Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary

Size: px
Start display at page:

Download "Spectral gaps for the O-U/Stochastic heat processes on path space over a Riemannian manifold with boundary"

Transcription

1 arxiv: v1 [mah.pr] 5 Dec 18 ec1 Specral gap for he O-U/Sochaic hea procee on pah pace over a Riemannian manifold wih boundary Bo Wu School of Mahemaical Science, Fudan Univeriy, Shanghai 433, China wubo@fudan.edu.cn Abrac Fang-Wu[15] preened a explici pecral gap for he O-U proce on pah pace over a Riemannian manifold wihou boundary under he bounded Ricci curvaure condiion. In hi paper, we will exend hee reul o he cae of he Riemannian manifold wih boundary. Moreover, we alo derive he imilar reul for he ochaic hea proce. Keyword: Funcional inequaliy; Ricci Curvaure; Second fundamenal form; Diffuion proce; Pah pace. 1 Inroducion Funcional inequaliy i an imporan ool o udy he pecral gap for ome diffuion operaor in he analyi/ochaic analyi field, epecially, for he cae of infinie dimenional Riemannian pah pace. For he manifold wihou boundary, Fang[1] fir eablihed he Poincaré inequaliy for he O-U operaor on Riemanian pah pace by he Clark-Ocean formula, afer ha he log-sobolev inequaliy/weakpoincaré inequaliy have alo been eablihed for he O-U Dirichle form, ee e.g. [1, 3, 9, 18, 19, 3, 4, 1, 7, 8, 5] and reference herein. Recenly Naber[1] gave ome characerizaion of he uniform bound of Ricci curvaure by he analyi of he pah pace. Moiviaed by hi work, Fang and Wu[15] gave he explici pecral gap of he O-U operaor on Suppored in par by NNSFC

2 pah pace under he Ricci curvaure condiion ha K Ric Z : Ric+ Z K 1 and K +K 1. Thi condiion K +K 1 i removed by Cheng-Thalimaier[5]. For he manifold wih boundary, Wang[6] proved he damped log-sobolev inequaliy for he O-U proce on pah pace, bu ome geomeric informaion are hidden in hi inequaliy. In hi aricle, our main aim i o preen a eimae of he pecral gap for he O-U operaor on pah pace over a manifold poible wih boundary under he curvaure and he econd fundamenal form condiion eq K Ric Z K 1, σ I σ 1 foromeconank,k 1,σ,σ 1 R. Inparicular, ourreulcover Fang-Wu reul and Cheng-Thalmaier reul. Moreover, we alo obain he eimae of he pecral gap for he ochaic hea proce. To ae our main reul, we need o inroduce ome noaion. Le M be a d- dimenional complee Riemannian manifold poibly wih a boundary M and N be he inward uni normal vecor field of M. Le L 1 +Z be he diffuion operaor for ome C 1 vecor field Z, where i he Laplace operaor on M. Denoe by he Riemannian pah pace: W T x M {γ C[,T];M : γ x}. Le ρ be he Riemannian diance on M. Then Wx T M i a Polih pace under he uniform diance ρ γ,σ : up ργ,σ, γ,σ Wx T M. [,T] Le OM be he orhonormal frame bundle over M and π : OM M be he canonical projecion. Furhermore, we chooe a canonical orhonormal bai {e i } 1 i d on R d and a andard orhonormal bai H i u : H uei 1 i d for u OM of horizonal vecor field on OM. Then he horizonal reflecing diffuion proce i he unique oluion o he SDE: eq1. 1. du x H i U x dw +H Z U x d+h NU x dlx, Ux O xm, where W i he d-dimenional Brwonian moion on a complee filraion probabiliy pace Ω,{F },P, H Z and H N are he horizonal lif of Z and N repecively, and l x i an adaped increaing proce which increae only when X x : πu x M which i called he local ime of X x on M. Then i i eay o know ha X x olve he equaion eq dx x U x dw +ZX x d+nx dl x, Xx x up o he life ime ζ he maximal ime of he oluion.

