GENERALIZED SECOND GRADE FLUID PERFORMING SINUSOIDAL MOTION IN AN INFINITE CYLINDER

Size: px
Start display at page:

Download "GENERALIZED SECOND GRADE FLUID PERFORMING SINUSOIDAL MOTION IN AN INFINITE CYLINDER"

Transcription

1 Inernaional Journal of Mahemaics and Saisics Sudies Vol.5, No.4, pp.1-5, Augus 217 Published by European Cenre for esearch Training and Developmen UK ( GENEALIZED SECOND GADE FLUID PEFOMING SINUSOIDAL MOTION IN AN INFINITE CYLINDE Nazia Afzal Assisan Professor, Deparmen of Mahemaics, Governmen Faima Jinnah College for Women, Chuna Mandi, Lahore. ABSTACT: This paper shows he calculaion of velociy field and shear sress corresponding o Generalized second grade fluid performing sinusoidal moion. Shear sress is found by using D β Ga,b,c(.,.) = Ga,b+β,c(.,.) [4]. Velociy field obained by applying Laplace and Hankel ransforms. The soluion have been wrien in series form by using generalised funcion G.,.,.(.,) and Bessel funcions. KEYWODS: Velociy Field, Generalized Second Grade Fluid, Shear Sress INTODUCTION The exac soluion corresponding o he flow of fracional second grade fluid in circular cylinder were found and wrien under inegral and series form by using G.,.,.(., ) funcion and found Newonian and ordinary second grade fluid performing he same moion [1]. The aim of his paper is o calculae shear sress corresponding o non-newonian fluid by applying fracional derivaive and he resul menioned in absrac of his paper. The non-newonian fluids wih fracional derivaives have encounered a lo of success in describing complex fluid dynamics. The governing equaions corresponding o he moion of fluid are obained from hose of ordinary fluids by replacing inner ime derivaive by he so called iemann Liouville operaor D β defined by D β f() = 1 d f(τ) ɼ 1 β d ( τ) β dτ β < 1 = d d f() β = 1 An excellen discussion of fracional differenial equaion and a good hisory of fracional calculus is given by K. S. Miller [9] carl. F. Lorenzo [3] presened a very useful paper on fracional derivaive which are much flexible in describing visco elasic behaviour of fluids [6] M. Kamran [7] and A. Mahmood [8] presened exac soluion for unseady roaional flow of he generalized second grade fluid. M. Ahar [2] solved Taylor Couee flow of he generalized second grade fluid. Governing Equaions In his paper we consider he velociy V and he exra sress S of he form V = V(r, ) = ω(r, )e θ S = S(r, ) ISSN (Prin), ISSN (Online) 1

2 Inernaional Journal of Mahemaics and Saisics Sudies Vol.5, No.4, pp.1-5, Augus 217 Published by European Cenre for esearch Training and Developmen UK ( Where e θ is he uni vecor in he θ direcion of he cylindrical coordinae sysem. A = we have ω(r, ) = The governing equaions corresponding o such moion of ordinary second grade fluid are τ(r, ) = (μ + α 1 )( 1 ) ω(r, ) (1) r r ω(r,) = (θ + α 2 )( r 2 r r r 2) ω(r, ) (2) Where µ is dynamic viscosiy of he fluid and α = α 1 ρ is maerial consan; θ = μ ρ Kinemaic viscosiy of he fluid. Where ρ being is consan densiy and τ(r, ) = S rθ (r, ) is he shear sress. Governing equaions corresponding o fracional second grade fluids are obained by replacing inner ime derivaive w.r. by fracional derivaive D β, β >. ω(r,) τ(r, ) = (μ + α 1 D β )( 1 ) ω(r, ) (3) r r = (θ + α 1 D β )( r 2 r r r Flow hrough a circular cylinder wih a shear on boundary 2) ω(r, ) (4) Consider incompressible generalized second grade fluid a res, in an infiniely long cylinder of radius >. A ime = fluid is a res and a ime = + cylinder begins o roae and boundary of cylinder applies a sinusoidal shear sress on fluid. The fluid is gradually moved. The governing equaions as given by (3) and (4). Boundary condiions and iniial condiions are ω(r, ) = Where rε(, ] Calculaions of velociy field τ(, ) = (μ + α 1 D β )( r 1 r ) ω(r, ) (=r) = Ωsin(ω, ) wih >o Ω is consan Applying Laplace ransform o (3) and (4), and hen applying Hankel ransform and breaking ω H (r n, q) ino wo pars [1]. ω 1H (r n, q) = 1 μr2 ( J 1 (r n )Ωω n (q 2 + ω 2 ) ) (5) and ω 2H (r n, q) = J 1 (r n )Ωωq(1+qβ 1 αr n 2 ) μr n 2 (q 2 + ω 2 )(q+υr n 2 +αq β r n 2 ) (6) ISSN (Prin), ISSN (Online) 2

