Size: px
Start display at page:

Download ""

Transcription

1 Thi aicle wa oiginally publihed in a jounal publihed by levie, and he aached copy i povided by levie fo he auho benefi and fo he benefi of he auho iniuion, fo non-commecial eeach and educaional ue including wihou limiaion ue in inucion a you iniuion, ending i o pecific colleague ha you know, and poviding a copy o you iniuion adminiao. All ohe ue, epoducion and diibuion, including wihou limiaion commecial epin, elling o licening copie o acce, o poing on open inene ie, you peonal o iniuion webie o epoioy, ae pohibied. Fo excepion, pemiion may be ough fo uch ue hough levie pemiion ie a: hp://

2 Sochaic Pocee and hei Applicaion Backwad ochaic diffeenial euaion wih ingula eminal condiion Abac A. Popie L.A.T.P., 39 ue F. Jolio Cuie, 3453 Maeille cedex 3, Fance Received 8 June 24; eceived in evied fom 6 Febuay 26; acceped 24 May 26 Available online 23 June 26 In hi pape, we ae concened wih backwad ochaic diffeenial euaion BSD fo ho of he following ype: Y = ξ Y Y d Z db, whee i a poiive conan and ξ i a andom vaiable uch ha Pξ = + >. We udy he link beween hee BSD and he aociaed Cauchy poblem wih eminal daa g, whee g = + on a e of poiive Lebegue meaue. c 26 levie B.V. All igh eeved. Keywod: Backwad ochaic diffeenial euaion; Non-inegable daa; Vicoiy oluion of paial diffeenial euaion Conen. Inoducion and main eul Appoximaion and conucion of a oluion Poof of i and ii fom Theoem Poof of iii The cae ξ bounded away fom zeo The cae of ξ non-negaive Auho' peonal copy Coeponding adde: cole Polyechniue, CMAP, Roue de Palaieau, 928 Palaieau, Fance. Tel.: ; fax: mail adde: popie@cmap.polyechniue.f /$ - ee fon mae c 26 levie B.V. All igh eeved. doi:.6/j.pa

3 A. Popie / Sochaic Pocee and hei Applicaion Poof of iv Coninuiy of Y a T Lowe bound and aympoic behaviou in a neighbouhood of T Coninuiy a ime T : The fi ep Coninuiy when > When aumpion H3, B, D and ae aified A peliminay eul Coninuiy wih H3, B, and D Minimal oluion Paabolic PD, vicoiy oluion Minimal oluion Regulaiy of he minimal oluion Sign aumpion on he eminal condiion ξ Acknowledgemen Refeence Inoducion and main eul Backwad ochaic diffeenial euaion BSD fo ho in he emainde ae euaion of he following ype: Y = ξ + f, Y, Z d Z db, T, whee B T i a andad d-dimenional Bownian moion on a pobabiliy pace Ω, F, F T, P, wih F T he andad Bownian filaion. The funcion f : [, T ] R n R n d R n i called he geneao, T he eminal ime, and he R n -valued F T -adaped andom vaiable ξ a eminal condiion. The unknown ae he pocee {Y } [,T ] and {Z } [,T ], which ae euied o be adaped wih epec o he filaion of he Bownian moion: hi i a cucial poin. Such euaion, in he non-linea cae, wee inoduced by Padoux and Peng in 99 in []. They gave he fi exience and uniuene eul fo n-dimenional BSD unde he following aumpion: f i Lipchiz coninuou in boh vaiable y and z and he daa, ξ, and he poce, { f,, } [,T ], ae uae inegable. Since hen, BSD have been udied wih gea inee. In paicula, many effo have been made o elax he aumpion on he geneao and he eminal condiion. Fo inance Biand e al. in [2] poved an exience and uniuene eul unde he following aumpion: f i Lipchiz in z, coninuou and monoone in y, he daa, ξ, and he poce, { f,, } [,T ], ae in L p fo p >. The eul i ill ue fo p = wih anohe echnical condiion. The eul of [2] ae he aing poin of hi wok, whee we conide a one-dimenional BSD wih a non-linea geneao: Y = ξ Auho' peonal copy Y Y d Z db wih R +. The geneao f y = y y aifie all he aumpion of he Theoem 4.2 and of [2]: f i coninuou on R, doe no depend on z, and i monoone: y, y R 2, y y f y f y. 2

4 26 A. Popie / Sochaic Pocee and hei Applicaion Theefoe hee exi a uniue oluion Y, Z fo ξ L p Ω fo p we do no make pecie he cla of Y, Z in which uniuene hold. The oluion of he elaed odinay diffeenial euaion, namely y = y y, y T = x, i given by he fomula: ignx T + x whee ignx = if x < and ignx = if x >. We emak ha, even if x i eual o + o, y i finie on [, T [. Numeou heoem ee fo inance [3,4] and [5] how he connecion beween BSD aociaed wih ome fowad claical ochaic diffeenial euaion SD fo ho o fowad backwad yem and oluion of a lage cla of emi-linea and uailinea paabolic and ellipic paial diffeenial euaion. Thoe eul may be een a a non-linea genealizaion of he celebaed Feynman Kac fomula. The BSD i conneced wih he following ype of PD ee [5]: { u, x + Lu, x u, x u, x =,, x [, T [ R m ; 3 ut, x = gx, x R m. whee L i he infinieimal geneao: L = σ σ 2 i j + 2 x i, j i x j i b i = x i 2 Tace σ σ D 2 + b ; 4 whee in he e of he pape, and D 2 will alway denoe epecively he gadien and he Heian maix w... he pace vaiable. Indeed Baa and Piee [6], Macu and Veon [7] have given exience and uniuene eul fo hi PD. In [7] i i hown ha evey poiive oluion of 3 poee a uniuely deemined final ace g which can be epeened by a couple S, µ whee S i a cloed ube of R m and µ a non-negaive Radon meaue on R = R m \ S. The final ace can alo be epeened by a poiive, oue egula Boel meaue ν, and ν i no neceay locally bounded. The wo epeenaion ae elaed by: { A R m νa = if A S, A Boel, νa = µa if A R. The e S i he e of ingula final poin of u and i coepond o a blow-up e of u. Fom he pobabiliic poin of view Dynkin and Kuzneov [8] and Le Gall [9] have poved imila eul fo he PD 3 in he cae < : hey ue he heoy of upepocee. In hi pape we ae concened wih a eal F T -meauable andom vaiable uch ha: Pξ = + o ξ = >. 5 Auho' peonal copy Thu ξ i no in L Ω. We give a new definiion of a oluion of he BSD. Definiion. Le u have > and ξ an F T -meauable andom vaiable. We ay ha he poce Y, Z i a oluion of he BSD Y = ξ Y Y d Z db

5 A. Popie / Sochaic Pocee and hei Applicaion if Y, Z veifie: D fo all < T : Y = Y Y Y d Z db ; D2 fo all [, T [, up Y 2 + Z 2 d < + ; D3 P-a.. lim T Y = ξ. The ouline of he pape i a follow. xcep in Secion 5, ξ i uppoed o be non-negaive. In he fi ecion, wihou any fuhe aumpion on ξ, we conuc a poce Y, Z which aifie all condiion fo being a oluion in he ene of he peviou definiion, excep he la one. Moe peciely we eablih in Secion he Theoem 2. Le ξ a.. Thee exi a pogeively meauable poce Y, Z, wih value in R + R d, uch ha: D and D2 ae aified: a fo all [, T [, and all : Y = Y Y + d Z db, b fo all [, T [, Y, and Z T 2 d ; ii T 2 2 Y i coninuou on [, T [, he limi of Y, when goe o T, exi and: lim Y ξ, P a..; iii T 3 Z aifie alo: 2 T 2/ Z 2 d 8. iv Noe ha hi eul doe no pecify whehe Y aifie lim T Y = ξ. The exience of hi poce Y, Z i obained by appoximaion. Fo evey inege n, le Y n, Z n be he oluion of he BSD wih eminal condiion ξ n L Ω. Y, Z i he limi of hi euence Y n, Z n n N. In Secion 2, we udy ou poce Y in he neighbouhood of T. In a fi pa we make pecie he aympoic behaviou of Y on he blow-up e. Popoiion 3. On he e {ξ = + } / lim T / Y = a.. 6 In he econd pa we will pove he coninuiy of Y unde onge condiion on ξ. So fa we only have he ineualiy: Auho' peonal copy lim Y ξ = Y T. T Wihou addiional aumpion, we wee unable o pove he convee ineualiy. The fi hypohei on ξ i he following: i ξ = gx T, H

6 28 A. Popie / Sochaic Pocee and hei Applicaion whee g i a meauable funcion defined on R m wih value in R + uch ha he e F = {g = + } i cloed; and whee X T i he value a = T of a diffuion poce o moe peciely he oluion of a ochaic diffeenial euaion fo ho SD: X = x + b, X d + σ, X db, fo [, T ]. 7 We will alway aume ha b and σ ae defined on [, T ] R m, wih value epecively in R m and R m d, ae meauable w... he Boelian σ -algeba, and ha hee exi a conan K >.. fo all [, T ] and fo all x, y R m R m : Lipchiz condiion: b, x b, y + σ, x σ, y K x y ; 2 Gowh condiion: b, x + σ, x K + x. The econd hypohei on ξ i: fo all compac e K R m \ F gx T K X T L Ω, F T, P; R. Moeove in he cae 2 we will add he following condiion: σ and b ae bounded: hee exi a conan K.. Auho' peonal copy L G H2, x [, T ] R m, b, x + σ, x K ; B 2 he econd deivaive of σ σ belong o L : 2 σ σ L [, T ] R m. x i x j 3 σ σ i unifomly ellipic, i.e. hee exi λ >.. fo all, x [, T ] R m : y R m, σ σ, xy.y λ y 2. 4 g i coninuou fom R m o R + and: M, g i a Lipchiz funcion on he e O M = { g M}. H3 Theoem 4 Coninuiy of Y a T. Unde he aumpion H, H2, L and G, and wih eihe > 2 o H3, B, D and, Y i coninuou a ime T lim Y = ξ, T P a.. In Secion 3, we pove ha ou oluion i he minimal oluion. Theoem 5 Minimal Soluion. The oluion Y, Z obained in Theoem 2 and 4 i minimal: if Ȳ, Z i anohe non-negaive oluion in he ene of Definiion, hen fo all [, T ], P-a..: Ȳ Y. Moeove we pove ha: / Ȳ. T D