3 Le FCT be he pace of bounded Lipchiz coninuou cylinder funcion on Wx TM, i.e. for every F FC T, here exi ome N 1 and < 1 < < N T, f C Lip M N uch ha Fγ fγ 1,,γ N,γ Wx T M, where C Lip M N i he collecion of bounded Lipchiz coninuou funcion on M N. Suppoe H i he andard Cameron-Marin pace for C[,T];R d, i.e. { } H h C[,T];R d : h, h H T : h d <. In order o conruc O-U proce on pah pace by he heory of Dirichle form, we fir inroduce he damped Mallavin gradien given by Wang[5]. To do ha, we will recommend a muliplicaive funcional Q x,, which i fir inroduced by Hu [] o inveigae gradien eimae on P. For any fixed, Q x, i an adaped righ-coninuou proce on R d R d uch ha Q x, P U x if X x M and eq Q x, I Q x,r{ RicZ U x r d+iux r dlx r where P u : R d R d i he projecion along u 1 N, i.e. } I 1 {X x M}P U x, P u a,b : ua,n ub,n, a,b R d,u x M O x M. For every F FCT, by 4..1 in [5], he damped gradien i defined by eq D FX[,T] x Q x, i U 1 i i fx x 1,,X x N, [,T]. eq eq i: i > Thu, he aociaed Mallavin gradien will defined a follow: D FX[,T] x i: i > I 1 {X xi M}P U xi U 1 i i fx x 1,,X x N, [,T]. For any conan K,K 1,σ,σ 1 wih K K 1,σ σ 1 and each [,T], le µ be he random meaure on [,T] given by µ dr exp[ K r σ l x r lx ]{ K 1 K dr + σ 1 σ dl x r }} : ϕ 1,r,K 1,K,σ 1,σ dr+ϕ 1,r,K 1,K,σ 1,σ dl x r Denoe by wo meaurable funcion on W T x M A 1+µ[,T] + B 1+µ[r,T] ϕ 1 r,,k 1,K,σ 1,σ dr 1+µ[r,T] ϕ r,,k 1,K,σ 1,σ dr. 3

4 Throughou he aricle, we aume ha he reflecing if M exi L-diffuion proce i non-exploive. Le P x be he diribuion of he L-diffuion proce X x aring from a fixed poin x up o ome fixed ime T >. Then P x i a probabiliy meaure on he Riemannian pah pace Wx T M. Define he following quadraic form by eq E K 1,K σ 1,σ F,F : D F A d+b dl dp x. Wx TM The following Logarihmic Sobolev inequaliy i he main reul of hi paper. T1.1 Theorem 1.1. Aume ha K Ric Z K 1 and σ I σ 1. Then he following Logarihmic Sobolev inequaliy hold eq E F F log E K 1,K F σ 1,σ F,F, F FCT. L By he above Theorem 1.1, we obain he following Corollary for wo pecial cae. C1. Corollary 1.. a Aume ha M i a Riemannian manifold wihou a boundary and K 1 Ric Z K, hen he Logarihmic Sobolev inequaliy hold eq E F F log CT,K F 1,K D F ddp x, F FC L Wx TM b M. In paricular, when K <, we have eq Spec L eq eq When K >, we have SG L 1 1+β 1+ K 1 K [ ] 1 e K T. K β + β β +β β e K T e K T, where β K 1 K K. b Le M be Ricci fla Riemannian manifold wih boundary, and we aume ha he econd fundamenal form aifie σ I σ 1, hen When σ, we ge ha for any F FCT E F log F F L W T x M 1+σ 1 lt x D F ddp x + σ 1 1+σ 1 l x Wx TM T T 4 D F dl dp x.

5 When σ <, we ge ha for any F FCT eq E F F log 1+ σ F 1 σ exp[ σ +εl x L Wx TM T ] + σ1 σ exp[ σ +εlt] x Wx TM for ome conan ε >. D F ddp x D F dl dp x Remark Wang [5] proved ha he damped Logarihmic Sobolev inequaliy. When M i a Riemannian manifold wihou boundary, and K Ric Z K 1,K +K 1, Fang-Wu [15] fir proved 1.1, laer, hi reul had been exended o he general cae of K and K 1 by Cheng-Thalimaier[5]. The re of hi paper i organized a follow: In Secion, we will prove Theorem 1.1 and Corollary 1.. The eimae of he pecral gap for he ochaic hea proce will be preened in Secion 3. Proof of Theorem 1.1 and Corollary 1..1 Proof of Theorem 1.1 Proof of Theorem 1.1. By Theorem 4.4 in [5], we know ha he following damped logarihmic Sobolev inequaliy hold eq.1.1 E F F log D F F ddp x. L Wx TM eq.. eq.3.3 Therefore i uffice o how ha D F d D F A d+b dl. By uing he aumpion of K Ric Z K 1 and σ I σ 1, we have Combining hi wih 1.14 Q x, I Ric Z K 1 K, I σ 1 σ, Q x,r{ Ric Z U x r d+iux r dlx r and [6, Theorem 3..1], i i eay o derive ha Q x,r exp[ K r σ l x r l x ]. 5 } I 1 {X x M}P U x.