3 Inernaional Journal of Mahemaics and Saisics Sudies Vol.5, No.4, pp.1-5, Augus 217 Published by European Cenre for esearch Training and Developmen UK ( Applying inverse Hankel ransform o (5) and (6) and hen inverse Laplace ransform we ge he velociy field; ω(r, ) = Ωr3 2µ sin(ω) 2 J 1(rr n )Ω µr 2 x n J 1 (r n ) [ ( θr n 2 ) k sin(ωs)g 1 β,1 β βk,k +1 ( αr n 2, s)ds + αr n 2 ( θr n 2 ) k sin(ωs)g 1 β, βk,k +1 ( αr n 2, s)ds] Where generalized funcion Ga,b,c (d,) is defined by [3] equaions (97) and (11) (7) q b G a,b,c (d, ) = L 1 [ (q a d) c] = dk ɼ c+k ɼ c ɼ k+1. (c+k)a b 1 ɼ(c + k)a b e(ac b) >, d q a < 1 Calculaion of shear sress τ(r, ) = (μ + α 1 D β )( r 1 ) ω(r, ) r τ(r, ) = (μ + α 1 D β ) Ωr2 µ sin(ω) + 2 J 2(rr n )Ω µr n J 1 (r n ) [ ( θr n 2 ) k sin(ωs)g 1 β,1 β βk,k +1 ( αr n 2, s)ds + αr 2 n ( θr 2 n ) k sin(ωs)g 1 β, βk,k+1 ( αr 2 n, s)ds] = Ωr2 sin(ω) + 2 J 2(rr n )Ω (r n )J 1 (r n ) [ ( θr n 2 ) k sin(ωs)g 1 β,1 β βk,k +1 ( αr n 2, s)ds + ISSN (Prin), ISSN (Online) 3

4 Inernaional Journal of Mahemaics and Saisics Sudies Vol.5, No.4, pp.1-5, Augus 217 Published by European Cenre for esearch Training and Developmen UK ( αµr n 2 ( θr n 2 ) k sin(ωs)g 1 β, βk,k +1 ( αr n 2, s)ds] + α 1 ωr 2 µ [D β (sin(ω)] + 2 α 1 J 2(rr n )Ω μr n J 1 (r n ) ( ( θr n 2 ) k sin(ωs)g 1 β,1 βk,k +1 ( αr n 2, s)ds + α 1 αr 2 n ( θr 2 n ) k sin(ωs)g 1 β,β βk,k+1 ( αr 2 n, s)ds]) (8) Applying α and α 1 in (7 and 8) we ge, 1. Newonian ω(r, ) = Ωr3 2µ sin(ω) 2 J 1(rr n )Ω µr 2 x n J 1 (r n ) [ ( θr 2 n ) k sin(ωs)g 1 β,1 β βk,k+1 (, s) ds (9) τ(r, ) = Ωr2 sin(ω) + 2 J 2(rr n )Ω r n J 1 (r n ) [ ( θr n 2 ) k sin(ωs)g 1 β,1 β βk,k +1 (, s)ds] β 1 for ordinary second grade fluid (1) ω(r, ) = Ωr3 2µ sin(ω) 2 J 1(rr n )Ω x µ(r n2 )J 1 (r n ) [ ( θr n 2 ) k sin(ωs)g, k,k +1 (, s)ds] τ(r, ) = Ωr2 sin(ω) x 2 J 2(rr n )Ω r n J 1 (r n ) (11) ISSN (Prin), ISSN (Online) 4