7 A. Popie / Sochaic Pocee and hei Applicaion The fouh ecion povide connecion beween hi conuced oluion of he BSD and vicoiy oluion of elaed emi-linea PD 3. Fo all, x [, T ] R m, we denoe by X,x he oluion of he SD: X,x = x + b, X,x d + σ, X,x db, fo [, T ], 8 and X,x = x fo [, ]. The coefficien b and σ veify alway he aumpion of he econd ecion. A a final condiion of he BSD, we ake gx,x T, whee g i a funcion defined fom R m o R + uch ha he e F = {g = + } i cloed and uch ha he condiion H2 i veified. Moeove g i uppoed o be coninuou fom R m o R +. Theoem 6 Vicoiy Soluion. The minimal oluion of he BSD wih ξ = gx,x T i denoed by Y,x. Then Y,x i a deeminiic numbe and if we e u, x = Y,x, hen u i lowe emi-coninuou fom [, T ] R m o R + wih u,. < + wheneve < T and u i a diconinuou vicoiy oluion of he PD 3. We pove ha he peviou oluion i minimal among all non-negaive vicoiy oluion. Theoem 7 Minimal Vicoiy Soluion. If v i a non-negaive vicoiy oluion of he PD 3, hen fo all, x [, T ] R m : u, x v, x. We give ufficien condiion o have u coninuou on [, T ] R m. In Secion 5, we exend ou eul when hee i no ign aumpion on ξ. Theoem 8. Le ξ be an F T -meauable andom vaiable, poibly negaive, uch ha: Pξ = + o ξ = >. 5 Moeove ξ aifie ξ = gx T, wih g : R m R {, + } uch ha: he wo e {g = + } and {g = } ae cloed; 2 he condiion H2 i veified: fo all compac e K R m \ {g = ± } gx T K X T L Ω, F T, P; R; 3 if 2, H3 hold. The coefficien of he SD 7 aify L, G and in he cae < 2, hey alo veify B, D and. Thee exi a poce Y, Z which i a oluion of he BSD Y = ξ Auho' peonal copy Y Y d in he ene of Definiion. Z db In he coninuaion, unimpoan conan will be denoed by C. H

8 22 A. Popie / Sochaic Pocee and hei Applicaion Appoximaion and conucion of a oluion Fom now and in Secion 2 4, ξ aifie: Pξ = and Pξ = + >. In hi ecion we pove Theoem 2. Fo >, le u conide he funcion f : R R, defined by f y = y y. f i coninuou and monoone ineualiy 2. By Theoem 2.2 and xample 3.9 in [5], fo ζ L 2 F T, he BSD wih ζ a eminal condiion ha a uniue oluion Y, Z wih value in R R d, uch ha Y i coninuou on [, T ] and ha: up T Y 2 + Z 2 d <. 9 Remak ha a aighfowad applicaion of he Tanaka fomula ee [] and of he compaion Theoem 2.4 in [5] how ha: / [, T ], Y. T Fo evey n N, we inoduce ξ n = ξ n. ξ n belong o L 2 Ω, F T, P; R. We apply he peviou eul wih ξ n a he final daa, and we build a euence of andom pocee Y n, Z n which aify and 9. Fom he compaion Theoem 2.4 in [5], if n m, ξ n ξ m m, which implie fo all in [, T ], a.., Y n Y m T + m. T We define he pogeively meauable R-valued poce Y, a he inceaing limi of he euence Y n n : [, T ], Y = lim n + Y n. 2 Then we obain fo all T Y. 3 T In paicula Y i finie on he ineval [, T [ and bounded on [, T δ] fo all δ >... Poof of i and ii fom Theoem 2 Auho' peonal copy Hee we will pove he popeie i and ii. Le δ > and [, T δ]. Fo all, Iô fomula lead o he eualiy: Y n Y m Z n Z m 2 d = Y n Y m 2 Y n Y m Z n Z m db + 2 Y n Y m f Y n f Y m d

9 A. Popie / Sochaic Pocee and hei Applicaion Y n Y m 2 2 Y n Y m Z n Z m db, fom he monooniciy of f ineualiy 2. Thank o 9: Y n Y m Z n Z m db =. Fom he Bukholde Davi Gundy ineualiy, we deduce he exience of a univeal conan C wih: up Y n Y m 2 + Z n Z m 2 d C Y n Y m 2. 4 Fom he eimae 3, fo T δ, Y n and Y δ /. Since Y n δ / convege o Y a.., he dominaed convegence heoem and he peviou ineualiy 4 imply: fo all δ >, Z n n i a Cauchy euence in L 2 Ω [, T δ]; R d, and convege o Z L 2 Ω [, T δ]; R d, 2 Y n n convege o Y unifomly in mean uae on he ineval [, T δ]; in paicula Y i coninuou on [, T [, 3 Y, Z aifie fo evey < T, fo all : Y = Y Y + d Z db. The elaion i i poved. Since Y i malle han /T / by 3, and ince Z L 2 Ω [, T δ]; R d, applying he Iô fomula o Y 2, wih < T and, we obain: Y 2 + Z 2 d = Y 2 2 T 2 Y Z db Auho' peonal copy Y Z db, Y f Y d again hank o he monooniciy of f ineualiy 2. Fom 3, ince Z L 2 [, ] Ω, we have: Y Z db =. Theefoe, we deduce: [, T [,.2. Poof of iii Z 2 d. ii T 2 Fom now, he poce Y i coninuou on [, T [ and we define Y T = ξ. The main difficuly will be o pove he coninuiy a ime T. I i eay o how ha: i ξ lim inf T Y. Indeed, fo all n and all [, T ], Y n Y, heefoe: ξ n = lim inf Y n lim inf Y. 6 T T 5

10 222 A. Popie / Sochaic Pocee and hei Applicaion Thu, Y i lowe emi-coninuou on [, T ] hi i clea ince Y i he upemum of coninuou funcion. Wihou ohe aumpion on ξ, we ae unable o pove he coninuiy of Y a = T. Bu now we will how ha Y ha a limi on he lef a ime T. We will diinguih he cae when ξ i geae han a poiive conan fom he cae ξ non-negaive..2.. The cae ξ bounded away fom zeo We can how ha Y ha a limi on he lef a T, by uing Iô fomula applied o he poce /Y n. We pove he following eul: Popoiion 9. Suppoe hee exi a eal α > uch ha ξ α >, P-a.. Then Y = T + F Φ, T, 7 ξ whee Φ i a non-negaive upemaingale. Poof. Fom he compaion eul 2.4 of [5], fo evey n N and evey T : n Y n / / T + /α T + /α >. By he Iô fomula Y n = + Z n + T ξ n 2 2 Y n +2 d + = F + T ξ n + T F 2 The poce: Y n, Z n Y n + Auho' peonal copy Z n 2 Y n +2 d. Z n Y n + db i he maximal oluion in L [, T ] Ω L 2 [, T ] Ω; R d of he BSD: T Y = ξ n + + Z 2 2 Y /n d Z db. Indeed, fo hi BSD hee exi a maximal oluion U, V ee [], Theoem 2.3 and ince U /Y n, we can apply Iô fomula o he poce U /. We find ha U /, /V/U +/ aifie he BSD wih eminal value ξ n. Thu U / = Y n and he concluion follow. Le n m. Since ξ n ξ m, we obain fo all T : Y m Y n = F ξ m ξ n + T F Z m 2 T 2 Y m +2 d F Z n 2 Y n +2 d.

11 A. Popie / Sochaic Pocee and hei Applicaion Now: + Z m 2 F 2 T Y m +2 d F Z n 2 Y n +2 d [ ] [ F ξ m ξ n Y m ] Y n. Fo a fixed [, T ], he euence F ξ n and n Y n convege a.. and in L n dominaed convegence heoem. Then F T Z n 2 d convege a.. and in L and Y n +2 n we denoe by Φ he limi: Φ = lim n F Z n 2 Y n +2 d. We can alo emak ha: + T F Z n 2 2 Y n +2 d = F ξ n + T Y n, wih Y n /T /, o + T F Z n 2 2 Y n +2 d F ξ n α. Theefoe, Fo, Φ F F Z n 2 ξ Y n +2 d. Z n 2 Φ F Φ. Z n 2 Y n +2 d Y n +2 d F F Z n 2 Y n +2 d We deduce ha Φ <T i a non-negaive bounded upemaingale. Now fo all n N, Y n = T + + T F ξ n F Z n 2 2 Y n +2 d. Auho' peonal copy Fix < T. Taking he limi a n +, we deduce: Y = T + F ξ Φ. Fom he above expeion, Φ <T i igh-coninuou.

12 224 A. Popie / Sochaic Pocee and hei Applicaion Φ being a igh-coninuou non-negaive upemaingale, he limi of Φ a goe o T exi P-a.. and hi limi Φ T i finie P-a.., ince i i bounded by /α. The L -bounded maingale F ξ convege a.. o /ξ, a goe o T ; hen he limi of Y a T exi and i eual o: lim Y = T ξ Φ T. / If we wee able o pove ha Φ T i zeo a.., we would have hown ha Y T = ξ The cae of ξ non-negaive Now we ju aume ha ξ. We canno apply he Iô fomula o /Y n becaue we have no poiive lowe bound fo Y n. We will appoach Y n in he following way. We define fo n and m, ξ n,m by: ξ n,m = ξ n m. Thi andom vaiable i in L 2 and i geae han o eual o /m a.. The BSD, wih ξ n,m a eminal condiion, ha a uniue oluion Ỹ n,m, Z n,m. I i immediae ha if m m and n n hen: Ỹ n,m Ỹ n,m. A fo he euence Y n, we can define Ỹ m a he limi when n gow o + of Ỹ n,m. Tha limi Ỹ m i geae han Y = lim n + Y n. Bu fo m m, fo [, T ]: [ Ỹ Ỹ n,m = ξ n,m ] ξ n,m n,m + n,m Ỹ + d Ỹ n,m [ Z n,m ξ n,m ξ n,m ] Z n,m db [ Z n,m and aking he condiional expecaion given F : Ỹ n,m Ỹ n,m F ] Z n,m db, Auho' peonal copy ξ n,m ξ n,m m. 8 Recall ha Y n, Z n i he oluion of he BSD wih ξ n = ξ n a eminal daa. Thu we alo have: Ỹ n,m Y n F ξ n,m ξ n m. Leing m + in he la eimae lead o lim m + Ỹ n,m ineualiy 8: Ỹ n,m Y n m. = Y n a.. and uing he

13 Theefoe P-a..: Ỹ m up [,T ] A. Popie / Sochaic Pocee and hei Applicaion Y m. Since Ỹ m ha a limi on he lef a T, o doe Y..3. Poof of iv In ode o complee he poof of Theoem 2, we need o eablih he aemen iv. Popoiion. Suppoe hee exi a conan α > uch ha P-a.. ξ α. In hi cae: 2/ T 2/ Z 2 d 8. iv Poof. If ξ α, by compaion, fo all inege n and all [, T ]: Y n / T + /α >. Le δ > and θ : R R, θ : R R defined by: { { θx = x on [δ, + [, and θ x = x 2 on [δ, + [, θx = on ], ], θ x = on ], ], and uch ha θ and θ ae non-negaive, non-deceaing and in epecively C 2 R and C R. We apply he Iô fomula on [, T δ] o he poce θ T θy n, wih δ < T +/α / : o: θ δθy n T δ θ T θy n = 2 8 δ and ince Y n δ δ δ T /2 Y n /2 Z n db T 2 Y n 2 Y n T /2 Z n 2 δ Y n d 3/2 d T T /2 Z n 2 Y n d T /2 θy n 3/2 + T /2 2 Y n Z n /2 db + δ T /2 Y Y n 2 /2 n d T δ Auho' peonal copy /T / and T / Y n /, aking he expecaion we obain: ha i fo all n and all δ > : δ T /2 Z n 2 Y n 3/2 d θ T θy n //2, T /2 Z n 2 Y n 3/2 d 8//2.