6 By he definiion of he damped gradien, we ge eq.4.4 D FX[,T] x Q x, i U 1 i i fx x 1,,X x N D FX[,T] x i: i > i i: i > Q x,r{ Ric Z U x rd+iu x rdl x r} I 1 {X x M} P U x i U 1 i i fx x 1,,X x N D FX[,T] x Q,r{ x Ric Z Ur x D rfx[,t] x dr +IUx r D rfx[,t] r} x dlx. Then we have eq.5.5 D F X[,T] x D F X[,T] x + eq.6.6 exp[ K r σ l x r lx ]{ K 1 K dr+ σ 1 σ dl x r } D rf X x [,T] } D F X[,T] x + D r F µ dr. The Hölder inequaliy implie ha Thu, we obain eq D F d D F X x [,T] 1+µ[,T] r 1+µ [,T] D F + 1+µ[,T] D F d+ D F d+ 1+µ[,T] 1+µ[,T] D r F ϕ,r,k 1,K,σ 1,σ dl r d 1+µ[,T] D F d+ r 1+µ[,T] D r F ϕ,r,k 1,K,σ 1,σ dl r d 1+µ[,T] D F d+ 1+µ[r,T] ϕ r,,k 1,K,σ 1,σ dr D F dl D F A d+b dl. D r F µ dr 1+µ[,T] D r F µ drd D r F ϕ 1,r,K 1,K,σ 1,σ drd 1+µ[,T] D r F ϕ 1,r,K 1,K,σ 1,σ drd 1+µ[r,T] ϕ 1 r,,k 1,K,σ 1,σ dr D F d 6

7 eq.8.8 Up o now, we complee he proof.. Proof of Corollary 1. To prove Corollary 1., we need ome preparaion. Le β K 1 K K and define [ ] Λ,T 1+β 1 exp[ K T ] + β +β [ ] 1 exp K and + β [exp K +T exp K T ] CT,K 1,K : up Λ,T. [,T] Similar o he proof of Propoiion 3.3 in Fang-Wu[15] for he cae of K 1 +K, in he following we will dicu monooniciy of he funcion Λ, T. p.1 Propoiion.1. 1 If K <, hen Λ,T i ricly increaing over [,T]. If K, hen he maximum i aained a a poin in,t. Proof. According o he definiion.8 of Λ,T, we ge Λ,T 1+β 1 e K T and ΛT,T 1+ β +β [ 1 exp K T ]+ β [ e K T 1 ] [ ] 1+β 1 e K T Λ,T. eq.9.9 In paricular, he econd in he above implie ha ΛT,T Λ,T. Nex, we ake he derivaive of Λ,T wih repec o, Λ,T βk e KT + β +β K e K β K [ e K +T +e ] K T. Then we have and eq.1.1 Λ,T βk e K T + β +β K β K e K T βk 1+β1 e K T ; Λ T,T βk + β +β K e KT β K [ e K T +1 ] βk 1 1+βe KT + β [ e K T +1 ] βk [1 e K T ] β K [1 e K T ]. 7

8 Noing ha eq { Λ T,T > if K <, Λ T,T < if K >. Now we look for [,T] uch ha Λ,T. We have Λ,T eq.1.1 e KT +1+βe K β [ e K +T +e ] K T e KT e K +1+β β [ e K T +e KT e ] K 1+ β e KT e K 1+β β e K T. Therefore here exi a mo one uch ha Λ,T. For he cae where K <, if here exi,t uch ha Λ,T <. Then by.9 and.11, he equaion Λ,T ha a lea wo oluion, i i impoible. Therefore for K <, Λ,T. For K >, we uppoe uch ha Λ,T, hen by.1 e K Thu he proof i compleed. 1+ β 1 e K T e KT. +β By he above Propoiion.1, i i eay o obain he following Propoiion.. p. Propoiion.. i If K >, eq up Λ,T 1+β [,T] β + β 1+ β +β β +β β e K T 1+ β +β 1 e K T T e K. 1 e K T e K T eq ii If K <, up [,T]Λ,T K 1 K [ ] 1 e K T. K 8

9 Proof of Corollary 1.. a Since M i a Riemannian manifold wihou boundary, hen he local ime l, hu we have Then µ dr : K 1 K exp[ K r ]dr. eq µ[,t] K 1 K [1 exp[ K T ]]. K Which implie ha eq ϕ 1 r,,k 1,K,σ 1,σ K 1 K exp[ K r] ϕ r,,k 1,K,σ 1,σ. Then by.15 and he fir equaliy of.16, eq µ[r,T] ϕ 1 r,,k 1,K,σ 1,σ dr K 1 K 1+ K 1 K [1 exp[ K T r]] exp[ K r]dr K K1 K + K 1 K [ 1 exp K K K ] K 1 K exp K K +TexpK 1. Thu we ge eq B A 1+µ[r,T] ϕ r,,k 1,K,σ 1,σ dr 1+µ[,T] + 1+µ[r,T] ϕ 1 r,,k 1,K,σ 1,σ dr 1+ K 1 K [1 exp[ K T ]] K K1 K + + K 1 K [ 1 exp K K K ] + K 1 K [exp K K +T exp K T ]. From which we have eq D F A d+b dl Λ,T D F d. 9