5 Inernaional Journal of Mahemaics and Saisics Sudies Vol.5, No.4, pp.1-5, Augus 217 Published by European Cenre for esearch Training and Developmen UK ( [ ( θr 2 n ) k sin(ωs)g, k,k +1 (, s)ds] (12) CONCLUSION The velociy field and shear sress corresponding o generalized second grade fluid were calculaed and wrien in he series form wih he help of generalized funcion G.,.,.(.,). The velociy field was calculaed by applying Laplace ransform and Hankel ransform. Shear sress was calculaed by using D β Ga, b, c (., ) = G a, b+β, c (., ) Newonian and ordinary second grade fluid were found as a limiing case. EFEENCES [1] Afzal, N. and M. Ahar. Fracional second grade fluid performing sinusoidal moion in a circular cylinder. Inl. J. Scie. Engg. es. 6(6): [2] M. Ahar, M. Kamran, C. Feecau. Taylor-couee flow of generalized second grade fluid due o consan couple. Nonlinear analysis modeling and conrol. vol. 15, no. 1, 3-13, 21. [3] Carl F. Lorenzo, Tom T. Harly. Generalized funcion for he fracional calculus. NASA/TP /EVI. Ocober [4] L. Debnah, D. Bhaa. Inegral ransform and heir applicaion (Second ediion). Chapman and Hall/CC, 27. [5] M. Ahar, M. Kamran, and M. Imran. On he unseady roaional flow of frac ional second grade fluid hrough a circuler cylinder. Meccanica, vol. 81, no. 11, , 211. [6] M. Kamran, M. Imran, M. Ahar. Exac soluions for he unseady roaional flow of a generalized second grade fluid hrough circular cylinder Nonlinear anal ysis modeling and conrol. vol. 15 no.4, , 21. [7] A. Mahmood, N. A. Khan, I. Siddique, S. Nazir. A noe on Sinusoidal moion of a viscoelasic non-newonian fluid. Archives of applied mechanics. vol. 82 issue 5, , 212. [8] A. Mahmood, Saifullah, Q. ubab. Exac soluion for roaional flow of gener alized socond grade fluid hrough a circuler cylinder, Bulenenimul academiei de sine a republicii moldova, mahemaica, no. 3 (58), 9-7, ISSN , 28. [9] K. S. Millar, B. ose. An inroducion o he fracional Calculus and fracional differenial equaion, John Wiley and Sons [1] K.. ajagopal, and P. N. Kaloni. Coninuum Mechanics and is applicaions, Hemisphere Press, Washingon DC,USA, ISSN (Prin), ISSN (Online) 5

Hall Effects on Rayleigh-Stokes Problem for Heated Second Grade Fluid

Hall Effects on Rayleigh-Stokes Problem for Heated Second Grade Fluid Proceedings of he Pakisan Academy of Sciences 49 (3):193 198 (1) Copyrigh Pakisan Academy of Sciences ISSN: 377-969 Pakisan Academy of Sciences Original Aricle Hall Effecs on Rayleigh-Sokes Problem for

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Solution of Integro-Differential Equations by Using ELzaki Transform

Solution of Integro-Differential Equations by Using ELzaki Transform Global Journal of Mahemaical Sciences: Theory and Pracical. Volume, Number (), pp. - Inernaional Research Publicaion House hp://www.irphouse.com Soluion of Inegro-Differenial Equaions by Using ELzaki Transform

More information

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 1, Issue 6 Ver. II (Nov - Dec. 214), PP 48-54 Variaional Ieraion Mehod for Solving Sysem of Fracional Order Ordinary Differenial

More information

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b *

THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION. Jian-Guo ZHANG a,b * Zhang, J.-G., e al.: The Fourier-Yang Inegral Transform for Solving he -D... THERMAL SCIENCE: Year 07, Vol., Suppl., pp. S63-S69 S63 THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE -D HEAT DIFFUSION

More information

A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS

A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS THERMAL SCIENCE: Year 7, Vol., No. A, pp. 33-4 33 A NEW TECHNOLOGY FOR SOLVING DIFFUSION AND HEAT EQUATIONS by Xiao-Jun YANG a and Feng GAO a,b * a School of Mechanics and Civil Engineering, China Universiy

More information

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach

Efficient Solution of Fractional Initial Value Problems Using Expanding Perturbation Approach Journal of mahemaics and compuer Science 8 (214) 359-366 Efficien Soluion of Fracional Iniial Value Problems Using Expanding Perurbaion Approach Khosro Sayevand Deparmen of Mahemaics, Faculy of Science,