14 226 A. Popie / Sochaic Pocee and hei Applicaion Now, ince /Y n T /, δ T 2/ Z n 2 d 8/ 2/, and leing δ and wih he Faou lemma, we deduce ha T 2/ Z 2 d 8/ 2/. Thi achieve he poof of he popoiion. Now we come back o he cae ξ. We canno apply he Iô fomula becaue we do no have any poiive lowe bound fo Y n. Bu we can appoximae he poce Y n, Z n by a euence of pocee Ỹ n,m, Z n,m a in he poof of he exience of a limi fo Y a ime T. Le u ecall ha we olve he BSD wih ξ n,m = ξ n m a eminal condiion. Fo all δ >, he Iô fomula, applied o he poce T. 2/ Ỹ n,m Y n 2, lead o he ineualiy: δ T 2/ Z n,m Z n 2 d δ 2/ Ỹ n,m T δ Y T n δ Auho' peonal copy δ T 2/ Ỹ n,m Y n 2 d. Le δ go o in he peviou ineualiy. We can do ha becaue fo all [, T ], Ỹ n,m Y n, which implie Ỹ n,m Y n 2 n 2, and becaue T. 2/ i inegable on he ineval [, T ]. Finally, uing he ineualiy: Ỹ n,m Y n m, we have: T 2/ Z n,m Z n 2 d 2 Theefoe, fo all ε > : T 2/ Z n 2 d m 2 T 2/ d = T 2/ m 2. T 2/ Z n,m 2 d + ε T 2/ Z n,m Z n 2 d T 2/ Z n,m Z n,m Z n d T 2/ Z n,m 2 d + + T 2/ Z n,m Z n 2 d ε 8 + ε/ 2/ + T 2/ +. ε We have applied he peviou eul o Z n,m. Now we le fi m go o + and hen ε go o, we have: T 2/ Z n 2 d 8/ 2/. 9 The eul follow by leing finally n go o. m 2

15 2. Coninuiy of Y a T A. Popie / Sochaic Pocee and hei Applicaion In hi ecion, ξ i ill uppoed non-negaive. We make pecie he behaviou of Y in a neighbouhood of T Popoiion 3 and we how he coninuiy of Y a T unde onge aumpion Theoem Lowe bound and aympoic behaviou in a neighbouhood of T Now we conuc an adaped poce which i malle han Y. Lemma. Fo < T, P-a.. / Y F T +. ξ Remak 2. The igh hand ide i obained hough he following opeaion: fi, we olve he odinay diffeenial euaion y = y + wih ξ a eminal condiion; hen we pojec hi oluion on he σ -algeba F. Poof. Le n N and conide fo T : / Γ n = F T +. ξ n Γ n i well defined becaue he em in he condiional expecaion i bounded by n. We have: + / T T + ξ n = ξ n d. T + So Γ n veifie: Γ n = F T ξ n d + T + ξ n = F ξ n Γ n + d U n d, wih U n he adaped and bounded by n + poce: U n = F ξ n Auho' peonal copy + T + ξ n Γ n + ; he Jenen ineualiy + > howing ha U n, fo T. Then, he compaion Theoem 2.4 in [5] allow u o conclude ha, fo all [, T ], a.. Γ n Y n Y.

16 228 A. Popie / Sochaic Pocee and hei Applicaion We hen deduce fom he monoone convegence heoem: / lim Γ n n + = F T + ξ = Γ. We now eablih he: Popoiion 3. On he e {ξ = + }, limt / Y = T /, a.. 6 Poof. Indeed, [ Γ = F ξ ] / ξ< + T ξ + T / F ξ= [ F ξ ] / ξ< + T ξ + T / F ξ=. Then, [ T / Γ T / F ξ ] / ξ< / + T ξ + F ξ=. The fi em, in he igh hand ide, convege o on he e {ξ = + } and he econd convege o / /. Indeed, we have: ξ + T ξ T and we can apply he maingale convegence heoem. Since Y i bounded fom above by /T /, hi achieve he poof Coninuiy a ime T : The fi ep We now wan o pove Theoem 4, i.e. ξ lim up T Y. Recall ha we aleady know ha he limi of Y a T exi a.. Fom he ineualiy 5, we ju have o how ha on he e {ξ < + }, Auho' peonal copy ξ lim Y = lim inf Y. T T The main difficuly hee i o find a good uppe bound of Y. We hall ue a mehod widely inpied by he aicle of Macu and Véon [7] and moe peciely by he poof of Lemma 2.2 page 45. We y o adap hi mehod o ou cae. We make onge aumpion on ξ. Fom now and fo he e of hi pape, we uppoe ha he condiion H, H2, L and G hold.

17 A. Popie / Sochaic Pocee and hei Applicaion Le ϕ be a funcion in he cla C 2 R m wih a compac uppo. Le Y, Z be he oluion of he BSD wih he final condiion ζ L 2 Ω. Fo any [, T ]: Y ϕx = Y ϕx + + = Y ϕx + + ϕx [ Y Y ] d + Z. db + Y dϕx Z. ϕx σ, X d Y LϕX d + ϕx Y Y d + whee L i he opeao defined by 4. Taking he expecaion: Y ϕx = Y ϕx + + Auho' peonal copy Z. ϕx σ, X d Y ϕx σ, X + ϕx Z. db ϕx Y Y d Z. ϕx σ, X d + Y LϕX d. 2 The idea i o ue he elaion 2 wih a uiable funcion ϕ. The e F c = {g < + } i open in R m. Le U be a bounded open e wih a egula bounday and uch ha he compac e U i included in F c. We denoe by Φ = Φ U a funcion which i uppoed o belong o C 2 R m ; R + and uch ha Φ i eual o zeo on R m \U, i poiive on U. Le α be a eal numbe uch ha α > 2 + /. Fo n N, le Y n, Z n be he oluion of he BSD wih he final condiion g nx T. The eualiy 2 become fo T : YT n Φα X T = Y n Φα X + + Φ α X Y n + d + Z n. Φα X σ, X d Y n LΦα X d. 2 Uing 2, we will fi pove ha fo evey eal α > 2 + / and fo evey n: Y n + Φ α X d C <, whee he conan C i independen of n. In paicula, we will have o find a bound fo he em conaining Z in he igh hand ide of he euaion 2. We know how o conol hi em in he wo cae of Theoem 4: we uppoe ha eihe > 2 o H3, B, D and ae aified. Thank o he Faou lemma, Y + Φ α X will belong o L Ω [, T ]. Then, we will deduce ha he limi a goe o T of Y i le han o eual o ξ a.. on he e {ξ < + }.

18 23 A. Popie / Sochaic Pocee and hei Applicaion Coninuiy when > 2 In hi ecion, we will uppoe ha > 2. In ha cae, we can eaily conol he em Z n. Φα X σ, X d. Uing he Cauchy Schwaz ineualiy, we obain: Z n. Φα X σ, X d Z n 2 T 2/ 2 d Fom he ineualiy 9 of he fi ecion: Z n 2 T 2/ d 8 And he econd em Φ α X σ, X 2 T 2/ d 2. Φ α X σ, X 2 T 2/ d i finie if > 2. Indeed, ecall ha Φ i compacly uppoed and α > 2. Hence he numeao i bounded fo all, x [, T ] R m : Φ α xσ, x 2 α 2 Φ 2α x Φx 2 K + x 2 C. Theefoe, hee exi a conan C = C, Φ, α, σ uch ha fo all [, T ] and n N: Z n. Φα X σ, X d C. 22 The em Y n LΦα X d can be bounded uing he Hölde ineualiy. Le p be uch ha /p + / + = o p = + / and p/ + = p. We will pove ha Φ αp LΦ α p L [, T ] R m. Uing he gowh condiion G on σ, we have: Φ αp TaceD 2 Φ α σ σ,. p CΦ αp D 2 Φ α p + x 2 p, Auho' peonal copy 2. and D 2 Φ α = αφ α D 2 Φ + αα Φ α 2 Φ Φ Φ αp D 2 Φ α p 2 p α p Φ α p D 2 Φ p + αα p Φ α 2p Φ 2p.

19 A. Popie / Sochaic Pocee and hei Applicaion Hence: Φ αp TaceD 2 Φ α σ σ,. p CΦ α 2p Ψ whee Ψ i he coninuou funcion on R m : [ Ψ = α p Φ p D 2 Φ p + αα p Φ 2p] [ + x 2p]. Since α > 2 + / = 2 p and ince Φ ha a compac uppo, Φ αp TaceD 2 Φ α σ σ,. p L [, T ] R m. 23 Fo he econd em Φ αp Φ α.b,. p, we have: Φ α = αφ α Φ Φ αp Φ α p = α p Φ α p Φ p. Since α > 2p and b, x K + x, Theefoe, Φ αp Φ α.b,. p 2 p K p Φ αp Φ α p + x p = 2 p K α p Φ α p Φ p + x p. Φ αp Φ α.b,. p L [, T ] R m. 24 Since LΦ α p 2 p Φ α.b,. p + 2 p TaceD 2 Φ α σ σ,. p, we apply he Hölde ineualiy: Y n X [ Φ α X Y n [ C Φ α X Y n +] [ + Φ αp X LΦ α X p] /p +] +, and he conan C depend only on, b, σ, Φ and α, no on n, o on. Finally, we have: Y n LΦα X [ d C Φ α X Y n + d [ C We come back o he. 2 fo = : Φ α X Y n +] ] + + d. 25 Auho' peonal copy Y n T Φα X T = Y n Φα X + + Φ α X Y n + d + Z n. Φα X σ, X d Y n LΦα X d. Recall ha YT nφα X T gx T Φ α X T ; ince Φ i eual o zeo ouide a compac e included in F c = {g < + }, uing he condiion H2 he lef hand ide of he peviou eualiy i bounded by a conan independen of n.

