C = = 0. This implies: = P ( P ) P = P P P = P P = P ( + P ) = 0 The equilibrium soluion are hus P () = 0 and P () =..

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

THE ESSENTIALS OF CALCULUS ANSWERS TO SELECTED EXERCISES

THE ESSENTIALS OF CALCULUS ANSWERS TO SELECTED EXERCISES Assignmen - page. m.. f 7 7.. 7..8 7..77 7. 87. THE ESSENTIALS OF CALCULUS ANSWERS TO SELECTED EXERCISES m.... no collinear 8...,,.,.8 or.,..78,.7 or.7,.8., 8.87 or., 8.88.,,, 7..7 Assignmen - page 7.

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing?

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing? CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH Work he following on noebook paper. Use your calculaor on 4(b) and 4(c) only. 1. Suppose he populaion of bears in a naional park grows according o he logisic

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

MATH 122B AND 125 FINAL EXAM REVIEW PACKET ANSWERS (Fall 2016) t f () t 1/2 3/4 5/4 7/4 2

MATH 122B AND 125 FINAL EXAM REVIEW PACKET ANSWERS (Fall 2016) t f () t 1/2 3/4 5/4 7/4 2 MATH B AND FINAL EXAM REVIEW PACKET ANSWERS (Fall 6).....6.8 f () / / / 7/ f( + h) f(). lim h h The slope of f a = f (6) The average rae of change of f from = o = dy = 8. a) f ( a) b) f ( a) + f( a). a)

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elemenar Differenial Equaions and Boundar Value Problems Boce. & DiPrima 9 h Ediion Chaper 1: Inroducion 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chaper 5 Eponenial and Logarihmic Funcions Chaper 5 Prerequisie Skills Chaper 5 Prerequisie Skills Quesion 1 Page 50 a) b) c) Answers may vary. For eample: The equaion of he inverse is y = log since log

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

1998 Calculus AB Scoring Guidelines

1998 Calculus AB Scoring Guidelines AB{ / BC{ 1999. The rae a which waer ows ou of a pipe, in gallons per hour, is given by a diereniable funcion R of ime. The able above shows he rae as measured every hours for a {hour period. (a) Use a

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

Numerical Dispersion

Numerical Dispersion eview of Linear Numerical Sabiliy Numerical Dispersion n he previous lecure, we considered he linear numerical sabiliy of boh advecion and diffusion erms when approimaed wih several spaial and emporal

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1)

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1) 7. e - d Le u = and dv = e - d. Then du = d and v = -e -. e - d = (-e - ) - (-e - )d = -e - + e - d = -e - - e - 9. e 2 d = e 2 2 2 d = 2 e 2 2d = 2 e u du Le u = 2, hen du = 2 d. = 2 eu = 2 e2.! ( - )e

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Morning Time: 1 hour 30 minutes Additional materials (enclosed):

Morning Time: 1 hour 30 minutes Additional materials (enclosed): ADVANCED GCE 78/0 MATHEMATICS (MEI) Differenial Equaions THURSDAY JANUARY 008 Morning Time: hour 30 minues Addiional maerials (enclosed): None Addiional maerials (required): Answer Bookle (8 pages) Graph

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1 ACCUMULATION Secion 7.5 Calculus AP/Dual, Revised 2019 vie.dang@humbleisd.ne 12/26/2018 7:27 PM 7.5A: Accumulaion 1 APPLICATION PROBLEMS A. Undersand he quesion. I is ofen no necessary o as much compuaion

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS PAGE # An equaion conaining independen variable, dependen variable & differenial coeffeciens of dependen variables wr independen variable is called differenial equaion If all he

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

Limits at Infinity. Limit at negative infinity. Limit at positive infinity. Definition of Limits at Infinity Let L be a real number.

Limits at Infinity. Limit at negative infinity. Limit at positive infinity. Definition of Limits at Infinity Let L be a real number. 0_005.qd //0 : PM Page 98 98 CHAPTER Applicaions of Differeniaion f() as Secion.5 f() = + f() as The i of f as approaches or is. Figure. Limis a Infini Deermine (finie) is a infini. Deermine he horizonal

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

DEPARTMENT OF ECONOMICS /11. dy =, for each of the following, use the chain rule to find dt

DEPARTMENT OF ECONOMICS /11. dy =, for each of the following, use the chain rule to find dt SCHOO OF ORIENTA AND AFRICAN STUDIES UNIVERSITY OF ONDON DEPARTMENT OF ECONOMICS 14 15 1/11-15 16 MSc Economics PREIMINARY MATHEMATICS EXERCISE 4 (Skech answer) Course websie: hp://mercur.soas.ac.uk/users/sm97/eaching_msc_premah.hm

More information