10 Then 1.9, 1.1 and 1.11 come from Theorem 1.1 and Propoiion.. b By he aumpion of M, we know ha eq.. µ dr σ 1 σ exp[ σ lr x lx ]dlx r. Thu, eq.1.1 µ[,t] σ 1 σ exp[σ l x ] exp[ σ lr x ]dlx r. In addiion,. implie ha eq.. ϕ 1 r,,k 1,K,σ 1,σ ϕ r,,k 1,K,σ 1,σ σ 1 σ exp[ σ l x lx r ]. Then, by he definiion of A and B, eq.3.3 A 1+ σ 1 σ exp[σ l x ] exp[ σ lr x ]dlx r B σ 1 σ 1+ σ 1 σ exp[σ l xr ] exp[ σ lu x ]dlx u exp[ σ l x lx r ]dr. r eq.4.4 Since l x i a increaing proce, we have A { 1+σ 1 l x T, if σ, 1+ σ 1 σ exp[ σ +εl x T ], if σ < and eq.5.5 B { σ 1 1+σ 1 l x T T, if σ, σ 1 σ exp[ σ +εl x T ], if σ < By Theorem 1.1, when σ, we ge E F F log F L eq σ 1 lt x W T x M + σ 1 1+σ 1 l x Wx TM T T D F ddp x D F dl dp x, 1

11 and when σ <, we ge E F F log F L eq σ 1 σ exp[ σ +εl x Wx TM T ] D F ddp x + σ1 σ exp[ σ +εlt] x D F dl dp x. W T x M eq.8.8 Corollary.3. Le M : { x x 1,,x d R d : a 1 x 1 + +a d x d c } for ome conan c R, hen M i a Riemannian manifold wihou boundary and Ric wih I, hu we have E F log F F L 3 Sochaic hea equaion D F ddp x. Wx TM In hi ecion, we will conider he pecral gap for he ochaic hea equaion on a Riemannian manifold wih boundary. Before moving on, le inroduce ome noaion. The ochaic hea equaion on Riemannian manifold had been udied deailed by []ee alo [17]. Here hey inroduced ome noaion. In paricular, he claical cylinder funcion depending on finie ime i no in he domain of generaor aociaed o he ochaic hea equaion. Thu, we need o inroduce a cla of new cylinder funcion FCb 1 on WT x M, i.e. for every F FC1 b, here exi ome m 1, m N, f Cb 1Rm,g i C,1 b [,1] M, i 1,...,m, uch ha 1 eq Fγ f g 1,γ d, 1 g,γ d,..., 1 g m,γ d, γ Wx T M, where C,1 b [,1] M denoe he funcion which are coninuou w.r.. he fir variable and differeniable w.r.. he econd variable wih coninuou derivaive. For any F FC 1 b wih. form and h L [,1];R d, according o Wang[5], he damped Malliavin gradien of F i given by DFγ : m j1 ˆ j fγ Q,u Uu 1 γ g j u,γ u du, γ Wx T M. 11

12 Le F be he damped L -gradien of F, and ince Then, we have Thu, DF,h F,h d d h,df H D h F h,df L F, h udu d F,h u dud Fudu,h d. F m j1 The L -gradien of F i defined by Fudu DF. u F,h u ˆ j fγq,t U 1 γ g j,γ. ddu F m j1 ˆ j fγu 1 γ g j,γ. By Lemma 4.3. in [5], we have eq3. 3. F F + F + F + DF,dB Fudu,dB Q,u Fudu,dB eq By he andard he procedure, we have E F log F F L Wx TM Q,u Fudu ddp x. 1

13 eq By.3 and Hölder inequaliy, we ge Le Q,u Fudu ϕ e Ku σlx u l x Fudu e Ku σlx u lx du e Ku σlx u lx du e Ku σlx u lx du. Then by changing he order of inegraion we obain W T x M where W T x M Q,u Fudu A F ddp x, A ddp x W T x M ϕue K u σlx lx u du. Thu, we ge he following Logarihmic Sobolev inequaliy. e Ku σlx u lx F udu e Ku σlx u lx F udu. ϕ e Ku σlx u lx F ududdp x T3.1 Theorem 3.1. Aume ha Ric Z K and I σ. Then he following Logarihmic Sobolev inequaliy hold eq E F log F F L A F ddp x, F FCb. 1 Wx T M c3. Corollary 3.. a Aume ha M i a Riemannian manifold wih a convex boundary and K Ric Z, hen he Logarihmic Sobolev inequaliy hold eq E F log F F L CT,K F ddp x, F FC Wx TM b M, where [ ] 1 e KT K CT,K e e KT e KT 1, if K, KT 1 [ 1 K 1 e KT ], if K <. 13

