Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric:

Size: px
Start display at page:

Download "Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric:"

Transcription

1 Modelng curves Types of Curves Graphs: y = ax+b, y = sn(x) Implct ax + by + c = 0, x 2 +y 2 =r 2 Parametrc: x = ax + bxt x = cos t y = ay + byt y = snt Parametrc are the most common mplct are also used, Graphs: not flexble enough (e.g. cannot make a crcle). 1

2 Parametrc curves Parametrc curve can be thought of as a deformaton of a straght lne. If t s the dstance from some fxed pont of the lne, for each value of t we specfy the correspondng pont n the plane (or space): x = x(t); y = y(t); z = z(t) How do we choose functons x(t) and y(t)? Parametrc curves Typcal requrements: should be easy to use for modelng, that s, makng any desred shape should be smooth (ntuton: f we zoom n should look lke a straght lne), or pecewse smooth should be easy to draw 2

3 Tangents p(t) p (t+dt) Dervatves of the coordnates defne the tangent: tangent = dp(t) dx(t) dy(t) =, dt dt dt Note: the length of the tangent does not have a geometrc meanng, t depends on parameterzaton. Curvature Intuton: nverse of the radus of the best local approxmaton of the curve by a crcle. x y x y Formula: the dervatves are wth (x + y ) respect to t. R Curvature at t s 1/R p(t) 3

4 Curvature Curvature measures how straght a curve s at a pont. If curvature s zero everywhere, the curve s a straght lne. y If x = t, curvature s ( 1 + y ) ; for small y, ths s approxmately the second dervatve. The square of the curvature can be (sometmes) approxmated by x 2 + y 2. The less s the curvature, the ncer s the curve. Modelng We should be able to specfy a small number of ntutve controls; the curve should be automatcally computed from controls. Examples of ntutve controls: Connect the dots approach: specfy several ponts on the curve, draw a nce lne through these ponts; Specfy the drecton (tangent) of the curve n some places Unntutve controls: polynomal coeffcents etc. 4

5 Real-lfe splnes How was t done before computers? weghts (called ducks) were placed on a sheet of paper at ponts through whch the curve s supposed to pass A flexble steel strp s placed between them A curve s traced out on paper. Idea: try to do somethng smlar; whle modelng physcs s possble, t s somewhat expensve. Try to mtate behavor qualtatvely. Control ponts One possble way of defnng parametrc curves: Defne ponts near whch the curve should pass: p 1 = (x 1,y 1 ), p 2 = (x 2,y 2 )... For each pont p choose a parameter value t. Smplest choce: 1,2,3,... (unform parameterzaton). For each pont specfy a blendng functon B (t), whch defnes how much t contrbutes to the value of the curve at t. x(t) = xb (t) Defne the curve as or p(t) = pb (t) y(t) = y B (t) 5

6 Blendng functons Requrements for blendng (bass) functons B (t): The control pont p has maxmal nfluence near parameter value ; the further we are from, the less B should be; f we want local control (curve does not change far enough from a control pont) B (t) should be zero for t far from. Should look lke ths: If all control ponts are the same, the resultng curve should be reduced to the same pont. pb = = (t) p B (t) p, so B (t) = 1 Blendng functons Requrements Should be easy to compute (polynomals are); Should be contnuous, and dfferentable (C 1 ), preferably twce (C 2 ). Support (the nterval where t s not zero) should not be too bg. Would be nce to nterpolate the control ponts. Cannot get t all! But can get close f relax one of the requrements. 6

7 Splnes If gve up on small support, get natural splnes; every control pont nfluences the whole curve. If gve up on nterpolaton, get cubc B-splnes. Cubc B-splne bass functon B-Splnes Need only one bass functon, all B (t) are obtaned by shfts: B (t) = B(t-). The bass functon s pecewse polynomal: B() t = 0 t t3 4 2 t t 2 3 t -1 2 t t3 t 0 2 t t3 t t + t t3 t < t 7

8 B-splnes The curve wth control ponts p 0, p 2, p 3...p n s computed usng p(t) = n = 0 p B(t ) The allowed range of t s from 1 to n-1; outsde ths nterval our functons do not sum up to 1, whch means n partcular that f we move control ponts together n the same way, the curve outsde the nterval wll not move rgdly. B-splnes The mnmal number of ponts requred s 4; ths corresponds to the nterval for t of length 1. Ths s nconvenent - but we can always add control ponts by reflecton. 8