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term Applied Mahemaics E-Noes, 8(28), 4-44 c ISSN 67-25 Available free a mirror sies of hp://www.mah.nhu.edu.w/ amen/ Properies Of Soluions To A Generalized Liénard Equaion Wih Forcing Term Allan Kroopnick

More information

On the Solutions of First and Second Order Nonlinear Initial Value Problems

On the Solutions of First and Second Order Nonlinear Initial Value Problems Proceedings of he World Congress on Engineering 13 Vol I, WCE 13, July 3-5, 13, London, U.K. On he Soluions of Firs and Second Order Nonlinear Iniial Value Problems Sia Charkri Absrac In his paper, we

More information

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions Proceedings of he World Congress on Engineering and Compuer Science 23 Vol I WCECS 23, 23-25 Ocober, 23, San Francisco, USA Homoopy Perurbaion Mehod for Solving Some Iniial Boundary Value Problems wih

More information

Sumudu Decomposition Method for Solving Fractional Delay Differential Equations

Sumudu Decomposition Method for Solving Fractional Delay Differential Equations vol. 1 (2017), Aricle ID 101268, 13 pages doi:10.11131/2017/101268 AgiAl Publishing House hp://www.agialpress.com/ Research Aricle Sumudu Decomposiion Mehod for Solving Fracional Delay Differenial Equaions

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Ch1: Introduction and Review

Ch1: Introduction and Review //6 Ch: Inroducion and Review. Soli and flui; Coninuum hypohesis; Transpor phenomena (i) Solid vs. Fluid No exernal force : An elemen of solid has a preferred shape; fluid does no. Under he acion of a

More information

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification IOP Conference Series: Maerials Science and Engineering PAPE OPEN ACCESS New effecive moduli of isoropic viscoelasic composies. Par I. Theoreical jusificaion To cie his aricle: A A Sveashkov and A A akurov

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member Verificaion Example Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro Caegory: Isoropic Linear Elasiciy, Dynamics, Member Verificaion Example: 0104 Canilever Beam wih Periodic Exciaion 0104 Canilever Beam

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Kragujevac J. Sci. 3 () 7-4. UDC 53.5:536. 4 THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES Hazem A. Aia Dep. of Mahemaics, College of Science,King Saud Universiy

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method

Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method Solving a Sysem of Nonlinear Funcional Equaions Using Revised New Ieraive Mehod Sachin Bhalekar and Varsha Dafardar-Gejji Absrac In he presen paper, we presen a modificaion of he New Ieraive Mehod (NIM

More information

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations

Iterative Laplace Transform Method for Solving Fractional Heat and Wave- Like Equations Research Journal of Mahemaical and Saisical Sciences ISSN 3 647 Vol. 3(), 4-9, February (5) Res. J. Mahemaical and Saisical Sci. Ieraive aplace Transform Mehod for Solving Fracional Hea and Wave- ike Euaions

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

-e x ( 0!x+1! ) -e x 0!x 2 +1!x+2! e t dt, the following expressions hold. t

-e x ( 0!x+1! ) -e x 0!x 2 +1!x+2! e t dt, the following expressions hold. t 4 Higher and Super Calculus of Logarihmic Inegral ec. 4. Higher Inegral of Eponenial Inegral Eponenial Inegral is defined as follows. Ei( ) - e d (.0) Inegraing boh sides of (.0) wih respec o repeaedly

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

CONTRIBUTION TO IMPULSIVE EQUATIONS

CONTRIBUTION TO IMPULSIVE EQUATIONS European Scienific Journal Sepember 214 /SPECIAL/ ediion Vol.3 ISSN: 1857 7881 (Prin) e - ISSN 1857-7431 CONTRIBUTION TO IMPULSIVE EQUATIONS Berrabah Faima Zohra, MA Universiy of sidi bel abbes/ Algeria

More information

N. Sandeep 1 and V. Sugunamma 2

N. Sandeep 1 and V. Sugunamma 2 Journal of Applied Fluid Mechanics, Vol. 7, No., pp. 75-86, 4. Available online a www.jafmonline.ne, ISSN 735-357, EISSN 735-3645. Radiaion and Inclined Magneic Field Effecs on Unseady Hydromagneic Free