14 Proof. Since he boundary i convex, hu I σ. Thu and eq ϕ Then we ge e Ku σlx u lx du e Ku du 1 K [ 1 e KT ] A ϕue K u σlx l u x du 1 [ ] 1 e KT u e K u du K 1 ] [ e K +e KT+ e KT. K A, AT 1 1 e K K In he following, imilar o he argumen of Propoiion.1. Taking he derivaive of A give A 1 ] [e K e KT+ e KT. K Thu, Noing ha A 1 K [ ] 1 e K, A T 1 [ e K 1 ]. K eq { A T > if K <, A T < if K >. Now we look for [,T] uch ha A. We have c A e K e KT+ e KT e KT e KT+K e K e KT 1. Therefore here exi a mo one uch ha A. For he cae where K <, if here exi,t uch ha A <. Then by 3.7 and 3.8, he equaion A ha a lea wo oluion, i i impoible. Therefore for K <, A. For K >, we uppoe uch ha Λ,T, hen by 3.9 The proof i compleed. e K e KT 1. 14

15 Corollary 3.3. Le M be a Ricci-fla Riemannian manifold wih a convex boundary, hen we have E F F log T F ddp F x. L Reference W T x M [1] S. Aida and K. D. Elworhy, Differenial calculu on pah and loop pace. I. Logarihmic Sobolev inequaliie on pah pace, C. R. Acad. Sci. Pari Série I, , [] D. Bakry, M. Ledoux, F.-Y. Wang, Perurbaion of funcional inequaliie uing growh condiion, J. Mah. Pure Appl. 877, [3] B. Capiaine, E. P. Hu and M. Ledoux, Maringale repreenaion and a imple proof of logarihmic Sobolev inequaliie on pah pace, Elecron. Comm. Probab. 1997, [4] X. Chen, B. Wu, Funcional inequaliy on pah pace over a non-compac Riemannian manifold, J. Func. Anal. 6614, [5] L. J. Cheng, A. Thalmaier, Specral gap on Riemannian pah pace over aic and evolving manifold, J. Func. Anal V984 [6] A. B. Cruzeiro and P. Malliavin, Renormalized differenial geomery and pah pace: rucural equaion, curvaure, J. Func. Anal. 139: , [7] B. K. Driver, A Cameron-Marin ype quai-invariance heorem for Brownian moion on a compac Riemannian manifold, J. Func. Anal , [8] B. K. Driver and M. Röckner, Conrucion of diffuion on pah and loop pace of compac Riemannian manifold, C. R. Acad. Sci. Pari Série I , [9] K. D. Elworhy, X.- M. Li and Y. Lejan, On The geomery of diffuion operaor and ochaic flow, Lecure Noe in Mahemaic, , Springer-Verlag. [1] K. D. Elworhy and Z.-M. Ma, Vecor field on mapping pace and relaed Dirichle form and diffuion, Oaka. J. Mah , [11] O. Enchev and D. W. Sroock, Toward a Riemannian geomery on he pah pace over a Riemannian manifold, J. Func. Anal. 134 : 1995, [1] S.- Z. Fang, Un inéqualié du ype Poincaréur un epace de chemin, C. R. Acad. Sci. Pari Série I , [13] S.- Z. Fang and P. Malliavin, Sochaic analyi on he pah pace of a Riemannian manifold: I. Markovian ochaic calculu, J. Func. Anal. 118 : , [14] S.- Z. Fang, F.-Y. Wang and B. Wu, Tranporaion-co inequaliy on pah pace wih uniform diance, Sochaic. Proce. Appl. 118: 1 8, [15] S. Z. Fang, B. Wu, Remark on pecral gap on he Riemannian pah pace, Elecron. Commun. Probab. 17, no. 19, 1V13. 15

16 [16] M. Fukuhima, Y. Ohima and M. Takeda, Dirichle Form and Symmeric Markov Procee, Waler de Gruyer, 1. [17] M. Hairer. The moion of a random ring, arxiv:165.19, page 1-, 16. [18] E. P. Hu, Logarihmic Sobolev inequalie on pah pace over compac Riemannian manifold, Commun. Mah. Phy , [19] E. P. Hu, Analyi on pah and loop pace, in Probabiliy Theory and Applicaion E. P. Hu and S. R. S. Varadhan, Ed., LAS/PARK CITY Mahemaic Serie, 61999, , Amer. Mah. Soc. Providence. [] E. P. Hu, Muliplicaive funcional for he hea equaion on manifold wih boundary, Mich. Mah. J. 5, [1] A. Naber, Characerizaion of bounded Ricci curvaure on mooh and nonmooh pace, arxiv: v4. [] M. Röckner, B. Wu, R.C. Zhu and R.X. Zhu,Sochaic Hea Equaion wih Value in a Manifold via Dirichle Form, ubmied. [3] F.- Y. Wang, Weak poincaré Inequaliie on pah pace, In. Mah. Re. No. 44, [4] F.-Y. Wang, Second fundamenal form and gradien of Neumann emigroup, J. Func. Anal. 569, [5] F.-Y. Wang, Analyi on pah pace over Riemannian manifold wih boundary, Comm. Mah. Sci. 911, [6] F.- Y. Wang, Analyi for diffuion procee on Riemannian manifold, World Scienific, 14. [7] F.- Y. Wang and B. Wu, Poinwie Characerizaion of Curvaure and Second Fundamenal Form on Riemannian Manifold, acceped by SC. [8] B. Wu, Characerizaion of he upper bound of Bakry-Emery curvaure, arxiv: v1 16