20 232 A. Popie / Sochaic Pocee and hei Applicaion In he igh hand ide, uing he ineualiy 22, we deduce ha he fi wo em ae alo bounded. Thu, we have: Φ α X Y n + d + which implie wih he ineualiy 25: [ Φ α X Y n + d C Y n LΦα X d C, Φ α X Y n ] + + d } The e {x R +, x Cx + C i bounded. Theefoe, we deduce ha: Φ α X Y n + d C. Hence, we have poved: C. 26 Lemma 4. The euence Φ α XY n + i a bounded euence in L Ω [, T ] and wih he Faou lemma, Y + Φ α X belong o L Ω [, T ]. Thi ineualiy allow u o how ha lim inf T Y ξ. Indeed, le θ be a funcion of cla C 2 R m ; R + wih a compac uppo icly included in F c = {g < + }. Thee exi an open e U.. he uppo of θ i included in U and U F c. Le Φ = Φ U be he peviouly ued funcion. Le u ecall ha α i icly geae han 2 + / > 2. Thank o a eul in he poof of he lemma 2.2 of [7], hee exi a conan C = Cθ, α uch ha: θ CΦ α, θ CΦ α and D 2 θ CΦ α 2. We wie again he. 2 fo θ, n N and T : Y n T θx T = Y n θx + + Y n θx Y n LθX d + + d Z n θx σ, X d. 27 In he lef hand ide, we ue he aumpion H2 o pa o he limi a n end o. We ju have o conol he igh hand ide a n end o infiniy. Fo he fi em, hee i no poblem: we ue he dominaed convegence heoem. Fo he econd, we apply he monoone convegence heoem. Fo he hid one, we can do he ame calculaion uing he peviouly given eimaion on θ, θ and D 2 θ in em of powe of Φ α and Hölde ineualiy: Auho' peonal copy Φ αp Lθ p L [, T ] R m. 28 Now we can wie: Y n LθX = Y n Φα/+ Φ α/+ LθX.

21 A. Popie / Sochaic Pocee and hei Applicaion The euence Y n Φ α/+ = Y n Φ α /p i a bounded euence in L + Ω [, T ] ee Lemma 4. Wih 28, uing a weak convegence eul and exacing a ubeuence if neceay, we can pa o he limi in he em Y nlθx d. Moeove: n N, Y n LθX d C. 29 Fo he emaining em Z n. θx σ, X d ecall ha fom Secion.3, hee exi a conan C = C fo all n N: Z n 2 T 2 d C. Hence, hee exi a ubeuence, which we ill denoe a Z n T /, and which convege weakly in he pace L 2 Ω, T, dp d; R d o a limi, and he limi i ZT /, becaue we aleady know ha Z n convege o Z in L 2 Ω, T δ fo all δ >. θxσ., XT. / i L 2 Ω, T, becaue θ i compacly uppoed and > 2. Theefoe, and lim n + n N, Z n. θx σ, X d = Paing o he limi a n + in 27: ξθx T = Y θx + + Z. θx σ, X d Z n. θx σ, X d d C. 3 θx Y + d + Z. θx σ, X d. Auho' peonal copy Y LθX d We le go o T and we apply Lemma 4, ineualiie 29 and 3, and Faou lemma: [ ] [ξθx T ] = lim [Y θx ] lim inf Y θx T T T [ ] = lim Y θx T. 3 T Bu ecall ha we aleady know iii: lim T Y gx T. Hence, he ineualiy in 3 i in fac a eualiy, i.e. [ ] [gx T θx T ] = θx T lim Y. +

22 234 A. Popie / Sochaic Pocee and hei Applicaion And uing again iii, we conclude ha: lim Y = gx T, P-a.. on {gx T < }. + Theefoe, we have poved he coninuiy of Y on [, T ] in he cae > 2. Remak 5. A lile modificaion in he peviou agumen how ha he euence Y n LΦ α X and Y n LθX ae bounded in L Ω [, T ] fo < +. Theefoe he euence Y n LθX i unifomly inegable and he paage o he limi and he eimae 29 follow When aumpion H3, B, D and ae aified If we ju aume >, ou peviou conol on he em conaining Z in 2 fail. Bu wih he aumpion H3, B, D and, we ae able o pove ha hee exi a funcion ψ uch ha fo < T : Z n. θx σ, X d = Y n ψ, X d, and hen, we apply again he Hölde ineualiy in ode o conol Y n ψ, X d by Y n + Φ α X d. We need he exience of a egula deniy fo he poce X oluion of he SD 7. Accoding o he aicle of Aonon [2], Theoem 7 and, hee exi a deniy Geen funcion fo X, px;.,. L 2 δ, T ; H 2 fo all δ >. Moeove, fom he Theoem 7 of [2] and he Theoem II.3.8 of [3], he deniy i Hölde coninuou in x and aifie he following ineualiy fo ], T ]: exp C y x 2 C exp y x 2 C C m/2 px;, y m/2, 32 C depending only on T, on he bound K and λ in B and, and C i independen of he egulaiy of hee funcion. Fom now on, we omi he vaiable x in px;., A peliminay eul We now pove he following eul fo he oluion Y, Z of he BSD: Y = hx T + Auho' peonal copy f Y d Z db, whee h : R m R i a bounded and Lipchiz funcion. Popoiion 6. Unde he aumpion B, D and, fo each funcion ϕ in he cla C 2 R m wih a compac uppo, hee exi a eal Boel funcion ψ defined on ], T ] R m.. fo all >, Y ψ, X < + and [Z. ϕx σ, X ] = [Y ψ, X ].

23 A. Popie / Sochaic Pocee and hei Applicaion The funcion ψ i given by he following fomula: ψ, x = d i= + ϕσ i x divpσ i, x p, x + Tace D 2 ϕxσ σ, x d ϕx.[ σ i σ i ], x; 33 i= whee σ i i he i-h column of he maix σ and p i he deniy of he poce X. Poof. To find hi funcion ψ, we ue he following eul: Popoiion 7. Fo all i d, { D i Y, T } i a veion of Z i. Z i = {Z i, T } denoe he i-h componen of Z. Thi eul come fom he Popoiion 5.3 in he aicle of l Kaoui e al. [4]. Hee, D i Y ha he following ene: D i Y = lim D i Y. < Fom he condiion L and G and he Theoem 2.2. of [5], we know ha X T belong o D,, and ince h i Lipchiz, wih he Popoiion.2.3 of [5], ξ = hx T D,2. Moeove, ince h i bounded by M, Y i alo bounded by M and f i a C -funcion. Hence, he concluion of he Popoiion 5.3 of [4] hold. We mu calculae: d [ ] [Z. ϕx σ, X ] = [D Y. ϕσ X ] = D i Y. ϕσ i X, whee ϕσ X = ϕx σ, X and ϕσ i X denoe he i-h componen of ϕσ X. Le ν i j, j N, be he following funcion: ν i j = j [ /j,]e i, wih [, T ] and wih e,..., e d he canonical bai of R d. Hee, we need >. We define D ν i j Y = DY, ν i j H, H being he Hilbe pace L 2 [, T ]; R d. The inegaion by pa fomula fo he Malliavin deivaive i he following: [ ] [ ] D ν i Y ϕσ i X = Y ϕσ i X ν i j j. db Auho' peonal copy i= [ ] Y D ν i ϕσ i X. 34 j Now we calculae he fi em of he igh hand ide. [ ] ] Y ϕσ i X ν i j. db = j [Y ϕσ i X B i Bi /j [ = j Y ϕσ i X /j divpσ i u, X u pu, X u whee p i he deniy of X and σ i i he i-h column of he maix σ. ] du, 35

24 236 A. Popie / Sochaic Pocee and hei Applicaion The la eualiy i juified by he Lemma 3. and 4. of he aicle of Padoux [6]. We mu how ha he aumpion of hee lemma ae aified. Fi, Y i a funcion of X: hee exi a coninuou funcion u : [, T ] R m R uch ha Y = u, X. Hence, we can wie: ] ] [Y ϕσ i X B i Bi /m = [v, X B i Bi /m, wih v, x = u, x ϕσ i x. Since ϕ ha a compac uppo, o doe v. And v i meauable and bounded. So he condiion of he Lemma 4. ae veified, he ime dependence of g playing no ole in he demonaion. L, B, ae no exacly he aumpion of he Lemma 3. and 4., bu wih hee condiion, he concluion ae he ame. In fac, he main poblem i o give a ene o he facion divpσ i /p. Fom he lowe bound in 32, he e {, y ], T ] R m ; p, y = } i empy. Thu he concluion of he Lemma 3. hold. Moeove he popey p L 2 δ, T ; H 2, δ >, implie ha divpσ i belong o L 2 [δ, T ] R m fo all δ > Lemma 2. in [6] wih m = and δ inead of. Since > i fixed hee, he poof of he Theoem 2.2 in [6] ee page 53 give u he eualiy 35. We have an addiional egulaiy popey on div p. Thi popey i given by he Theoem 2., Secion 3, page 223 of [7]. Since p.,. i oluion of he PD: p = L p, and ince he coefficien of L ae bounded and Lipchiz in x, he fi deivaive of σ σ belong o L [, T ] R m. Theefoe L i unifomly ellipic and can be wien in divegence fom. Fom B and L, b and b ae bounded. Fom B, L and D, all coefficien of L ae bounded. Hence he concluion of he Theoem III.2. ae valid: p/ x i aifie a Hölde condiion in x. Fom he lowe bound in 32, /p i a coninuou funcion. Moeove, divpσ i i alo coninuou. Le j goe o + in he ideniy 34: [ ] D i Y ϕσ i X = [ Y ϕσ i X divpσ i ], X p, X [ ] Y D i ϕσ ix. To find D i ϕσ ix, ecall he following eul ee Popoiion.2.3 and Theoem 2.2. in [5]: ince he poce X ha a deniy, if µ i a Lipchiz funcion, hen: D i µx = µx D i X = µx σ i X. Applying hi eul wih µ = ϕσ i, we obain: Finally, D i ϕσ ix = σ D 2 ϕσ ii X + ϕ.[ σ i.σ i ]X. [Z. ϕx σ, X ] = d [ ] D i Y. ϕσ i X = [Y ψ, X ] Auho' peonal copy i= [ ] d = Y ϕσ i X divpσ i, X p, X i= ] d [Y TaceD 2 ϕσ σ X + ϕ.[ σ i σ i ]X. i=