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol.2, No.4, 2012 Soluion of Telegraph quaion by Modified of Double Sumudu Transform "lzaki Transform" Tarig. M. lzaki * man M. A. Hilal. Mahemaics Deparmen, Faculy of Sciences and Ars-Alkamil, King Abdulaziz Uniersiy,

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Lecture 10: Wave equation, solution by spherical means

Lecture 10: Wave equation, solution by spherical means Lecure : Wave equaion, soluion by spherical means Physical modeling eample: Elasodynamics u (; ) displacemen vecor in elasic body occupying a domain U R n, U, The posiion of he maerial poin siing a U in

More information

THE SINE INTEGRAL. x dt t

THE SINE INTEGRAL. x dt t THE SINE INTEGRAL As one learns in elemenary calculus, he limi of sin(/ as vanishes is uniy. Furhermore he funcion is even and has an infinie number of zeros locaed a ±n for n1,,3 Is plo looks like his-

More information

Formulation of the Stress Distribution Due to a Concentrated Force Acting on the Boundary of Viscoelastic Half-Space

Formulation of the Stress Distribution Due to a Concentrated Force Acting on the Boundary of Viscoelastic Half-Space Formulaion of he Sress Disribuion Due o a Concenraed Force Acing on he Boundar of Viscoelasic Half-Space Yun eng and Debao Zhou Deparmen of Mechanical and Indusrial Engineering Universi of Minnesoa, Duluh

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

A Note on Fractional Electrodynamics. Abstract

A Note on Fractional Electrodynamics. Abstract Commun Nonlinear Sci Numer Simula 8 (3 589 593 A Noe on Fracional lecrodynamics Hosein Nasrolahpour Absrac We invesigae he ime evoluion o he racional elecromagneic waves by using he ime racional Maxwell's

More information

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant).

THE WAVE EQUATION. part hand-in for week 9 b. Any dilation v(x, t) = u(λx, λt) of u(x, t) is also a solution (where λ is constant). THE WAVE EQUATION 43. (S) Le u(x, ) be a soluion of he wave equaion u u xx = 0. Show ha Q43(a) (c) is a. Any ranslaion v(x, ) = u(x + x 0, + 0 ) of u(x, ) is also a soluion (where x 0, 0 are consans).

More information

Summary of shear rate kinematics (part 1)

Summary of shear rate kinematics (part 1) InroToMaFuncions.pdf 4 CM465 To proceed o beer-designed consiuive equaions, we need o know more abou maerial behavior, i.e. we need more maerial funcions o predic, and we need measuremens of hese maerial

More information

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order.

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order. Boundedness Sabili of Soluions of Some Nonlinear Differenial Equaions of he Third-Order. A.T. Ademola, M.Sc. * P.O. Arawomo, Ph.D. Deparmen of Mahemaics Saisics, Bowen Universi, Iwo, Nigeria. Deparmen

More information

Exact analytical solutions for axial flow of a fractional second grade fluid between two coaxial cylinders

Exact analytical solutions for axial flow of a fractional second grade fluid between two coaxial cylinders THEORETICAL & APPLIED MECHANICS LETTERS, 000 0 Exact analytical solutions for axial flow of a fractional second grade fluid between two coaxial cylinders M. Imran, a M. Kamran, M. Athar Abdus Salam School

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

On the Integro-Differential Equation with a Bulge Function by Using Laplace Transform

On the Integro-Differential Equation with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no. 5, 9-34 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.411931 On he Inegro-Differenial Equaion wih a Bulge Funcion by Using Laplace Transform P.

More information

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations

Haar Wavelet Operational Matrix Method for Solving Fractional Partial Differential Equations Copyrigh 22 Tech Science Press CMES, vol.88, no.3, pp.229-243, 22 Haar Wavele Operaional Mari Mehod for Solving Fracional Parial Differenial Equaions Mingu Yi and Yiming Chen Absrac: In his paper, Haar

More information

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION

IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION THERMAL SCIENCE, Year 015, Vol. 19, No. 4, pp. 1183-1187 1183 IMPROVED HYPERBOLIC FUNCTION METHOD AND EXACT SOLUTIONS FOR VARIABLE COEFFICIENT BENJAMIN-BONA-MAHONY-BURGERS EQUATION by Hong-Cai MA a,b*,