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Fractional Brownian Bridge Measures and Their Integration by Parts Formula

Fractional Brownian Bridge Measures and Their Integration by Parts Formula Journal of Mahemaical Reearch wih Applicaion Jul., 218, Vol. 38, No. 4, pp. 418 426 DOI:1.377/j.in:295-2651.218.4.9 Hp://jmre.lu.eu.cn Fracional Brownian Brige Meaure an Their Inegraion by Par Formula

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

Ricci Curvature and Bochner Formulas for Martingales

Ricci Curvature and Bochner Formulas for Martingales Ricci Curvaure and Bochner Formula for Maringale Rober Halhofer and Aaron Naber Augu 15, 16 Abrac We generalize he claical Bochner formula for he hea flow on M o maringale on he pah pace, and develop a

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256 Tile Auhor(s) GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION Zhao, Liang Ciaion Osaka Journal of Mahemaics. 51(1) P.45-P.56 Issue Dae 014-01 Tex Version publisher URL hps://doi.org/10.18910/9195

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

First variation formula in Wasserstein spaces over compact Alexandrov spaces

First variation formula in Wasserstein spaces over compact Alexandrov spaces Fir variaion formula in Waerein pace over compac Alexandrov pace Nicola Gigli and Shin-ichi Oha July 29, 2010 Abrac We exend reul proven by he econd auhor Amer. J. ah., 2009 for nonnegaively curved Alexandrov

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Lower and Upper Approximation of Fuzzy Ideals in a Semiring

Lower and Upper Approximation of Fuzzy Ideals in a Semiring nernaional Journal of Scienific & Engineering eearch, Volume 3, ue, January-0 SSN 9-558 Lower and Upper Approximaion of Fuzzy deal in a Semiring G Senhil Kumar, V Selvan Abrac n hi paper, we inroduce he

More information

Heat kernel and Harnack inequality on Riemannian manifolds

Heat kernel and Harnack inequality on Riemannian manifolds Hea kernel and Harnack inequaliy on Riemannian manifolds Alexander Grigor yan UHK 11/02/2014 onens 1 Laplace operaor and hea kernel 1 2 Uniform Faber-Krahn inequaliy 3 3 Gaussian upper bounds 4 4 ean-value

More information

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE Applied Mahemaical Science, Vol. 9, 215, no. 41, 219-23 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.12988/am.215.5169 Coupling Homogenizaion and Large Deviaion Principle in a Parabolic PDE Alioune Coulibaly,

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

Heat semigroup and singular PDEs

Heat semigroup and singular PDEs Hea emigroup and ingular PDE I. BAILLEUL 1 and F. BERNICOT wih an Appendix by F. Bernico & D. Frey Abrac. We provide in hi work a emigroup approach o he udy of ingular PDE, in he line of he paraconrolled

More information

Differential Harnack Estimates for Parabolic Equations

Differential Harnack Estimates for Parabolic Equations Differenial Harnack Esimaes for Parabolic Equaions Xiaodong Cao and Zhou Zhang Absrac Le M,g be a soluion o he Ricci flow on a closed Riemannian manifold In his paper, we prove differenial Harnack inequaliies

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

A Stochastic Representation for Fully Nonlinear PDEs and Its Application to Homogenization

A Stochastic Representation for Fully Nonlinear PDEs and Its Application to Homogenization J. Mah. Sci. Univ. Tokyo 12 (2005), 467 492. A Sochaic Repreenaion for Fully Nonlinear PDE and I Applicaion o Homogenizaion By Naoyuki Ichihara Abrac. We eablih a ochaic repreenaion formula for oluion

More information

arxiv: v1 [math.pr] 23 Jan 2019

arxiv: v1 [math.pr] 23 Jan 2019 Consrucion of Liouville Brownian moion via Dirichle form heory Jiyong Shin arxiv:90.07753v [mah.pr] 23 Jan 209 Absrac. The Liouville Brownian moion which was inroduced in [3] is a naural diffusion process

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe

PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION. Katharina von der Lühe Dieraion PATHWISE UNIQUENESS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH SINGULAR DRIFT AND NONCONSTANT DIFFUSION Kaharina on der Lühe Fakulä für Mahemaik Unieriä Bielefeld Augu 26 Conen Conen. Inroducion..