25 A. Popie / Sochaic Pocee and hei Applicaion The hypohei H3 implie ha g n i a Lipchiz funcion on R m. Indeed if we define { } gx gy K n = up ; gx gy n, x y hen he aumpion H3 implie ha K n i a non-deceaing euence of eal poiive numbe. Moeove, if x and y aify gx gy n o gx gy n, hen g nx g ny K n x y. And if gy < n gx, hen he coninuiy of g lead o: g nx g ny = n gy K n+ diy, { z R m ; gz n } K n+ y x. Finally g n ha a Lipchiz nom malle han K n+. We can apply Popoiion 6 wih Y n, Z n, ϕ. Coming back o he. 2 fo > : YT n ϕx T = Y n ϕx + Y n + 2 ϕx Y n ψ, X d + + d Y n whee ψ i given by he fomula 33 in Popoiion 6. ϕx b, X d Y n TaceD2 ϕx σ σ, X d Coninuiy wih H3, B, and D Recall ha U i a bounded open e uch ha U F c = {g < }, ha Φ = Φ U i a funcion which i uppoed o belong o C 2 R m ; R + and uch ha Φ i eual o zeo on R m \U, i icly poiive on U. α i a eal uch ha α > 2 + /. Fo n N, le Y n, Z n be he oluion of he BSD wih he final condiion g nx T. Fo < T, he elaion 36 i: YT n Φα X T = Y n Φα X + + Φ α X Y n wih Ψ α he following funcion: fo ], T ] and x R m + d Y n Ψ α, X d, 37 Ψ α, x = Φ α x.b, x 2 TaceD2 Φ α xσ σ, x d Φ α divp, xσ i, x xσ, x i p, x Auho' peonal copy i= d i= Φ α x.[ σ i, xσ i, x]. Ou goal now i o pove ha fo a fixed ε > and p = + /: Φ αp Ψ α p L [ε, T ] R m.

26 238 A. Popie / Sochaic Pocee and hei Applicaion If i i ue, hen he la em in 37 aifie: Y n Ψ α, X d C Φ α X Y n + + d and he end of he poof will be he ame a in he cae > 2. Fom he cae > 2 ee 23 and 24, we aleady know ha Φ αp Φ α.b,. p and Φ αp 2 Tace D 2 Φ α σ σ p,. ae in L [, T ] R m. The nex em i: d Φ αp Φ α.[ σ i,.σ i,.] i= p σ aifie he condiion L and B. We ue again he calculaion done fo he gadien of Φ α ee he poof of 24 o deduce ha if α > 2p hi em i in L [, T ] R m. Now, we come o he la em which involve he deniy of X: d Φ αp Φ α divpσ i,. p σ,. i p,. i= d = α p Φ α p divpσ i,. p Φσ,. i. p,. i= We pli hi em ino wo pa: d Φ Φσ α p,. i divσ i i p + σ,. p i= 2d p d i= Φ α p Φσ,.i div σ i,. + 2d p d Φ α p Φσ,.i σ i,. p p,. p p,. p. i= Fo he fi pa, hee i no poblem becaue α p >, o Φ α p i coninuou and compacly uppoed and Φσ i div σ i i bounded becaue of condiion L and B. Fo he econd pa, we ue he ineualiy 32 and he fac ha he uppo of Φ α p i a compac e K. So he minimum of p.,. exi on he e [ε, T ] K and i poiive. Theefoe, we conol he denominao. Fo he numeao, we aleady know ha p/ x i aifie a Hölde condiion in x. We can now conclude ha he econd pa i bounded by a conan K independen of n and. Finally, we have:. Auho' peonal copy p p Φ αp Ψ α p L [ε, T ] R m, and hu, fo ε: [ Y n Ψ α, X ] [ C Φ α X Y n +] +, 38

27 A. Popie / Sochaic Pocee and hei Applicaion whee C i a conan independen of and n. The. 37 i: Y n T Φα X T Y n ε Φα X ε = + ε ε [ Φ α X Y n +] d [ Y n Ψ α, X ] d. We have: YT nφα X T gx T Φ α X T ; ince Φ i eual o zeo ouide a compac e included in F c = {g < + }, uing he condiion H2 he lef hand ide of he peviou eualiy i bounded by a conan independen of n. Theefoe, we obain: ε [ [ Φ α X Y n +] d C ε Φ α X Y n ] + + d C. Since he e {x R +, x Cx + C} i bounded, we immediaely deduce ha Φ α XY n + i a bounded euence in L Ω [ε, T ]. Wih he Faou lemma, fo < ε T, Y + Φ α X belong o L Ω [ε, T ]. A Y i bounded on he ineval [, ε], ε < T, by /T ε /, we have poved: Y + Φ α X d < A in he cae > 2, hi ineualiy allow u o how ha: lim inf T Y ξ. Indeed, le θ be a funcion of cla C 2 R d ; R + wih a compac uppo icly included in F c = {g < + }. We wie again he. 36 fo θ, n N, ε > and ε: wih ξ nθx T = YT n θx T = Y n θx + Θ, x = θx.b, x θx Y n + d + Auho' peonal copy d divp, xσ i, x θxσ, x i p, x i= 2 TaceD2 θxσ σ, x Wih he ame agumen a in he cae > 2, we can pove ha ξ = lim Y, P-a.. on {ξ < + }. T 3. Minimal oluion Y n Θ, X d, 4 d θx.[ σ i, x.σ i, x]. i= In hi ecion we pove Theoem 5: he oluion conuced in Secion and 2 i he minimal one. Befoe we obain he following eimae: Popoiion 8. Wih he aumpion of Theoem 5, we pove:

28 24 A. Popie / Sochaic Pocee and hei Applicaion [, T ], Ȳ. T Poof. Fo evey < h < T, we define on [, T h] Λ h =. T h Λ h i he oluion of he odinay diffeenial euaion: Λ h = Λ h +, wih final condiion Λ h T h = +. Bu on he ineval [, T h], Ȳ, Z i a oluion of he BSD wih final condiion Ȳ T h. Fom he aumpion Ȳ T h i in L 2 Ω, o i finie a.. Now we ake he diffeence beween Ȳ and Λ h fo all < T h: Λ h Ȳ = Λ h Ȳ Λ h + + Ȳ d Z db wih = Λ h Ȳ α Λh Ȳ d Λ h + Ȳ + fo Ȳ α = Λ h Λ h Ȳ if Ȳ = Λ h. Auho' peonal copy Z db So α i a non-negaive pogeively meauable poce. Then we deduce: [ Λ h Ȳ = F Λh ] Ȳ exp α d. Moeove we know ha: Ȳ F Ȳ T h. Theefoe [ Λ h Ȳ F Λ h F ] Ȳ T h exp α d [ = F Λh ] Ȳ T h exp α d. Now Faou lemma lead, a goe o T h, o: Λ h Ȳ. Thi ineualiy i ue fo all [, T h] and fo all < h < T. So i i clea ha fo evey [, T ]: Ȳ. T Thi achieve he poof of he popoiion. In he cae whee ξ = + a.. hi ineualiy and Lemma give he uniuene of he oluion. If ξ = +, hee i a uniue oluion, namely Y = and Z =. T

29 A. Popie / Sochaic Pocee and hei Applicaion Poof of Theoem 5. We will pove ha Ȳ i geae han Y n fo all n N, which implie ha Y i he minimal oluion. Le Y n, Z n be he oluion of he BSD wih ξ n a eminal condiion. By compaion wih he oluion of he ame BSD wih he deeminiic eminal daa n: Y n T + /n / n. Beween he inan < T : Ȳ Y n = Ȳ Y n Ȳ + Y n + d Z Z n db = Ȳ Y n Ȳ + Y n + Ȳ Ȳ Y n Y n d Z Z n db wih = Ȳ Y n Ȳ + Y α n n+ = Ȳ Y n fo Ȳ Y n if Ȳ = Y n α n Ȳ Y n d Z Z n db 4 The poce α n i well defined, pogeively meauable and veifie: α n + Ȳ Y n. We deduce ha: [ Ȳ Y n = F Ȳ Y n exp. α n d ] uing he lineaiy of he BSD 4 and he fac ha he geneao of hi BSD i monoone. Then wih Faou lemma: { [ Ȳ Y n = lim inf F Ȳ Y n ]} exp α n d T { [ F lim inf Ȳ Y n ]} exp α n d. T I i legal o apply Faou lemma becaue wha i inide he condiional expecaion ha a lowe bound eual o n: Ȳ hi belong o he hypohei and Y n n and exp α n d. Auho' peonal copy Finally Ȳ Y n. A i i ue fo evey n N and evey [, T ], we have Ȳ Y. 4. Paabolic PD, vicoiy oluion In he inoducion, we have aid ha hee i a connecion beween BSD whoe eminal daa i a funcion of he value a ime T of a oluion of a SD o fowad backwad yem, and oluion of a lage cla of emi-linea paabolic PD. Le u make hi connecion pecie in ou cae.

30 242 A. Popie / Sochaic Pocee and hei Applicaion To begin wih, we modify he. 7. Fo all, x [, T ] R m, we denoe by X,x he oluion of he following SD: X,x = x + b, X,x d + σ, X,x db, fo [, T ], 8 and X,x = x fo [, ]. b and σ aify he aumpion L and G, and we add ha b and σ ae joinly coninuou in, x. We conide he following BSD fo T : Y,x = hx,x T Y,x Y,x d Z,x db, 42 whee h i a funcion defined on R m wih value in R + uch ha h i coninuou and bounded. The wo. 8 and 42 ae called a fowad backwad yem. Thi yem i conneced wih he PD 3 wih eminal condiion h. Thi eul i poved in he Theoem 3.2 of he aicle [5]: Theoem 9 Theoem 3.2 of [5]. If we olve he. 8 and 42 and if we define u, x fo, x [, T ] R m by u, x = Y,x, hen u i a coninuou funcion and i i a vicoiy oluion of he PD 3. Le u ecall he definiion of a vicoiy oluion ee [8,9] page 8 and 99 o [2] fo v coninuou. Fo v : [, T ] R m R, we define he uppe and lowe emi-coninuou envelope of v, namely: v, x = lim up,x,x v, x and v, x = lim inf,x,x v, x. Definiion 2. In hi definiion, h i coninuou and bounded on R m.. We ay ha v i a uboluion of 3 on [, T ] R m if v < +, if v T, x hx, and if, fo evey funcion ϕ C,2 [, T ] R m and local maximum, x of v ϕ, ϕ, x Lϕ, x + v, x v, x. 2. We ay ha v i a upeoluion of 3 on [, T ] R m if v >, if v T, x hx, and if, fo evey funcion ϕ C,2 [, T ] R m and local minimum, x of v ϕ, ϕ, x Lϕ, x + v, x v, x. 3. A funcion v i a vicoiy oluion if i i boh a vicoiy uboluion and upeoluion. Now, in ou cae, he funcion h i eplaced by he funcion g : R m R + which i uppoed o be coninuou fom R m o R + and uch ha he e F = {g = + } i cloed and non-empy. We canno apply he Theoem 3.2 in [5], o he peviou definiion, becaue g i unbounded on R m. Auho' peonal copy Definiion 2 Vicoiy Soluion wih Unbounded Daa. We ay ha v i a vicoiy oluion of he PD 3 wih eminal daa g if v i a vicoiy oluion on [, T [ R m and aifie: lim v, x = gx.,x T,x