9 B-splnes Addng control ponts by reflecton: p n-1 p 1 p n p 0 p n+1 p -1 reflected ponts p -1 = 2p 0 -p 1 ; p n+1 = 2p n -p n-1. Drawng B-splnes Hardware typcally can draw only lne segments. Need to approxmate B-splne wth pecewse lnear curve. Smplest approach: Choose small t. Compute ponts p(0), p( t), p(2 t)... Draw lne segments connectng the ponts. Not very effcent -- have to evaluate a cubc polynomal (or several) at each pont. Can do better usng a magc algorthm (subdvson). 9

10 B-splnes va subdvson It turns out that the smooth curve can be obtaned by subdvson of the orgnal polylne: Subdvson adds new control ponts between the orgnal control ponts and updates postons of orgnal control ponts. Subdvson Subdvson rules for updatng old ponts: 3/4 1/8 1/8 Subdvson rules for nsertng new ponts: 1/2 1/2 10

11 Subdvson rules Even rule (n the new sequence of ponts the ponts wth even numbers are the old ponts wth updated postons). j j j ( p + p + p ) j+ 1 p2 = Odd rule (n the new sequence the ponts wth odd number s a newly nserted pont). j j ( 4p p ) j+ 1 p2+ 1 = Subdvson Of course, n a fnte number of steps subdvson generates only polylnes. But they get arbtrarly close to a lmt C 2 and ths curve s exactly a cubc B-splne. Algorthm: Start wth an array of control ponts of length n+1. Compute from the orgnal ponts new array of control ponts of length 2n+1 usng subdvson rules for even and odd ponts. Then from the new array compute an array of length 4n+1 etc., (typcally 4-5 steps s enough). Then draw the lne segments connectng sequental control ponts. 11

12 Endponts What do we do when a pont s mssng? reflected pont In ths case, we apply reflecton (recall addng mssng control ponts). Ths results n the followng trval rule: that s, just keep the old value. j j j j j ( p + 6p + ( p p )) p j+ 1 p0 = = 0 Other splnes There many types of splnes: Bezer, Hermte, Natural, Catmull-Rom,... B-splnes are the most useful, but Bezer and Hermte are used wdely. Bezer are often found n drawng programs (e.g. Powerpont!) although they are not very convenent. 12

13 Bezer splnes Construct a curve out of segments. For each segment defne 4 ponts: two endponts and two other ponts determnng the tangents at endponts: used for tangents If we ensure that blue ponts on two sdes of each read pont are on one lne, the whole curve s C 1, that s, has a tangent everywhere. Bezer splnes The dea behnd Bezer splnes s to use specal blendng functons for the four ponts, assumng that t s between 0 and 1: (1-t) 3 for p 0, 3t(1-t) 2 for p 1, 3t 2 (1-t) for p 2, and t 3 for p 3. (1-t) 3 t 3 3t(1-t) 2 3t 2 (1-t) 13

14 Bezer splnes The 4 functons (Bernsten polynomals of order 3), P 0 (t), P 1 (t), P 2 (t), P 3 (t) are (almost) defned by the followng propertes: The sum s 1 for all t the endponts have no nfluence on the poston of the endpont of the curve and on the tangents at opposte endponts. Ths means that P 0 (1) = P 0 (1) =0, P 3 (0) = P 3 (0) =0 Two nteror (blue) control ponts affect only the tangent and at the correspondng endpont, not at the other endpont, and do not affect the postons of the endponts of the curve P 1 (0) =P 1 (1) = P 1 (1) =0, P 2 (1) =P 2 (0) = P 2 (0) =0 All polynomals are cubc and postve Symmetry w.r.t. t=1/2: P 0 (1-t) = P 3 (t), P 1 (1-t) = P 2 (t) Bezer curves The Bezer curves have the followng propertes: endponts are nterpolated tangents at endponts pont towards the nteror control ponts; dervatves are 3(p 1 -p 0 ) and 3(p 3 -p 2 ) respectvely; the curve s n the convex hull of control ponts. The formula for the Bezer curve s p(t) = (1-t) 3 p 0 + 3t(1-t) 2 p 1 + 3t 2 (1-t) p 2 + t 3 p 3 t between 0 and 1. 14

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

The univariate Bernstein-Bézier form

The univariate Bernstein-Bézier form Jorg s Splne Lecture Notes The unvarate Bernsten-Bézer form 1 The unvarate Bernsten-Bézer form The Bernsten bass functons of degree d on the nterval [0, 1] are ( ) d B d, : u (1 u) d u. When the degree

More information

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

More information

Cubic Trigonometric Rational Wat Bezier Curves

Cubic Trigonometric Rational Wat Bezier Curves Cubc Trgonometrc Ratonal Wat Bezer Curves Urvash Mshra Department of Mathematcs Mata Gujr Mahla Mahavdyalaya Jabalpur Madhya Pradesh Inda Abstract- A new knd of Ratonal cubc Bézer bass functon by the blendng

