Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Size: px
Start display at page:

Download "Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) ="

Transcription

1 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt 2. Find the leading tem fo each of the integal below λ >>. I(x) = Conide both cae in which x> o x<. Solution:. (a) I(λ) = R eiλt3 dt Can wite I(λ) = Z + e ixt e it5 /5 dt () Z We obeve that the econd integal i the complex conjugate of the fit, hence I(λ) =2Re Z Moeove, we ee that the point t =i the only tationay phae point, which give the main contibution to the integal, theefoe we can make the appoximation whee I(λ) 2Re J(λ) = =2ReJ(λ) Note that we do not need to calculate the end point contibution, which would come out to be of mallle ode than the contibution of the tationay phae point-we ae only aked the leading tem. The integand of J i ocillatoy. We would like to change the contou into one on which i exponentially deceaing, fo then we we would be able to expe it a a gamma function. Thu we put z 3 = it 3 whee t ieal.thimeanthepathovewhichtheintegalitakenwouldbe z = i /3 t

2 Thee ae thee oot fo i /3 : e i/6,e 5i/6,e 3i/2. An analyi of thoe path bing that we can only change the domain of integal, which i oiginally the eal axi, into the taightline making an angle /6, which i the only cae whee we can cloe ou contou with a zeo contibution ac. Thu J = e i/6 e λt3 dt Makingonemoevaiablechange we aive at J = ei/6 3λ /3 Theefoe, the anwe i given by. (b) R e iλx2 dx τ = λt 3 e τ τ 2/3 dτ = ei/6 Γ(/3) /3 3λ I(λ) Γ(/3) /3 3λ Thee i no tationay phae point in the domain of the integal, hence thi i an integal in the fom (8.36) of the book, i.e of the fom I(λ) = Z b a e iλu(x) h(x)dx (2) fo which the end point contibution ae impotant. Hence the leading fom can be given by (8.39) in the book, which i e iλu(b) h(b) iλu (b) eiλu(a) h(a) iλu (a) In ou cae, we have only one end point, hence the leading tem i eiλu() h() iλu () = eiλ 2iλ. (c) R eiλ co x dx The tationay phae point ae olution to in x =, which ae x =,. Since tationay phae point contibute moe than the end point, we do not conide end point fo the pupoe of calculating the leading tem. In thi example, the end point ae tationay phae point, o they will aleady be taken cae of when calculating the tationay phae point, o in ome ene, we can ay that thee i no end point contibution. We ue the fomula (8.45) and (8.46) fom the book which ae e i/4 2 λu (x ) eiλu(x ) h(x ) and e i/4 2 λ u (x ) eiλu(x ) h(x ) (3) 2

3 depending on the ign of u (x ). Since the tationay phae point ae end point, they contibute only half of the quantity they would if they wee inteio point. Thu we finally find 2 2 e i/4 λ eiλ ei/4 λ e iλ = λ co(λ 4 ) a the leading tem. 2. The integal () i in the fom (2), with u(t) =t, h(t) =e it5 /5. The integal ha neithe point of tationay phae no finite end point. We fit teat the imple cae x<. We tat with caling the vaiable of integation by the tanfomation t =( x) /4 z, and the integal () become I(x) =( x) /4 e iλf(z) dz with f(z) = z + 5 z5 and Λ =( x) 5/4. Thi lat integand ha two tationay point z =,, which ae found by olving f (z) = +z 4 =. Theefoe the integal can be appoximated by making ue of (3), which give e i/4 2Λ e4iλ/5 + e i/4 2 e 4iΛ/5 theefoe 2 I(x) = ( x) /4 Λ co(4 5 Λ 4 ) = ( x) /4 2 ( x) co(4 5/4 5 ( x)5/4 4 )= 2( x) 3/8 co( 4 5 ( x)5/4 4 ) Fo the cae x>, we cale the oiginal integal with t = x /4 z, and the integal () become I(x) =x /4 e iλf(z) dz (4) with f(z) =z + 5 z5 and Λ = x 5/4. Thi integal till doe not have any tationay phae point, hence we look at the citical point of f by olving f (z) =+z 4 = which give z = e i/4,e 3i/4,e 5i/4,e 7i/4. Putting z = e iθ in f(z) =z + 5 z5 = (co θ + i in θ)+ 5 5 (co 5θ + i in 5θ). So the integand of (4) blow up fo lage in the egion whee in 5θ > and become exponentially mall in the egion whee in 5θ >. Thee ae hown in the figue below along with the citical point of f. The egion in which the integand become exponentially lage ae haded. We obeve that we can defom the domain of ou integal a hown in the figue, to upwad, o that the path of the integal now contain two of the citical point of f. We cannot defom the path of ou integal 3