31 A. Popie / Sochaic Pocee and hei Applicaion We ake he noaion of he conucion of he minimal oluion. Fo all n N and, x [, T ] R m, we obain a euence of andom vaiable Y,x,n, Z,x,n aifying : Y,x,n = gx,x T n Y,x,n Y,x,n d Auho' peonal copy Z,x,n db, and 9. We know now ha hi euence convege o Y,x, Z,x, which i he minimal oluion veifying he concluion of Theoem 2 and 4. In paicula, hi mean ha eihe > 2 o ele H3, B, D and ae aified by σ and b. We wan o pove Theoem 6. If we define he funcion u n by u n, x = Y,x,n, hen fom Theoem 3.2 in [5], we know ha u n i joinly coninuou in, x and i a vicoiy oluion of he paabolic PD 3 wih eminal value g n. The fac ha g i uppoed o be coninuou implie ha g n i bounded and coninuou on R m. By he compaion heoem fo BSD, Y,x,n = u n, x n N i a non-deceaing euence, and hence i convege o Y,x = u, x when n end o infiniy. Some emak abou he funcion u. I i a non-negaive funcion aifying he following bound:, x [, T ] R m, u, x. 43 T Moeove, ut, x = gx fo all x R m. A lea, u i lowe emi-coninuou on [, T ] R m a he upemum of coninuou funcion he euence u n i a non-deceaing euence, and fo all x R m : lim inf u, x gx.,x T,x Poof of Theoem 6. The main ool i he half-elaxed uppe and lowe limi of he euence of funcion {u n }, i.e. u, x = lim up n +,x,x u n, x and u, x = lim inf n +,x,x u n, x. In ou cae, u = u u = u becaue he euence {u n } i non-deceaing and u n i coninuou fo all n N. Fi, u i a upeoluion of he PD 3 on [, T [ R m. u = u = u i lowe emi-coninuou on [, T [ R m. Fom he eimae 43, fo all δ >, n N and all, x [, T δ] R m, / u n, x u, x. δ Since u n i a upeoluion of he PD 3, paing o he limi wih he Lemma 6., page 33, of [2], we obain ha u i a upeoluion of 3 on [, T [ R m. The ame agumen how ha u i a uboluion on [, T [ R m. A in he cae of he BSD, he main difficuly i in howing ha lim up u, x gx = ut, x.,x T,x We will pove ha u i locally bounded on a neighbouhood of T on he e {g < + }. Then, we deduce u i a uboluion and we apply hi o demonae ha u T, x gx if x {g < + }, which how he waned ineualiy on u.

32 244 A. Popie / Sochaic Pocee and hei Applicaion We make he ame calculaion a in he poof of he coninuiy of Y a T. Le θ be a funcion of cla C 2 R m ; R + wih a compac uppo included in {g < + }. We will pove ha u n θ i unifomly bounded on [, T ] R m. On [, T δ] R m he bound 43 give immediaely he eul. I emain o ea he poblem on a neighbouhood of T. Fi cae: > 2: We wie he eualiy 2 beween and T, fo x R m ; u n, xθx = Y,x,n T θx,x T Y,x,n [ LθX,x d θx,x Y,x,n Z,x,n +] d. θx,x σ, X,x d. The la em i conolled by: Z,x,n. θx,x σ, X,x T d Z,x,n 2 T 2/ d T θx,x σ, X,x /2 2 T 2/ d C = C, θ, σ. Hee, we ue he fac ha > 2, θ i compacly uppoed, and he condiion G. Thu, we have: θx,x Y,x,n Y,x,n T θx,x T + d + Y,x,n Z,x,n LθX,x d. θx,x σ, X,x d. The igh hand ide i bounded by he upemum of gθ and C. In he lef hand ide, he econd em i conolled by he fi one aied o a powe icly malle han uing Hölde ineualiy ee 25 and 28. Theefoe, hee exi a conan C independen of n,, x: θx,x Y,x,n + d C. We deduce ha: u n, xθx C = CT, g, θ,. Second cae: he aumpion H3, B, D and ae aified: Fo n N,, x [, T ] R m, >, he. 4 become: u n, xθx = Y,x,n T θx,x T Y,x,n Auho' peonal copy θx,x Y,x,n + d /2 Θ, X,x d. 44 Fom Popoiion 6 o fomula 36, he funcion Θ i defined by: d divp, xσ i, x Θ, x = θx.b, x θxσ, x i p, x i= 2 TaceD2 θxσ σ, x d i= θx.[ σ i, xσ i, x].

33 A. Popie / Sochaic Pocee and hei Applicaion A u n and θ ae wo non-negaive funcion, θx,x Y,x,n + d + Y,x,n Θ, X,x d Y,x,n T θx,x T. The igh hand ide in he peviou ineualiy i bounded by he upemum of gθ; hi upemum i well defined becaue gθ i coninuou wih compac uppo. And fom he calculaion made on he BSD, we know ha he abolue value of he econd em in he lef hand ide i conolled by he fi em which i non-negaive aied o a powe icly malle han. Thu, we deduce: θb,x Y,x,n + d C = CT, g, θ,. I i impoan o noe ha hi conan i independen of n,, x. If we come back o he ineualiy 44, we deduce ha fo all, x [, T ] R m : u n, xθx C = CT, g, θ,. Le U be an open ube.. U F c = {g < + }. Thu, u n i unifomly bounded on [, T ] U w... o n. Theefoe, u i bounded on [, T ] U. We know ha u n i a uboluion of he PD 3 eiced o [, T ] U, i.e. { u n, x Lu n, x + u n, x u n, x =,, x [, T [ U; u n T, x = g nx, x U. We can apply Theoem 4. in [9] ee alo Secion in [9]. Since g i coninuou, gx = gx = lim upg nx. n + x x Thu u i a uboluion of he PD: u Lu + u u =, in [, T [ U; ] min [ u Lu + u u ; u g, in {T } U. Now he Theoem 4.7 wih aighfowad modificaion how ha u g in {T } U. Thi achieve he poof of Theoem 6. The nex popoiion make pecie he behaviou of he oluion u on a neighbouhood of T. Popoiion 22. The peviouly defined oluion u aifie fo all x in he ineio of {g = + }: Auho' peonal copy lim [T T ]/ u, x =. Poof. We ake he noaion of Lemma. Fo all, x [, T [ R m, Y,x,n F / T + /ξ n.

34 246 A. Popie / Sochaic Pocee and hei Applicaion Thu, fo all inege n: Theefoe, [T ] / u, x [T ] / u n, x T / T + /n F {g= }X,x T [ + F T ξ n ] / + T ξ n {ξ< }. [T ] u, x F {g= } X,x T + F [ T ξ n + T ξ n {ξ< } The la em i bounded by [ F T ξ n ] / [ ] / + T ξ n {ξ< } [T ] /. 45 T Hence: lim inf [T T ]/ u, x lim F {g= } X,x T T ; hi limi i eual o fo x in he ineio of {g = + }. We conclude uing he bound Minimal oluion The goal of hi paagaph i o demonae ha he vicoiy oluion obained wih he BSD i minimal among all non-negaive vicoiy oluion Theoem 7. We compae a vicoiy oluion v in he ene of Definiion 2 wih u n, fo all inege n: fo all, x [, T ] R m, u n, x v, x. We deduce ha u v v. Remak ha he only ued aumpion in he poof will be L and G. Recall ha g : R m R + i coninuou, which implie ha g n : R m R + i coninuou. Popoiion 23. u n v, whee v i a non-negaive vicoiy oluion of he PD 3. Poof. Thi eul eem o be a diec coneuence of a well-known maximum pinciple fo vicoiy oluion ee [2,9] o [2]. Bu o he be of ou knowledge, hi pinciple wa no poved fo oluion which can ake he value +. Thu, following he poof of he Theoem 8.2 in [2], we ju give hee he main poin. Recall ha u n i he bounded by n and coninuou vicoiy oluion aociaed wih he eminal condiion f = g n. Fo ε >, we define u n,ε, x = u n, x ε. u n,ε i bounded by u n and i a uboluion of he PD 3 ee [2], poof of Theoem 8.2: u n,ε Auho' peonal copy Lu n,ε + u n,ε u n,ε ε T Moeove, a T, u n,ε T, x = u n T, x ε/t g nx and a, u n,ε end unifomly in x o. We will pove ha u n,ε v fo evey ε; hence we deduce u n v. Fom now on, n and ε ae fixed. We uppoe ha hee exi, z [, T ] R m uch ha u n,ε, z v, z δ > and we will find a conadicion. Fi of all, i i clea ha i no eual o o T, becaue v T, z = gz. ].