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations

Some New Uniqueness Results of Solutions to Nonlinear Fractional Integro-Differential Equations Annals of Pure and Applied Mahemaics Vol. 6, No. 2, 28, 345-352 ISSN: 2279-87X (P), 2279-888(online) Published on 22 February 28 www.researchmahsci.org DOI: hp://dx.doi.org/.22457/apam.v6n2a Annals of

More information

Undetermined coefficients for local fractional differential equations

Undetermined coefficients for local fractional differential equations Available online a www.isr-publicaions.com/jmcs J. Mah. Compuer Sci. 16 (2016), 140 146 Research Aricle Undeermined coefficiens for local fracional differenial equaions Roshdi Khalil a,, Mohammed Al Horani

More information

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients mahemaics Aricle A Noe on he Equivalence of Fracional Relaxaion Equaions o Differenial Equaions wih Varying Coefficiens Francesco Mainardi Deparmen of Physics and Asronomy, Universiy of Bologna, and he

More information

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT Lecure 9: Advanced DFT conceps: The Exchange-correlaion funcional and ime-dependen DFT Marie Curie Tuorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dep. of Chemisry and Couran Insiue

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

Fractional Laplace Transform and Fractional Calculus

Fractional Laplace Transform and Fractional Calculus Inernaional Mahemaical Forum, Vol. 12, 217, no. 2, 991-1 HIKARI Ld, www.m-hikari.com hps://doi.org/1.12988/imf.217.71194 Fracional Laplace Transform and Fracional Calculus Gusavo D. Medina 1, Nelson R.

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

ON LINEAR VISCOELASTICITY WITHIN GENERAL FRACTIONAL DERIVATIVES WITHOUT SINGULAR KERNEL

ON LINEAR VISCOELASTICITY WITHIN GENERAL FRACTIONAL DERIVATIVES WITHOUT SINGULAR KERNEL Gao F. e al.: On Linear Viscoelasiciy wihin General Fracional erivaives... THERMAL SCIENCE: Year 7 Vol. Suppl. pp. S335-S34 S335 ON LINEAR VISCOELASTICITY WITHIN GENERAL FRACTIONAL ERIVATIVES WITHOUT SINGULAR

More information

Polymer Engineering (MM3POE)

Polymer Engineering (MM3POE) Polymer Engineering (MM3POE) VISCOELASTICITY hp://www.noingham.ac.uk/~eazacl/mm3poe Viscoelasiciy 1 Conens Wha is viscoelasiciy? Fundamenals Creep & creep recovery Sress relaxaion Modelling viscoelasic

More information

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization) ISSN(Online): 39-8753 ISSN (Prin): 347-67 Inernaional Journal of Innovaive Research in Science, (An ISO 397: 7 Cerified Organizaion) Vol. 6, Issue 9, Sepember 7 Effecs of Non-ineger Order Time Fracional

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

INFLUENCE OF SLIP CONDITION ON PERISTALTIC TRANSPORT OF A VISCOELASTIC FLUID WITH FRACTIONAL BURGERS MODEL

INFLUENCE OF SLIP CONDITION ON PERISTALTIC TRANSPORT OF A VISCOELASTIC FLUID WITH FRACTIONAL BURGERS MODEL THERMAL SCIENCE, Year 0, Vol. 5, No., pp. 50-55 50 INFLUENCE OF SLIP CONDITION ON PERISTALTIC TRANSPORT OF A VISCOELASTIC FLUID WITH FRACTIONAL BURGERS MODEL by Dharmendra TRIPATHI, Praveen Kumar GUPTA,

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise:

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise: Mah 225-4 Week 3 April 9-3 EP 7.6 - convoluions; 6.-6.2 - eigenvalues, eigenvecors and diagonalizabiliy; 7. - sysems of differenial equaions. Mon Apr 9 EP 7.6 Convoluions and Laplace ransforms. Announcemens:

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Indusrial Robos Kinemaics 1 Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables

More information

Application of variational iteration method for solving the nonlinear generalized Ito system

Application of variational iteration method for solving the nonlinear generalized Ito system Applicaion of variaional ieraion mehod for solving he nonlinear generalized Io sysem A.M. Kawala *; Hassan A. Zedan ** *Deparmen of Mahemaics, Faculy of Science, Helwan Universiy, Cairo, Egyp **Deparmen

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008 [E5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 008 EEE/ISE PART II MEng BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: :00 hours There are FOUR quesions