More information

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND ANZIAM J. 45(003), 195 05 DEGREE REDUCTION OF BÉZIER CURVES USING CONSTRAINED CHEBYSHEV POLYNOMIALS OF THE SECOND KIND YOUNG JOON AHN 1 (Receved 3 August, 001; revsed 7 June, 00) Abstract In ths paper

More information

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter J. Basc. Appl. Sc. Res., (3541-546, 01 01, TextRoad Publcaton ISSN 090-4304 Journal of Basc and Appled Scentfc Research www.textroad.com The Quadratc Trgonometrc Bézer Curve wth Sngle Shape Parameter Uzma

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

A Piecewise Rational Quintic Hermite Interpolant for Use in CAGD

A Piecewise Rational Quintic Hermite Interpolant for Use in CAGD A Pecewse Ratonal Quntc Hermte Interpolant for Use n CAGD Gulo Cascola and Luca Roman Abstract. In ths paper we descrbe and analyze a new class of C pecewse ratonal quntc Hermte nterpolants for use n CAGD

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

One Dimension Again. Chapter Fourteen

One Dimension Again. Chapter Fourteen hapter Fourteen One Dmenson Agan 4 Scalar Lne Integrals Now we agan consder the dea of the ntegral n one dmenson When we were ntroduced to the ntegral back n elementary school, we consdered only functons

More information

Support Vector Machines CS434

Support Vector Machines CS434 Support Vector Machnes CS434 Lnear Separators Many lnear separators exst that perfectly classfy all tranng examples Whch of the lnear separators s the best? + + + + + + + + + Intuton of Margn Consder ponts

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D Chapter Twelve Integraton 12.1 Introducton We now turn our attenton to the dea of an ntegral n dmensons hgher than one. Consder a real-valued functon f : R, where the doman s a nce closed subset of Eucldean

More information

The Second Eigenvalue of Planar Graphs

The Second Eigenvalue of Planar Graphs Spectral Graph Theory Lecture 20 The Second Egenvalue of Planar Graphs Danel A. Spelman November 11, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY The Bot-Savart Law The velocty nduced by the sngular vortex lne wth the crculaton can be determned by means of the Bot- Savart formula

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Least squares cubic splines without B-splines S.K. Lucas

Least squares cubic splines without B-splines S.K. Lucas Least squares cubc splnes wthout B-splnes S.K. Lucas School of Mathematcs and Statstcs, Unversty of South Australa, Mawson Lakes SA 595 e-mal: stephen.lucas@unsa.edu.au Submtted to the Gazette of the Australan

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

42. Mon, Dec. 8 Last time, we were discussing CW complexes, and we considered two di erent CW structures on S n. We continue with more examples.

42. Mon, Dec. 8 Last time, we were discussing CW complexes, and we considered two di erent CW structures on S n. We continue with more examples. 42. Mon, Dec. 8 Last tme, we were dscussng CW complexes, and we consdered two d erent CW structures on S n. We contnue wth more examples. (2) RP n. Let s start wth RP 2. Recall that one model for ths space

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

9 Characteristic classes

9 Characteristic classes THEODORE VORONOV DIFFERENTIAL GEOMETRY. Sprng 2009 [under constructon] 9 Characterstc classes 9.1 The frst Chern class of a lne bundle Consder a complex vector bundle E B of rank p. We shall construct

More information

THE EFFECTS OF USING DIFFERENT ALGORITHMS FOR CALCULATING THE FOOT OF SLOPE BASED ON THE MAXIMUM CHANGE OF GRADIENT

THE EFFECTS OF USING DIFFERENT ALGORITHMS FOR CALCULATING THE FOOT OF SLOPE BASED ON THE MAXIMUM CHANGE OF GRADIENT THE EFFECTS OF USING DIFFERENT ALGORITHMS FOR CALCULATING THE FOOT OF SLOPE BASED ON THE MAXIMUM CHANGE OF GRADIENT Abstract Jon, Mugaas, Norway GeoCap AS Jon.mugaas@geocap.no The extent of the outer lmt

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Support Vector Machines CS434

Support Vector Machines CS434 Support Vector Machnes CS434 Lnear Separators Many lnear separators exst that perfectly classfy all tranng examples Whch of the lnear separators s the best? Intuton of Margn Consder ponts A, B, and C We

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Equpotental Surfaces and Lnes Physcs for Scentsts & Engneers 2 Sprng Semester 2005 Lecture 9 January 25, 2005 Physcs for Scentsts&Engneers 2 1 When an electrc feld s present, the electrc potental has a

More information

Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson

Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson Compter Graphcs Crves and Srfaces Hermte/Bezer Crves, (B-)Splnes, and NURBS By Ulf Assarsson Most of the materal s orgnally made by Edward Angel and s adapted to ths corse by Ulf Assarsson. Some materal