4 Figue 4

5 downwad, a the black egion, ove which the integand become exponentially lagepeventufomdoingo. We calculate the elevant value which mean we have the expanion f(e i/4 ) = 4 5 ei/4,f (e i/4 )=4e 3i/4 f(e 3i/4 ) = 4 5 e3i/4,f (e 3i/4 )=4e i/4 iλf(z) iλ 4 5 ei/4 2Λe i/4 (z e i/4 ) 2 iλf(z) iλ 4 5 e3i/4 2Λe i/4 (z e 3i/4 ) 2 So the contibution fom thoe citical point ae calculated to be x /4 2Λe exp[iλ4 i/4 5 ei/4 ]+x /4 2Λe exp[iλ4 i/4 5 e3i/4 ] which i 2x 3/8 2 exp( x5/4 )co( x5/4 8 ) 5

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4.

ASTR 3740 Relativity & Cosmology Spring Answers to Problem Set 4. ASTR 3740 Relativity & Comology Sping 019. Anwe to Poblem Set 4. 1. Tajectoie of paticle in the Schwazchild geomety The equation of motion fo a maive paticle feely falling in the Schwazchild geomety ae

More information

Chapter 19 Webassign Help Problems

Chapter 19 Webassign Help Problems Chapte 9 Webaign Help Poblem 4 5 6 7 8 9 0 Poblem 4: The pictue fo thi poblem i a bit mileading. They eally jut give you the pictue fo Pat b. So let fix that. Hee i the pictue fo Pat (a): Pat (a) imply

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003

Gravity. David Barwacz 7778 Thornapple Bayou SE, Grand Rapids, MI David Barwacz 12/03/2003 avity David Bawacz 7778 Thonapple Bayou, and Rapid, MI 495 David Bawacz /3/3 http://membe.titon.net/daveb Uing the concept dicued in the peceding pape ( http://membe.titon.net/daveb ), I will now deive

More information

Solutions Practice Test PHYS 211 Exam 2

Solutions Practice Test PHYS 211 Exam 2 Solution Pactice Tet PHYS 11 Exam 1A We can plit thi poblem up into two pat, each one dealing with a epaate axi. Fo both the x- and y- axe, we have two foce (one given, one unknown) and we get the following

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Pof. Bois Altshule Apil 25, 2 Lectue 25 We have been dicussing the analytic popeties of the S-matix element. Remembe the adial wave function was u kl () = R kl () e ik iπl/2 S l (k)e

More information

3. Perturbation of Kerr BH

3. Perturbation of Kerr BH 3. Petubation of Ke BH hoizon at Δ = 0 ( = ± ) Unfotunately, it i technically fomidable to deal with the metic petubation of Ke BH becaue of coupling between and θ Nevethele, thee exit a fomalim (Newman-Penoe

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

On a quantity that is analogous to potential and a theorem that relates to it

On a quantity that is analogous to potential and a theorem that relates to it Su une quantité analogue au potential et su un théoème y elatif C R Acad Sci 7 (87) 34-39 On a quantity that is analogous to potential and a theoem that elates to it By R CLAUSIUS Tanslated by D H Delphenich

More information

Estimation and Confidence Intervals: Additional Topics

Estimation and Confidence Intervals: Additional Topics Chapte 8 Etimation and Confidence Inteval: Additional Topic Thi chapte imply follow the method in Chapte 7 fo foming confidence inteval The text i a bit dioganized hee o hopefully we can implify Etimation:

More information

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates MATH 417 Homewok 3 Instucto: D. Cabea Due June 30 1. Let a function f(z) = u + iv be diffeentiable at z 0. (a) Use the Chain Rule and the fomulas x = cosθ and y = to show that u x = u cosθ u θ, v x = v

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

On the integration of the equations of hydrodynamics

On the integration of the equations of hydrodynamics Uebe die Integation de hydodynamischen Gleichungen J f eine u angew Math 56 (859) -0 On the integation of the equations of hydodynamics (By A Clebsch at Calsuhe) Tanslated by D H Delphenich In a pevious

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

In the previous section we considered problems where the

In the previous section we considered problems where the 5.4 Hydodynamically Fully Developed and Themally Developing Lamina Flow In the pevious section we consideed poblems whee the velocity and tempeatue pofile wee fully developed, so that the heat tansfe coefficient

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Math 124B February 02, 2012

Math 124B February 02, 2012 Math 24B Febuay 02, 202 Vikto Gigoyan 8 Laplace s equation: popeties We have aleady encounteed Laplace s equation in the context of stationay heat conduction and wave phenomena. Recall that in two spatial

More information

A New Approach to General Relativity

A New Approach to General Relativity Apeion, Vol. 14, No. 3, July 7 7 A New Appoach to Geneal Relativity Ali Rıza Şahin Gaziosmanpaşa, Istanbul Tukey E-mail: aizasahin@gmail.com Hee we pesent a new point of view fo geneal elativity and/o

More information

How can you find the dimensions of a square or a circle when you are given its area? When you multiply a number by itself, you square the number.

How can you find the dimensions of a square or a circle when you are given its area? When you multiply a number by itself, you square the number. 7. Finding Squae Root How can you find the dimenion of a quae o a cicle when you ae given it aea? When you multiply a numbe by itelf, you quae the numbe. Symbol fo quaing i the exponent. = = 6 quaed i

More information

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr. Riemann Functional Equation i Not Valid and it Implication on the Riemann Hypothei By Armando M. Evangelita Jr. On November 4, 28 ABSTRACT Riemann functional equation wa formulated by Riemann that uppoedly

More information

3.6 Applied Optimization

3.6 Applied Optimization .6 Applied Optimization Section.6 Notes Page In this section we will be looking at wod poblems whee it asks us to maimize o minimize something. Fo all the poblems in this section you will be taking the

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si

(a) Unde zeo-bias conditions, thee ae no lled states on one side of the junction which ae at the same enegy as the empty allowed states on the othe si 1 Esaki Diode hen the concentation of impuity atoms in a pn-diode is vey high, the depletion laye width is educed to about 1 nm. Classically, a caie must have an enegy at least equal to the potential-baie

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 18

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 18 .65, MHD Theoy of Fuion Sytem Pof. Feidbeg Lectue 8. Deive δw fo geneal cew pinch. Deive Suydam citeion Scew Pinch Equilibia μ p + + ( ) = μ J = μ J= Stability ( ) m k ξ=ξ e ι +ι ξ=ξ e +ξ e +ξ e =ξ +ξ

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan Tutoial on Stel atio, wavefont powe seies expansion, Zenike polynomials expansion in small abeated optical systems By Seng Yuan. Stel Ratio Te wave abeation function, (x,y, is defined as te distance, in

More information

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

Impulse and Momentum

Impulse and Momentum Impule and Momentum 1. A ca poee 20,000 unit of momentum. What would be the ca' new momentum if... A. it elocity wee doubled. B. it elocity wee tipled. C. it ma wee doubled (by adding moe paenge and a

More information

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur = 3.4 Geen s Theoem Geoge Geen: self-taught English scientist, 793-84 So, if we ae finding the amount of wok done ove a non-consevative vecto field F, we do that long u b u 3. method Wok = F d F( () t )

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo Infeence fo A One Way Factoial Expeiment By Ed Stanek and Elaine Puleo. Intoduction We develop etimating equation fo Facto Level mean in a completely andomized one way factoial expeiment. Thi development

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

10.2 Parametric Calculus

10.2 Parametric Calculus 10. Paametic Calculus Let s now tun ou attention to figuing out how to do all that good calculus stuff with a paametically defined function. As a woking eample, let s conside the cuve taced out by a point