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elemenar Differenial Equaions and Boundar Value Problems Boce. & DiPrima 9 h Ediion Chaper 1: Inroducion 1006003 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform

On Volterra Integral Equations of the First Kind with a Bulge Function by Using Laplace Transform Applied Mahemaical Sciences, Vol. 9, 15, no., 51-56 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.1988/ams.15.41196 On Volerra Inegral Equaions of he Firs Kind wih a Bulge Funcion by Using Laplace Transform

More information

Existence Theory of Second Order Random Differential Equations

Existence Theory of Second Order Random Differential Equations Global Journal of Mahemaical Sciences: Theory and Pracical. ISSN 974-32 Volume 4, Number 3 (22), pp. 33-3 Inernaional Research Publicaion House hp://www.irphouse.com Exisence Theory of Second Order Random

More information

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x, Laplace Transforms Definiion. An ordinary differenial equaion is an equaion ha conains one or several derivaives of an unknown funcion which we call y and which we wan o deermine from he equaion. The equaion

More information

TIME-FRACTIONAL FREE CONVECTION FLOW NEAR A VERTICAL PLATE WITH NEWTONIAN HEATING AND MASS DIFFUSION

TIME-FRACTIONAL FREE CONVECTION FLOW NEAR A VERTICAL PLATE WITH NEWTONIAN HEATING AND MASS DIFFUSION Vieru, D., e al.: Time-Fracional Free Convecion Flow near a Verical Plae wih THERMAL SCIENCE, Year 15, Vol. 19, Suppl. 1, pp. S85-S98 S85 TIME-FRACTIONAL FREE CONVECTION FLOW NEAR A VERTICAL PLATE WITH

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e

2 int T. is the Fourier transform of f(t) which is the inverse Fourier transform of f. i t e PHYS67 Class 3 ourier Transforms In he limi T, he ourier series becomes an inegral ( nt f in T ce f n f f e d, has been replaced by ) where i f e d is he ourier ransform of f() which is he inverse ourier

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations

Application of Homotopy Analysis Method for Solving various types of Problems of Partial Differential Equations Applicaion of Hooopy Analysis Mehod for olving various ypes of Probles of Parial Differenial Equaions V.P.Gohil, Dr. G. A. anabha,assisan Professor, Deparen of Maheaics, Governen Engineering College, Bhavnagar,

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

U. S. Rajput and Gaurav Kumar

U. S. Rajput and Gaurav Kumar MATEMATIKA, 2018, Volume 34, Number 2, 433 443 c Penerbi UTM Press. All righs reserved Effec of Hall Curren on Unseady Magneo Hydrodynamic Flow Pas an Exponenially Acceleraed Inclined Plae wih Variable

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs

An Iterative Method for Solving Two Special Cases of Nonlinear PDEs Conemporary Engineering Sciences, Vol. 10, 2017, no. 11, 55-553 HIKARI Ld, www.m-hikari.com hps://doi.org/10.12988/ces.2017.7651 An Ieraive Mehod for Solving Two Special Cases of Nonlinear PDEs Carlos

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Sobolev-type Inequality for Spaces L p(x) (R N )

Sobolev-type Inequality for Spaces L p(x) (R N ) In. J. Conemp. Mah. Sciences, Vol. 2, 27, no. 9, 423-429 Sobolev-ype Inequaliy for Spaces L p(x ( R. Mashiyev and B. Çekiç Universiy of Dicle, Faculy of Sciences and Ars Deparmen of Mahemaics, 228-Diyarbakir,

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Interactions of magnetic particles in a rotational magnetic field

Interactions of magnetic particles in a rotational magnetic field Bielefeld Universiy Deparmen of Physics Presened a he COMSOL Conference 2008 Hannover A. Weddemann, A. Auge, F. Wibrach, S. Herh, A. Hüen Ineracions of magneic paricles in a roaional magneic field D2 PHYSICS

More information

The Application of Optimal Homotopy Asymptotic Method for One-Dimensional Heat and Advection- Diffusion Equations

The Application of Optimal Homotopy Asymptotic Method for One-Dimensional Heat and Advection- Diffusion Equations Inf. Sci. Le., No., 57-61 13) 57 Informaion Sciences Leers An Inernaional Journal hp://d.doi.org/1.1785/isl/ The Applicaion of Opimal Homoopy Asympoic Mehod for One-Dimensional Hea and Advecion- Diffusion

More information