35 A. Popie / Sochaic Pocee and hei Applicaion u n,ε and v ae bounded fom above on [, T ] R m epecively by n and. Thu, fo α, β R 2, if we define: m, x, y = u n,ε, x v, y α 2 x y 2 β x 2 + y 2, m ha a upemum on [, T ] R m R m. Moeove, he penalizaion em aue ha he upemum i aained a a poin ˆ, ˆx, ŷ = α,β, x α,β, y α,β. Denoe by µ α,β hi maximum. Since δ 2β z 2 u n,ε, z v, z 2β z 2 = m, z, z µ α,β, chooing β ufficienly mall in ode o have δ/2 δ 2β z 2, we obain δ/2 µ α,β. Fom hi ineualiy and ince u n,ε n and v, we have: µ α,β = mˆ, ˆx, ŷ = u n,ε ˆ, ˆx v ˆ, ŷ α 2 ˆx ŷ 2 β ˆx 2 + ŷ 2 n α 2 ˆx ŷ 2 β ˆx 2 + ŷ 2 and hence ˆx 2 + ŷ 2 n β and ˆx ŷ 2 2n α. Now, we will pove ha ˆ canno be eual o zeo, o o T. Recall ha u n,ε,. =, hu ˆ canno be eual o zeo. Aume ha ˆ i eual o T. We have: µ α,β = g n ˆx ε T gŷ α 2 ˆx ŷ 2 β ˆx 2 + ŷ 2 g n ˆx g nŷ. Le γ β be a modulu of coninuiy of g n defined by: η, γ β η = up{ g nx g ny ; x y η, x, y B β 2 }, whee B β i he cloed ball wih adiu eual o n/β. Theefoe, we obain: δ/2 µ α,β g n ˆx g nŷ γ β ˆx ŷ γ β 2n α Since we have uppoed ha g n i coninuou, g n i unifomly coninuou on B β and heeby he limi of γ β η i eual o zeo a η goe o. Hence, he peviou ineualiy i fale when α i ufficienly lage. We deduce ha ˆ < T. We now ue he Theoem 8.3 of [2] wih he u n,ε uboluion and v upeoluion. Fo all ν > hee exi wo ymmeic maice X and Y of ize m m and wo eal a and b uch ha X A + ν A 2, Y a b = and aifying: I I wih A = α + 2β I I Auho' peonal copy a Fˆ, ˆx, u n,ε, ˆx, α ˆx ŷ + 2β ˆx, X ε T 2 b Fˆ, ŷ, v, ŷ, α ˆx ŷ 2β ŷ, Y. I I. 47, 48

36 248 A. Popie / Sochaic Pocee and hei Applicaion We ubac he wo peviou ineualiie: ε T 2 Fˆ, ˆx, u n,ε, ˆx, α ˆx ŷ + 2β ˆx, X Fˆ, ŷ, v, ŷ, α ˆx ŷ 2β ŷ, Y = 2 Tace σ σ ˆ, ˆxX 2 Tace σ σ ˆ, ŷy + bˆ, ˆx bˆ, ŷ.α ˆx ŷ + 2β bˆ, ˆx. ˆx + bˆ, ŷ.ŷ u n,ε ˆ, ˆx + + v ˆ, ŷ +. Since b i Lipchiz and gow a mo linealy, hee exi a conan K uch ha bˆ, ˆx bˆ, ŷ.α ˆx ŷ + 2β bˆ, ˆx. ˆx + bˆ, ŷ.ŷ αk ˆx ŷ 2 + 2β K + ˆx 2 + ŷ 2. Uing again he lowe bound 47 of µ α,β we have: δ/2 µ α,β u n,ε ˆ, ˆx v ˆ, ŷ v ˆ, ŷ u n,ε ˆ, ˆx and hu u n,ε ˆ, ˆx + + v ˆ, ŷ +. One em emain o be conolled: Tace σ σ ˆ, ˆxX Tace σ σ ˆ, ŷy. Fom he uppe bound 48, we deduce ha hee exi a conan κ = + 2αν + 2βν uch ha X I I I α + 2β. κ Y I I I If we chooe ν = /α, hen he conan κ i bounded: 3 κ 3 + 2β/α. We muliply hi ineualiy by he following non-negaive maix: σ σ ˆ, ˆx σ ˆ, ˆxσ ˆ, ŷ σ ˆ, ŷσ ˆ, ˆx σ σ, ˆ, ŷ and we ake he ace: Tace σ σ ˆ, ˆxX Tace σ σ ˆ, ŷy 2κβ [ σ σ ˆ, ˆx + σ σ ˆ, ŷ ] + κα [ σ ˆ, ˆx σ ˆ, ŷ ] [ σ ˆ, ˆx σ ˆ, ŷ ]. Uing he fac ha σ aifie L and G, we obain he exience of a conan K uch ha Tace σ σ ˆ, ˆxX Tace σ σ ˆ, ŷy K α ˆx ŷ 2 + Kβ + ˆx 2 + ŷ 2. Finally we have: ε T 2 C α ˆx ŷ 2 + β + ˆx 2 + ŷ 2, 49 whee C i a conan independen of α and β. Thi ineualiy i no exacly he ame a in he poof of he Theoem 8.2 in [2], becaue he oluion ae defined on R m and no on ome Auho' peonal copy bounded open e. Thu hee i hi addiional em wih β. Since ˆx 2 + ŷ 2 =, lim lim α α + β 2 ˆx ŷ 2 + β he ineualiy 49 lead o a conadicion aking β ufficienly mall and α ufficienly lage. Hence u n,ε v and i i ue fo evey ε >, o he eul i poved.

37 A. Popie / Sochaic Pocee and hei Applicaion Regulaiy of he minimal oluion The funcion u i he minimal non-negaive vicoiy oluion of he PD 3. We know ha u i finie on [, T [ R m ee 43. Fo δ >, u i bounded on [, T δ] R m by a conan which depend only on δ. Popoiion 24. If he coefficien of he opeao L aify L, B and, and ae Hölde coninuou in ime, hen u i coninuou on [, T ] R m, and fo all δ > : u C,2 [, T δ] R m ; R +. 5 Poof. The poof of Popoiion 23 how ha hee i a uniue bounded and coninuou vicoiy oluion of he Cauchy poblem: { v + Lv v v =, on [, T δ] R m, vt δ, x = φx on R m 5 whee φ i uppoed bounded and coninuou on R m. Moeove, he Cauchy poblem 5 ha a claical oluion fo evey bounded and coninuou funcion φ ee Lemma 25 below. Recall ha u n i joinly coninuou in, x and on [, T δ] R m, u n i bounded by: / u n, x. δ Thu, he poblem 5 wih condiion φ = u n T δ,. ha a bounded claical oluion. Since evey claical oluion i a vicoiy oluion and ince u n i he uniue bounded and coninuou vicoiy oluion of 5, we deduce ha: δ >, u n C,2 [, T δ[ R m ; R +. Fom he conucion of he claical oluion u n, we alo know ha he euence {u n } i locally bounded in C α,+α [, T δ/2] R m. The bound i given by he L nom of u n which i malle han T δ/4 /. Theefoe u i coninuou on [T δ/2] R m and if we conide he poblem 5 wih coninuou eminal daa ut δ,., wih he ame agumen a fo u n, we obain ha u i a claical oluion, i.e. u C,2 [, T δ] R m ; R +. In paicula, u i coninuou on [, T [ R m. And he eminal condiion in Theoem 6 how ha u i coninuou a ime T. Lemma 25. Fo evey bounded and coninuou funcion φ, he Cauchy poblem 5 ha a claical oluion v. Poof. If L can be wien in divegence fom, he concluion i given by he Theoem 8. and Remak 8., Secion V, in [7]. Moe peciely, hee exi a uniue coninuou and bounded oluion v uch ha, fo all δ > δ, v belong o H +β/2,2+β [, T δ ] R m. H +β/2,2+β [, T δ ] R m i he e of funcion which ae + β/2-hölde coninuou in ime and 2 + β-hölde coninuou in pace. Remak ha if he aumpion D hold, hen L can be wien in divegence fom. In geneal, we ue a booap mehod. If v denoe he uniue bounded and coninuou vicoiy oluion of 5, if f = v v L, fom he heoem 3. of [22], he linea Cauchy poblem: Auho' peonal copy

Penalization method for a nonlinear Neumann PDE via weak solutions of reflected SDEs

Penalization method for a nonlinear Neumann PDE via weak solutions of reflected SDEs Penalizaion mehod fo a nonlinea Neumann PDE via weak oluion of efleced SDE Khaled Bahlali a,,1, Lucian Maiciuc b,2, Adian Zălinecu b,2, a Univeié de Toulon, IMATH, EA 2134, 83957 La Gade Cedex, Fance.

More information

Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme

Approximating solutions of backward doubly stochastic differential equations with measurable coefficients using a time discretization scheme Loughboough Univeiy Iniuional Repoioy Appoximaing oluion of backwad doubly ochaic diffeenial equaion wih meauable coefficien uing a ime diceizaion cheme Thi iem wa ubmied o Loughboough Univeiy' Iniuional

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

ONTHEPATHWISEUNIQUENESSOF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS

ONTHEPATHWISEUNIQUENESSOF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS OCKY MOUNTAIN JOUNAL OF MATHEMATICS Volume 43, Numbe 5, 213 ONTHEPATHWISEUNIQUENESSOF STOCHASTIC PATIAL DIFFEENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS DEFEI ZHANG AND PING HE ABSTACT. In hi pape,

More information

Online publication date: 01 June 2010 PLEASE SCROLL DOWN FOR ARTICLE

Online publication date: 01 June 2010 PLEASE SCROLL DOWN FOR ARTICLE Thi aicle wa downloaded by: [Yao, Song] On: 7 Januay 211 Acce deail: Acce Deail: [ubcipion numbe 93195159] Publihe Taylo & Fanci Infoma Ld Regieed in England and Wale Regieed Numbe: 172954 Regieed office:

More information

Variance and Covariance Processes

Variance and Covariance Processes Vaiance and Covaiance Pocesses Pakash Balachandan Depamen of Mahemaics Duke Univesiy May 26, 2008 These noes ae based on Due s Sochasic Calculus, Revuz and Yo s Coninuous Maingales and Bownian Moion, Kaazas

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

Navier Stokes equations and forward backward SDEs on the group of diffeomorphisms of a torus

Navier Stokes equations and forward backward SDEs on the group of diffeomorphisms of a torus Sochaic Pocee and hei Applicaion 9 (9) 434 46 www.elevie.com/locae/pa Navie Soke equaion and fowad backwad SDE on he goup of diffeomophim of a ou Ana Bela Cuzeio a,b,, Evelina Shamaova b,c a Dep. de Maemáica,

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Selling at the ultimate maximum in a regime-switching model

Selling at the ultimate maximum in a regime-switching model Selling a he ulimae maximum in a egime-wiching model axiv:158.677v2 mah.pr 24 Jun 216 Yue Liu Nicola Pivaul School of Phyical and Mahemaical Science Diviion of Mahemaical Science Nanyang Technological

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Selling at the ultimate maximum in a regime-switching model

Selling at the ultimate maximum in a regime-switching model Selling a he ulimae maximum in a egime-wiching model Yue Liu School of Finance and Economic Jiangu Univeiy Zhenjiang 21213 P.R. China Nicola Pivaul School of Phyical and Mahemaical Science Nanyang Technological

More information

Stochastic control for a class of nonlinear kernels and applications *

Stochastic control for a class of nonlinear kernels and applications * Sochaic conol fo a cla of nonlinea kenel and applicaion * Dylan oamaï, Xiaolu Tan, Chao Zhou To cie hi veion: Dylan oamaï, Xiaolu Tan, Chao Zhou. applicaion *. 15. Sochaic conol fo a cla

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS PHYS 54 - GENERAL RELATIVITY AND COSMOLOGY - 07 - PROBLEM SET 7 - SOLUTIONS TA: Jeome Quinin Mach, 07 Noe ha houghou hee oluion, we wok in uni whee c, and we chooe he meic ignaue (,,, ) a ou convenion..