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

Error Bars in both X and Y

Error Bars in both X and Y Error Bars n both X and Y Wrong ways to ft a lne : 1. y(x) a x +b (σ x 0). x(y) c y + d (σ y 0) 3. splt dfference between 1 and. Example: Prmordal He abundance: Extrapolate ft lne to [ O / H ] 0. [ He

More information

Math 396. Metric tensor on hypersurfaces

Math 396. Metric tensor on hypersurfaces Math 396. Metrc tensor on hypersurfaces 1. Motvaton Let U R n be a non-empty open subset and f : U R a C -functon. Let Γ U R be the graph of f. The closed subset Γ n U R proects homeomorphcally onto U

More information

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review Chapter Four States of Stress Part Three When makng your choce n lfe, do not neglect to lve. Samuel Johnson Revew When we use matrx notaton to show the stresses on an element The rows represent the axs

More information

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors Multple Lnear and Polynomal Regresson wth Statstcal Analyss Gven a set of data of measured (or observed) values of a dependent varable: y versus n ndependent varables x 1, x, x n, multple lnear regresson

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Tom Duff Computer Division Lucasfilm Ltd. Technical Memo No Dec 1983

Tom Duff Computer Division Lucasfilm Ltd. Technical Memo No Dec 1983 Famles of Local Matrx Splnes Tom Duff Computer Dvson Lucasflm Ltd Techncal Memo No 04 Dec 983 Presented as tutoral notes (by Alvy Ray Smth) at the 983 SIGGRAPH, July 983 Ths document was reentered n Mcrosoft

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant Summary wth Eamples or Root ndng Methods -Bsecton -Newton Raphson -Secant Nonlnear Equaton Solvers Bracketng Graphcal Open Methods Bsecton False Poston (Regula-Fals) Newton Raphson Secant All Iteratve

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Lecture 4. Instructor: Haipeng Luo

Lecture 4. Instructor: Haipeng Luo Lecture 4 Instructor: Hapeng Luo In the followng lectures, we focus on the expert problem and study more adaptve algorthms. Although Hedge s proven to be worst-case optmal, one may wonder how well t would

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

Section 8.1 Exercises

Section 8.1 Exercises Secton 8.1 Non-rght Trangles: Law of Snes and Cosnes 519 Secton 8.1 Exercses Solve for the unknown sdes and angles of the trangles shown. 10 70 50 1.. 18 40 110 45 5 6 3. 10 4. 75 15 5 6 90 70 65 5. 6.

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Monotonic Interpolating Curves by Using Rational. Cubic Ball Interpolation

Monotonic Interpolating Curves by Using Rational. Cubic Ball Interpolation Appled Mathematcal Scences, vol. 8, 204, no. 46, 7259 7276 HIKARI Ltd, www.m-hkar.com http://dx.do.org/0.2988/ams.204.47554 Monotonc Interpolatng Curves by Usng Ratonal Cubc Ball Interpolaton Samsul Arffn

More information

Section 3.6 Complex Zeros

Section 3.6 Complex Zeros 04 Chapter Secton 6 Comple Zeros When fndng the zeros of polynomals, at some pont you're faced wth the problem Whle there are clearly no real numbers that are solutons to ths equaton, leavng thngs there

More information

CHAPTER 9 Approximation theory and stability

CHAPTER 9 Approximation theory and stability CHAPTER 9 Approxmaton theory and stablty Polynomals of degree d have d+1 degrees of freedom, namely the d+1 coeffcents relatve to some polynomal bass. It turns out that each of these degrees of freedom

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

Visualization of Data Subject to Positive Constraints

Visualization of Data Subject to Positive Constraints ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. No. 6 pp. 49-6 Vsualzaton of Data Subect to Postve Constrants Malk Zawwar Hussan and Mara Hussan Department of Mathematcs Unverst

More information

Approximations of Set-Valued Functions Based on the Metric Average

Approximations of Set-Valued Functions Based on the Metric Average Approxmatons of Set-Valued Functons Based on the Metrc Average Nra Dyn, Alona Mokhov School of Mathematcal Scences Tel-Avv Unversty, Israel Abstract. Ths paper nvestgates the approxmaton of set-valued

More information

Construction of Serendipity Shape Functions by Geometrical Probability

Construction of Serendipity Shape Functions by Geometrical Probability J. Basc. Appl. Sc. Res., ()56-56, 0 0, TextRoad Publcaton ISS 00-0 Journal of Basc and Appled Scentfc Research www.textroad.com Constructon of Serendpty Shape Functons by Geometrcal Probablty Kamal Al-Dawoud

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information