More information

Force & Motion: Newton s Laws

Force & Motion: Newton s Laws oce & otion: Newton Law ( t Law) If no net foce act on a body then the body velocity cannot change. Zeo net foce implie zeo acceleation. The ma of an object detemine how difficult it i to change the object

More information

Section 26 The Laws of Rotational Motion

Section 26 The Laws of Rotational Motion Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

Basic propositional and. The fundamentals of deduction

Basic propositional and. The fundamentals of deduction Baic ooitional and edicate logic The fundamental of deduction 1 Logic and it alication Logic i the tudy of the atten of deduction Logic lay two main ole in comutation: Modeling : logical entence ae the

More information

Question 1: The dipole

Question 1: The dipole Septembe, 08 Conell Univesity, Depatment of Physics PHYS 337, Advance E&M, HW #, due: 9/5/08, :5 AM Question : The dipole Conside a system as discussed in class and shown in Fig.. in Heald & Maion.. Wite

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

Histogram Processing

Histogram Processing Hitogam Poceing Lectue 4 (Chapte 3) Hitogam Poceing The hitogam of a digital image with gay level fom to L- i a dicete function h( )=n, whee: i the th gay level n i the numbe of pixel in the image with

More information

Practice Integration Math 120 Calculus I Fall 2015

Practice Integration Math 120 Calculus I Fall 2015 Pactice Integation Math 0 Calculus I Fall 05 Hee s a list of pactice eecises. Thee s a hint fo each one as well as an answe with intemediate steps... ( + d. Hint. Answe. ( 8 t + t + This fist set of indefinite

More information

Image Enhancement: Histogram-based methods

Image Enhancement: Histogram-based methods Image Enhancement: Hitogam-baed method The hitogam of a digital image with gayvalue, i the dicete function,, L n n # ixel with value Total # ixel image The function eeent the faction of the total numbe

More information

Practice Integration Math 120 Calculus I D Joyce, Fall 2013

Practice Integration Math 120 Calculus I D Joyce, Fall 2013 Pactice Integation Math 0 Calculus I D Joyce, Fall 0 This fist set of indefinite integals, that is, antideivatives, only depends on a few pinciples of integation, the fist being that integation is invese

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE ANDRAS VASY We conside second ode constant coefficient scala linea PDEs on R n. These have the fom Lu = f L = a ij xi xj + b i xi + c i whee a ij b i and

More information

( ) F α. a. Sketch! r as a function of r for fixed θ. For the sketch, assume that θ is roughly the same ( )

( ) F α. a. Sketch! r as a function of r for fixed θ. For the sketch, assume that θ is roughly the same ( ) . An acoustic a eflecting off a wav bounda (such as the sea suface) will see onl that pat of the bounda inclined towad the a. Conside a a with inclination to the hoizontal θ (whee θ is necessail positive,

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr. Riemann Functional Equation i Not a Valid Function and It Implication on the Riemann Hypothei By Armando M. Evangelita Jr. armando78973@gmail.com On Augut 28, 28 ABSTRACT Riemann functional equation wa

More information

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12

LECTURE 14. m 1 m 2 b) Based on the second law of Newton Figure 1 similarly F21 m2 c) Based on the third law of Newton F 12 CTU 4 ] NWTON W O GVITY -The gavity law i foulated fo two point paticle with ae and at a ditance between the. Hee ae the fou tep that bing to univeal law of gavitation dicoveed by NWTON. a Baed on expeiental

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Non-Linear Dynamics Homework Solutions Week 2

Non-Linear Dynamics Homework Solutions Week 2 Non-Linea Dynamics Homewok Solutions Week Chis Small Mach, 7 Please email me at smach9@evegeen.edu with any questions o concens eguading these solutions. Fo the ececises fom section., we sketch all qualitatively

More information

C/CS/Phys C191 Shor s order (period) finding algorithm and factoring 11/12/14 Fall 2014 Lecture 22

C/CS/Phys C191 Shor s order (period) finding algorithm and factoring 11/12/14 Fall 2014 Lecture 22 C/CS/Phys C9 Sho s ode (peiod) finding algoithm and factoing /2/4 Fall 204 Lectue 22 With a fast algoithm fo the uantum Fouie Tansfom in hand, it is clea that many useful applications should be possible.