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

An FBSDE approach to the Skorokhod embedding problem for Gaussian processes with non-linear drift

An FBSDE approach to the Skorokhod embedding problem for Gaussian processes with non-linear drift See icuion, a, an auho pofile fo hi publicaion a: hp://www.eeachgae.ne/publicaion/2651278 An FBSDE appoach o he Skookho embeing poblem fo Gauian pocee wih non-linea if Aicle in ELECTRONIC JOURNAL OF PROBABILITY

More information

CHALMERS GÖTEBORG UNIVERSITY

CHALMERS GÖTEBORG UNIVERSITY CHALMERS GÖEBORG UNIVERSIY MASER S HESIS On Weak Diffeeniabiliy of Backwad SDE and Co Hedging of Inuance Deivaive ADAM ANDERSSON Depamen of Mahemaical Saiic CHALMERS UNIVERSIY OF ECHNOLOGY GÖEBORG UNIVERSIY

More information

The distribution of the interval of the Cox process with shot noise intensity for insurance claims and its moments

The distribution of the interval of the Cox process with shot noise intensity for insurance claims and its moments The diibuion of he ineval of he Cox poce wih ho noie ineniy fo inuance claim and i momen Angelo Daio, Ji-Wook Jang Depamen of Saiic, London School of Economic and Poliical Science, Houghon See, London

More information

arxiv: v2 [math.st] 27 Jan 2016

arxiv: v2 [math.st] 27 Jan 2016 STATISTICAL IFERECE VERSUS MEA FIELD LIMIT FOR HAWKES PROCESSES axiv:157.2887v2 mah.st] 27 Jan 216 SYLVAI DELATTRE AD ICOLAS FOURIER Abac. We conide a populaion of individual, of which we obeve he numbe

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Support Vector Machines

Support Vector Machines Suppo Veco Machine CSL 3 ARIFICIAL INELLIGENCE SPRING 4 Suppo Veco Machine O, Kenel Machine Diciminan-baed mehod olean cla boundaie Suppo veco coni of eample cloe o bounday Kenel compue imilaiy beeen eample

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Deviation probability bounds for fractional martingales and related remarks

Deviation probability bounds for fractional martingales and related remarks Deviaion pobabiliy bounds fo facional maingales and elaed emaks Buno Sausseeau Laboaoie de Mahémaiques de Besançon CNRS, UMR 6623 16 Roue de Gay 253 Besançon cedex, Fance Absac In his pape we pove exponenial

More information

POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n. Abdelwaheb Dhifli

POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n. Abdelwaheb Dhifli Opuscula Mah. 35, no. (205), 5 9 hp://dx.doi.og/0.7494/opmah.205.35..5 Opuscula Mahemaica POSITIVE SOLUTIONS WITH SPECIFIC ASYMPTOTIC BEHAVIOR FOR A POLYHARMONIC PROBLEM ON R n Abdelwaheb Dhifli Communicaed

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Lecture 26: Leapers and Creepers

Lecture 26: Leapers and Creepers Lecue 6: Leape and Ceepe Scibe: Geain Jone (and Main Z. Bazan) Depamen of Economic, MIT May, 5 Inoducion Thi lecue conide he analyi of he non-epaable CTRW in which he diibuion of ep ize and ime beween

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

The International Diversification Puzzle when Goods Prices are Sticky: It s Really about Exchange-Rate Hedging, not Equity Portfolios

The International Diversification Puzzle when Goods Prices are Sticky: It s Really about Exchange-Rate Hedging, not Equity Portfolios The Inenaional Diveificaion Puzzle when Good Pice ae Sicky: I eally abou Exchange-ae edging, no Equiy Pofolio by CALES ENGEL AND AKITO MATSUMOTO Appendix A. Soluion of he Dynamic Model An equilibium aifie

More information

On the quadratic support of strongly convex functions

On the quadratic support of strongly convex functions Int. J. Nonlinea Anal. Appl. 7 2016 No. 1, 15-20 ISSN: 2008-6822 electonic http://dx.doi.og/10.22075/ijnaa.2015.273 On the quadatic uppot of tongly convex function S. Abbazadeh a,b,, M. Ehaghi Godji a

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

arxiv: v3 [math.pr] 25 Feb 2014

arxiv: v3 [math.pr] 25 Feb 2014 The obacle poblem fo emilinea paabolic paial inego-diffeenial equaion axiv:137.875v3 [mah.pr] 25 Feb 214 Ani MATOUSSI Univeié du Maine Iniu du Rique e de l Auance Laboaoie Manceau de Mahémaique e-mail:

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

International Journal of Mathematical Archive-5(6), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(6), 2014, Available online through   ISSN Inenaional Jonal o Mahemaical Achive-6, 0, 09-8 Availale online hogh www.ijma.ino ISSN 9 06 EXISENCE OF NONOSCILLAORY SOLUIONS OF A CLASS OF NONLINEAR NEURAL DELAY DIFFERENIAL EQUAIONS OF HIRD ORDER K

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

K. G. Malyutin, T. I. Malyutina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE

K. G. Malyutin, T. I. Malyutina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE Математичнi Студiї. Т.4, 2 Maemaychni Sudii. V.4, No.2 УДК 57.5 K. G. Malyuin, T. I. Malyuina, I. I. Kozlova ON SUBHARMONIC FUNCTIONS IN THE HALF-PLANE OF INFINITE ORDER WITH RADIALLY DISTRIBUTED MEASURE

More information

GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES

GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES GRADIENT ESTIMATES, POINCARÉ INEQUALITIES, DE GIORGI PROPERTY AND THEIR CONSEQUENCES FRÉDÉRIC ERNICOT, THIERRY COULHON, DOROTHEE FREY Absac. On a doubling meic measue space endowed wih a caé du champ,

More information

Extremal problems for t-partite and t-colorable hypergraphs

Extremal problems for t-partite and t-colorable hypergraphs Exemal poblems fo -paie and -coloable hypegaphs Dhuv Mubayi John Talbo June, 007 Absac Fix ineges and an -unifom hypegaph F. We pove ha he maximum numbe of edges in a -paie -unifom hypegaph on n veices

More information

The Clique Density Theorem.

The Clique Density Theorem. Annal of Mahemaic 00 (XXXX), 28 doi: 0.4007/annal.XXXX.00.0.0000 The Clique Deniy Theoem. By Chiian Reihe Abac Conide he following queion: Fix an inege 3 a well a a eal paamee γ [0, /2) and le n be a lage

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) = 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt

More information

@FMI c Kyung Moon Sa Co.

@FMI c Kyung Moon Sa Co. Annals of Fuzzy Mahemaics Infomaics Volume, No. 2, (Apil 20), pp. 9-3 ISSN 2093 930 hp://www.afmi.o.k @FMI c Kyung Moon Sa Co. hp://www.kyungmoon.com On lacunay saisical convegence in inuiionisic fuzzy

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY

A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY Adance and Alicaion in Saiic Volume 6, Numbe,, Page 5-47 Thi ae i aailable online a h://hmj.com/jounal/ada.hm Puha Publihing Houe A GEOMETRIC ROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Stochastic representations of derivatives of solutions of one dimensional parabolic variational inequalities with Neumann boundary conditions

Stochastic representations of derivatives of solutions of one dimensional parabolic variational inequalities with Neumann boundary conditions Sochaic epeenaion of eivaive of oluion of one imenional paabolic vaiaional inequaliie wih Neumann bounay coniion Mieille Boy, Mamaou Cié, Deni alay o cie hi veion: Mieille Boy, Mamaou Cié, Deni alay. Sochaic

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Optimal Decentralized State-Feedback Control with Sparsity and Delays

Optimal Decentralized State-Feedback Control with Sparsity and Delays Opimal Decenalized Sae-Feedback Conol wih Spaiy and Delay ndew Lampeki Lauen Lead uomaica, vol. 58, pp. 43 5, ug. 5 bac Thi wok peen he oluion o a cla of decenalized linea quadaic ae-feedback conol poblem,

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

Research Article A Note on Multiplication and Composition Operators in Lorentz Spaces

Research Article A Note on Multiplication and Composition Operators in Lorentz Spaces Hindawi Publishing Copoaion Jounal of Funcion Spaces and Applicaions Volume 22, Aicle ID 29363, pages doi:.55/22/29363 Reseach Aicle A Noe on Muliplicaion and Composiion Opeaos in Loenz Spaces Eddy Kwessi,

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

arxiv: v1 [math.co] 4 Apr 2019

arxiv: v1 [math.co] 4 Apr 2019 Dieced dominaion in oiened hypegaphs axiv:1904.02351v1 [mah.co] 4 Ap 2019 Yai Cao Dep. of Mahemaics Univesiy of Haifa-Oanim Tivon 36006, Isael yacao@kvgeva.og.il This pape is dedicaed o Luz Volkmann on

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS Mem. Fac. Inegaed As and Sci., Hioshima Univ., Se. IV, Vol. 8 9-33, Dec. 00 ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS YOSHIO AGAOKA *, BYUNG HAK KIM ** AND JIN HYUK CHOI ** *Depamen of Mahemaics, Faculy

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Macroeconomics 1. Ali Shourideh. Final Exam

Macroeconomics 1. Ali Shourideh. Final Exam 4780 - Macroeconomic 1 Ali Shourideh Final Exam Problem 1. A Model of On-he-Job Search Conider he following verion of he McCall earch model ha allow for on-he-job-earch. In paricular, uppoe ha ime i coninuou

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

1 Solutions to selected problems

1 Solutions to selected problems 1 Soluions o seleced problems 1. Le A B R n. Show ha in A in B bu in general bd A bd B. Soluion. Le x in A. Then here is ɛ > 0 such ha B ɛ (x) A B. This shows x in B. If A = [0, 1] and B = [0, 2], hen

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales Inernaional Conference on Image, Viion and Comuing (ICIVC ) IPCSIT vol. 5 () () IACSIT Pre, Singaore DOI:.7763/IPCSIT..V5.45 Anali of Boundedne for Unknown Funcion b a Dela Inegral Ineuali on Time Scale

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS

AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS CHAPTER 5 AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS 51 APPLICATIONS OF DE MORGAN S LAWS A we have een in Secion 44 of Chaer 4, any Boolean Equaion of ye (1), (2) or (3) could be

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS Fixed Point Theoy, Volume 5, No. 1, 2004, 71-80 http://www.math.ubbcluj.o/ nodeacj/sfptcj.htm SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS G. ISAC 1 AND C. AVRAMESCU 2 1 Depatment of Mathematics Royal

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information