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

arxiv:math/ v2 [math.fa] 30 Jul 2006

arxiv:math/ v2 [math.fa] 30 Jul 2006 ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS arxiv:mah/0511565v2 [mah.fa] 30 Jul 2006 JAKUB DUDA Abrac. We prove ha for every funcion f : X Y, where X i a eparable Banach pace and Y i a

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

arxiv:math/ v1 [math.nt] 3 Nov 2005

arxiv:math/ v1 [math.nt] 3 Nov 2005 arxiv:mah/0511092v1 [mah.nt] 3 Nov 2005 A NOTE ON S AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION D. A. GOLDSTON AND S. M. GONEK Absrac. Le πs denoe he argumen of he Riemann zea-funcion a he poin 1 + i. Assuming

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

arxiv: v1 [math.pr] 25 Jul 2017

arxiv: v1 [math.pr] 25 Jul 2017 COUPLING AND A GENERALISED POLICY ITERATION ALGORITHM IN CONTINUOUS TIME SAUL D. JACKA, ALEKSANDAR MIJATOVIĆ, AND DEJAN ŠIRAJ arxiv:177.7834v1 [mah.pr] 25 Jul 217 Abrac. We analye a verion of he policy

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Heat semigroup and singular PDEs

Heat semigroup and singular PDEs Hea emigroup and ingular PDE Imaël Bailleul, Frederic Bernico To cie hi verion: Imaël Bailleul, Frederic Bernico. Hea emigroup and ingular PDE: Wih an Appendix by F. Bernico and D. Frey. Journal of Funcional

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases

Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases Convergence of he gradien algorihm for linear regreion model in he coninuou and dicree ime cae Lauren Praly To cie hi verion: Lauren Praly. Convergence of he gradien algorihm for linear regreion model

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES Communicaion on Sochaic Analyi Vol. 5, No. 1 211 121-133 Serial Publicaion www.erialpublicaion.com ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES TERHI KAARAKKA AND PAAVO SALMINEN Abrac. In hi paper we udy

More information

arxiv: v5 [math.pr] 6 Oct 2015

arxiv: v5 [math.pr] 6 Oct 2015 ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION WITH INTEGRAL-LIPSCHITZ COEFFICIENTS XUEPENG BAI AND YIQING LIN arxiv:12.146v5 mah.pr] 6 Oc

More information

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene

More information

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales

Analysis of Boundedness for Unknown Functions by a Delay Integral Inequality on Time Scales Inernaional Conference on Image, Viion and Comuing (ICIVC ) IPCSIT vol. 5 () () IACSIT Pre, Singaore DOI:.7763/IPCSIT..V5.45 Anali of Boundedne for Unknown Funcion b a Dela Inegral Ineuali on Time Scale

More information

INTEGRATION BY PARTS FORMULA AND LOGARITHMIC SOBOLEV INEQUALITY ON THE PATH SPACE OVER LOOP GROUPS. By Shizan Fang Université de Bourgogne

INTEGRATION BY PARTS FORMULA AND LOGARITHMIC SOBOLEV INEQUALITY ON THE PATH SPACE OVER LOOP GROUPS. By Shizan Fang Université de Bourgogne The Annals of Probabiliy 1999, Vol. 27, No. 2, 664 683 INTEGRATION BY PARTS FORMULA AND LOGARITHMIC SOBOLEV INEQUALITY ON THE PATH SPACE OVER LOOP GROUPS By Shizan Fang Universié de Bourgogne The geomeric

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

as representing the flow of information over time, with

as representing the flow of information over time, with [Alraheed 4(4): April 15] ISSN: 77-9655 Scienific Journal Impac Facor: 3.449 (ISRA) Impac Facor:.114 IJSR INRNAIONAL JOURNAL OF NGINRING SCINCS & RSARCH CHNOLOGY H FINANCIAL APPLICAIONS OF RANDOM CONROL

More information

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH DIMNSIONAL RDUCION IN NONLINAR FILRING: A HOMOGNIZAION APPROACH PR IMKLLR 1, N. SRI NAMACHCHIVAYA 2, NICOLAS PRKOWSKI 1, AND HOONG C. YONG 2 Abrac. We propoe a homogenized filer for mulicale ignal, which

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

On Delayed Logistic Equation Driven by Fractional Brownian Motion

On Delayed Logistic Equation Driven by Fractional Brownian Motion On Delayed Logiic Equaion Driven by Fracional Brownian Moion Nguyen Tien Dung Deparmen of Mahemaic, FPT Univeriy No 8 Ton Tha Thuye, Cau Giay, Hanoi, 84 Vienam Email: dungn@fp.edu.vn ABSTRACT In hi paper

More information

CHAPTER 7. Definition and Properties. of Laplace Transforms

CHAPTER 7. Definition and Properties. of Laplace Transforms SERIES OF CLSS NOTES FOR 5-6 TO INTRODUCE LINER ND NONLINER PROBLEMS TO ENGINEERS, SCIENTISTS, ND PPLIED MTHEMTICINS DE CLSS NOTES COLLECTION OF HNDOUTS ON SCLR LINER ORDINRY DIFFERENTIL EQUTIONS (ODE")