More information

Homework 7 Solutions

Homework 7 Solutions Homewok 7 olutions Phys 4 Octobe 3, 208. Let s talk about a space monkey. As the space monkey is oiginally obiting in a cicula obit and is massive, its tajectoy satisfies m mon 2 G m mon + L 2 2m mon 2

More information

6 Matrix Concentration Bounds

6 Matrix Concentration Bounds 6 Matix Concentation Bounds Concentation bounds ae inequalities that bound pobabilities of deviations by a andom vaiable fom some value, often its mean. Infomally, they show the pobability that a andom

More information

of the contestants play as Falco, and 1 6

of the contestants play as Falco, and 1 6 JHMT 05 Algeba Test Solutions 4 Febuay 05. In a Supe Smash Bothes tounament, of the contestants play as Fox, 3 of the contestants play as Falco, and 6 of the contestants play as Peach. Given that thee

More information

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler

13. Adiabatic Invariants and Action-Angle Variables Michael Fowler 3 Adiabatic Invaiants and Action-Angle Vaiables Michael Fowle Adiabatic Invaiants Imagine a paticle in one dimension oscillating back and foth in some potential he potential doesn t have to be hamonic,

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version

Auchmuty High School Mathematics Department Advanced Higher Notes Teacher Version The Binomial Theoem Factoials Auchmuty High School Mathematics Depatment The calculations,, 6 etc. often appea in mathematics. They ae called factoials and have been given the notation n!. e.g. 6! 6!!!!!

More information

Simulation of Spatially Correlated Large-Scale Parameters and Obtaining Model Parameters from Measurements

Simulation of Spatially Correlated Large-Scale Parameters and Obtaining Model Parameters from Measurements Simulation of Spatially Coelated Lage-Scale Paamete and Obtaining Model Paamete fom PER ZETTERBERG Stockholm Septembe 8 TRITA EE 8:49 Simulation of Spatially Coelated Lage-Scale Paamete and Obtaining Model

More information

Electromagnetic Theory 1

Electromagnetic Theory 1 / lectomagnetic Theoy uestion : lectostatic Potential negy A sphee of adius caies a positive chage density ρ constant Obviously the spheical coodinates system is appopiate hee Take - C m - and cm τ a)

More information

A Hartree-Fock Example Using Helium

A Hartree-Fock Example Using Helium Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty June 6 A Hatee-Fock Example Using Helium Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Follow

More information

Lecture 3. January 9, 2018

Lecture 3. January 9, 2018 Lecture 3 January 9, 208 Some complex analyi Although you might have never taken a complex analyi coure, you perhap till know what a complex number i. It i a number of the form z = x + iy, where x and

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Suppose the medium is not homogeneous (gravity waves impinging on a beach,

Suppose the medium is not homogeneous (gravity waves impinging on a beach, Slowly vaying media: Ray theoy Suppose the medium is not homogeneous (gavity waves impinging on a beach, i.e. a vaying depth). Then a pue plane wave whose popeties ae constant in space and time is not

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions

Electric Potential and Gauss s Law, Configuration Energy Challenge Problem Solutions Poblem 1: Electic Potential an Gauss s Law, Configuation Enegy Challenge Poblem Solutions Consie a vey long o, aius an chage to a unifom linea chage ensity λ a) Calculate the electic fiel eveywhee outsie

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Precision Spectrophotometry

Precision Spectrophotometry Peciion Spectophotomety Pupoe The pinciple of peciion pectophotomety ae illutated in thi expeiment by the detemination of chomium (III). ppaatu Spectophotomete (B&L Spec 20 D) Cuvette (minimum 2) Pipet:

More information

Σk=1. g r 3/2 z. 2 3-z. g 3 ( 3/2 ) g r 2. = 1 r = 0. () z = ( a ) + Σ. c n () a = ( a) 3-z -a. 3-z. z - + Σ. z 3, 5, 7, z ! = !