More information

Semi-discrete semi-linear parabolic SPDEs

Semi-discrete semi-linear parabolic SPDEs Semi-dicree emi-linear parabolic SPDE Nico Georgiou Univeriy of Suex Davar Khohnevian Univeriy of Uah Mahew Joeph Univeriy of Sheffield Shang-Yuan Shiu Naional Cenral Univeriy La Updae: November 2, 213

More information

arxiv: v1 [math.gm] 5 Jan 2019

arxiv: v1 [math.gm] 5 Jan 2019 A FUNCTION OBSTRUCTION TO THE EXISTENCE OF COMPLEX STRUCTURES arxiv:1901.05844v1 [mah.gm] 5 Jan 2019 JUN LING Abrac. We conruc a funcion for almo-complex Riemannian manifold. Non-vanihing of he funcion

More information

The multisubset sum problem for finite abelian groups

The multisubset sum problem for finite abelian groups Alo available a hp://amc-journal.eu ISSN 1855-3966 (prined edn.), ISSN 1855-3974 (elecronic edn.) ARS MATHEMATICA CONTEMPORANEA 8 (2015) 417 423 The muliube um problem for finie abelian group Amela Muraović-Ribić

More information

A stability approach for solving multidimensional quadratic BSDES

A stability approach for solving multidimensional quadratic BSDES A abiliy approach for olving mulidimenional quadraic BSDES Jonahan Harer, Adrien Richou To cie hi verion: Jonahan Harer, Adrien Richou A abiliy approach for olving mulidimenional quadraic BSDES 17 HAL

More information

On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points

On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points J. Mah. Anal. Appl. 322 26) 97 6 www.elevier.com/locae/jmaa On cerain ubclae o cloe-o-convex and quai-convex uncion wih repec o -ymmeric poin Zhi-Gang Wang, Chun-Yi Gao, Shao-Mou Yuan College o Mahemaic

More information

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota The Annal of Applied Probabiliy 22, Vol. 12, No. 4, 139 1418 REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS BY JIN MA 1 AND JIANFENG ZHANG Purdue Univeriy and Univeriy of Minneoa

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN Aca Mahemaica Academiae Paedagogicae Nyíregyháziensis 3 6, 79 7 www.emis.de/journals ISSN 76-9 INTEGRAL INEQUALITIES OF HERMITE HADAMARD TYPE FOR FUNCTIONS WHOSE DERIVATIVES ARE STRONGLY α-preinvex YAN

More information

On Two Integrability Methods of Improper Integrals

On Two Integrability Methods of Improper Integrals Inernaional Journal of Mahemaics and Compuer Science, 13(218), no. 1, 45 5 M CS On Two Inegrabiliy Mehods of Improper Inegrals H. N. ÖZGEN Mahemaics Deparmen Faculy of Educaion Mersin Universiy, TR-33169

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Existence and Global Attractivity of Positive Periodic Solutions in Shifts δ ± for a Nonlinear Dynamic Equation with Feedback Control on Time Scales

Existence and Global Attractivity of Positive Periodic Solutions in Shifts δ ± for a Nonlinear Dynamic Equation with Feedback Control on Time Scales Exience and Global Araciviy of Poiive Periodic Soluion in Shif δ ± for a Nonlinear Dynamic Equaion wih Feedback Conrol on Time Scale MENG HU Anyang Normal Univeriy School of mahemaic and aiic Xian ge Avenue

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Fréchet derivatives and Gâteaux derivatives

Fréchet derivatives and Gâteaux derivatives Fréche derivaives and Gâeaux derivaives Jordan Bell jordan.bell@gmail.com Deparmen of Mahemaics, Universiy of Torono April 3, 2014 1 Inroducion In his noe all vecor spaces are real. If X and Y are normed

More information

Sobolev-type Inequality for Spaces L p(x) (R N )

Sobolev-type Inequality for Spaces L p(x) (R N ) In. J. Conemp. Mah. Sciences, Vol. 2, 27, no. 9, 423-429 Sobolev-ype Inequaliy for Spaces L p(x ( R. Mashiyev and B. Çekiç Universiy of Dicle, Faculy of Sciences and Ars Deparmen of Mahemaics, 228-Diyarbakir,

More information

Existence of multiple positive periodic solutions for functional differential equations

Existence of multiple positive periodic solutions for functional differential equations J. Mah. Anal. Appl. 325 (27) 1378 1389 www.elsevier.com/locae/jmaa Exisence of muliple posiive periodic soluions for funcional differenial equaions Zhijun Zeng a,b,,libi a, Meng Fan a a School of Mahemaics

More information

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract Waiing Time Aympoic for Time Varying Mulierver ueue wih Abonmen Rerial A. Melbaum Technion Iniue Haifa, 3 ISRAEL avim@x.echnion.ac.il M. I. Reiman Bell Lab, Lucen Technologie Murray Hill, NJ 7974 U.S.A.

More information