Σk=1. g r 3/2 z. 2 3-z. g 3 ( 3/2 ) g r 2. = 1 r = 0. () z = ( a ) + Σ. c n () a = ( a) 3-z -a. 3-z. z - + Σ. z 3, 5, 7, z ! = ! 09 Maclauin Seies of Completed Riemann Zeta 9. Maclauin Seies of Lemma 9.. ( Maclauin seies of gamma function ) When is the gamma function, n is the polygamma function and B n,kf, f, ae Bell polynomials,

More information

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

, the tangent line is an approximation of the curve (and easier to deal with than the curve). 114 Tangent Planes and Linea Appoimations Back in-dimensions, what was the equation of the tangent line of f ( ) at point (, ) f ( )? (, ) ( )( ) = f Linea Appoimation (Tangent Line Appoimation) of f at

More information

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas

Lecture 04: HFK Propagation Physical Optics II (Optical Sciences 330) (Updated: Friday, April 29, 2005, 8:05 PM) W.J. Dallas C:\Dallas\0_Couses\0_OpSci_330\0 Lectue Notes\04 HfkPopagation.doc: Page of 9 Lectue 04: HFK Popagation Physical Optics II (Optical Sciences 330) (Updated: Fiday, Apil 9, 005, 8:05 PM) W.J. Dallas The

More information

HRW 7e Chapter 13 Page 1 of 5

HRW 7e Chapter 13 Page 1 of 5 HW 7e Chapte Pae o 5 Halliday/enick/Walke 7e Chapte Gaitation The manitude o the oce o one paticle on the othe i ien by F = Gm m /, whee m and m ae the mae, i thei epaation, and G i the unieal aitational

More information

Moment-free numerical approximation of highly oscillatory integrals with stationary points

Moment-free numerical approximation of highly oscillatory integrals with stationary points Moment-fee numeical appoximation of highly oscillatoy integals with stationay points Sheehan Olve Abstact We pesent a method fo the numeical quadatue of highly oscillatoy integals with stationay points.

More information

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths) A Tutoial on Multiple Integals (fo Natual Sciences / Compute Sciences Tipos Pat IA Maths) Coections to D Ian Rud (http://people.ds.cam.ac.uk/ia/contact.html) please. This tutoial gives some bief eamples

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

The second law of thermodynamics - II.

The second law of thermodynamics - II. Januay 21, 2013 The second law of themodynamics - II. Asaf Pe e 1 1. The Schottky defect At absolute zeo tempeatue, the atoms of a solid ae odeed completely egulaly on a cystal lattice. As the tempeatue

More information

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9.

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9. Lectues 16 and 17 Bounday Layes and Singula Petubation A Regula Petubation In some physical poblems, the solution is dependent on a paamete K. When the paamete K is vey small, it is natual to expect that

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

Chem 453/544 Fall /08/03. Exam #1 Solutions

Chem 453/544 Fall /08/03. Exam #1 Solutions Chem 453/544 Fall 3 /8/3 Exam # Solutions. ( points) Use the genealized compessibility diagam povided on the last page to estimate ove what ange of pessues A at oom tempeatue confoms to the ideal gas law

More information

Honors Classical Physics I

Honors Classical Physics I Hono Claical Phyic I PHY141 Lectue 9 Newton Law of Gavity Pleae et you Clicke Channel to 1 9/15/014 Lectue 9 1 Newton Law of Gavity Gavitational attaction i the foce that act between object that have a

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

3.1 Random variables

3.1 Random variables 3 Chapte III Random Vaiables 3 Random vaiables A sample space S may be difficult to descibe if the elements of S ae not numbes discuss how we can use a ule by which an element s of S may be associated

More information

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere

Absorption Rate into a Small Sphere for a Diffusing Particle Confined in a Large Sphere Applied Mathematics, 06, 7, 709-70 Published Online Apil 06 in SciRes. http://www.scip.og/jounal/am http://dx.doi.og/0.46/am.06.77065 Absoption Rate into a Small Sphee fo a Diffusing Paticle Confined in

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information