Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Size: px
Start display at page:

Download "Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields"

Transcription

1 Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene reul for a general cla of backward ochaic parial differenial equaion wih jump. Thi i a ype of equaion which appear a adjoin equaion in he maximum principle approach o opimal conrol of yem decribed by ochaic parial differenial equaion driven by Lévy procee. AMS Subjec Claificaion: Primary 6H15 Secondary 93E2, 35R6. 1 Inroducion Le B, and η() = Rn zñ(d, dz); be an m-dimenional Brownian moion and a pure jump Lévy proce, repecively, on a filered probabiliy pace (Ω, F, F, P ). Fix T > and le φ(ω) be an F T -meaurable random variable. Le b : [, T R n R n m R n be a given vecor field. Conider he problem o find hree F -adaped procee p() R n, q() R n m and r(, z) R n m uch ha dp() = b(, p(), q())d + q()db + r(, z)ñ(d, dz), (, T ) (1.1) R n p(t ) = φ a.. (1.2) Thi i a backward ochaic (ordinary) differenial equaion (BSDE). I i called backward becaue i i he erminal value p(t ) = φ ha i given, no he iniial value p(). Sill p() i required o be F -adaped. In general hi i only poible if we alo are free o chooe q() and r(, z) (in an F -adaped way). The heory of BSDE, when η =, i now well developed. See e.g. [EPQ, [MY, [PP1, [PP2 and [YZ and he reference herein. In he jump cae (η ) BSDE have been udied. See [FØS, [NS, [S and he reference herein. There are many applicaion of hi heory. Example include he following: (i) The problem of finding a replicaing porfolio of a given coningen claim in a complee financial marke can be ranformed ino a problem of olving a BSDE. 1 CMA, Deparmen of Mahemaic, Univeriy of Olo, P.O. Box 153 Blindern, N-316 Olo, Norway. okendal@mah.uio.no, proke@mah.uio.no 2 Norwegian School of Economic and Buine Adminiraion, Helleveien 3, N-545 Bergen, Norway 3 Deparmen of Mahemaic, Univeriy of Mancheer, Oxford Road, Mancheer M13 9PL, England, U.K. zhang@mah.man.ac.uk 1

2 (ii) The maximum principle mehod for olving a ochaic conrol problem involve a BSDE for he adjoin procee p(), q(), r(, z). For more informaion abou hee and oher applicaion of BSDE we refer o [EPQ and [YZ and reference herein. The purpoe of hi paper i o udy backward ochaic parial differenial equaion (BSPDE) wih jump. They are defined in a imilar way a BSDE, bu wih he baic equaion being a ochaic parial differenial equaion raher han a ochaic ordinary differenial equaion. More preciely, we will udy a cla of BSPDE which include he following: Find adaped procee Y (, x), Z(, x), Q(, x, z) uch ha dy (, x) = AY (, x)d + b(, x, Y (, x), Z(, x))d + Z(, x)db + Q(, x, z)ñ (d, dz), (, x) (, T ) Rn R n (1.3) Y (T, x) = φ(x, ω) (1.4) Here dy (, x) denoe he Iô differenial wih repec o, while A i a parial differenial operaor wih repec o x and Ñ(d, dz) i he compenaed Poion random meaure aociaed wih a Lévy proce η( ). The funcion b : [, T R n R R R i given and o i he erminal value funcion φ(x) = φ(x, ω). We aume ha φ(x) i F T -meaurable for all x and ha E[ φ(x) 2 dx <, (1.5) R n where E denoe expecaion wih repec o P. We are eeking he procee Y (, x), Z(, x) and Q(, x, z) uch ha (1.3) and (1.4) hold. The procee Y (, x), Z(, x) and Q(, x, z) are required o be F -adaped, i.e., Y (, x), Z(, x) and Q(, x, z) are F -meaurable for all x R n, z R and we alo require ha [ E R n {Y (, x) 2 + Z(, x) 2 + Q(, x, z) 2 ν(dz)}d dx <, (1.6) R n where ν( ) i he Lévy meaure of he underlying Lévy proce. Equaion of hi ype are of inere becaue hey appear a adjoin equaion in a maximum principle approach o opimal conrol of ochaic parial differenial equaion. See Secion 2. Example 1.1 Conider he following BSPDE: dy (, x) = 1 2 Y (, x)d + Z(, x)db + Q(, x, z)ñ(d, dz), (, x) (, T ) Rn R n (1.7) Y (T, x) = φ(x) (1.8) Here Y (, x) = n 2 Y (,x) i=1 x 2 i aifie E[ R φ(x) 2 dx <. n i he Laplacian wih repec o x applied o Y (, x), and φ(x) 2

3 where In hi imple cae, we are able o find he oluion explicily: We fir ue he Iô repreenaion heorem o wrie, for almo all x, φ(x) = h(x) + g(, x, ω)db + k(, x, z, ω)ñ(d, dz) R n h(x) = E[φ(x), g(, x, ) and k(, x, z) are F -meaurable for all, x and { } E[ g 2 (, x, ) + k 2 (, x, z)ν(dz) ddx <. R n R n Le R f(x) = (2π) n x y 2 2 f(y)exp( )dy, > R n 2 be he raniion operaor for Brownian moion defined for all meaurable f : R n R uch ha he inegral converge. Then i i well known ha (R f(x)) = 1 2 (R f(x)) (1.9) Now define Y (, x) = R T ( g(,, ω)db + k(,, z, ω)ñ(d, dz) + h( ))(x) R n = (R T g(,, ω))(x)db + (R T k(,, z, ω))(x)ñ(d, dz) + (R T h)(x) R n (1.1) Then dy (, x) [ = 1 2 (R T g(,, ω))(x)db 1 2 (R T k(,, z, ω))(x)ñ (d, dz) 1 R n 2 R T h( )(x) d + (R T g(,, ω))(x)db + R T (k(,, z, ω))(x)ñ(d, dz) R n = 1 2 Y (, x)d + Z(, x)db + Q(, x, z)ñ(d, dz), R n where and Z(, x) = (R T g(,, ω))(x) (1.11) Q(, x, z) = (R T k(,, z))(x). (1.12) Hence he procee Y (, x), Z(, x) and Q(, x, z) given by (1.1) (1.12) olve he BSPDE (1.7) (1.8). 3

4 In he general cae i i no poible o find explici oluion of a BSPDE. However, in Secion 3 we will prove an exience and uniquene reul for a general cla of uch equaion. We will achieve hi by regarding he BSPDE of ype (1.3) (1.4) a a pecial cae of a backward ochaic evoluion equaion for Hilber pace valued procee. Thi, in urn, i udied by aking finie dimenional projecion and hen aking he limi. Thi i he well known alerkin approximaion mehod which ha been ued by everal auhor in oher connecion. See e.g. [B1, [B2 and [P. We alo refer reader o [PZ for he general heory of ochaic evoluion equaion on Hilber pace. The re of he paper i organized a follow: In Secion 2 we prove a (ufficien) maximum principle for opimal conrol of random jump field, i.e. oluion of SPDE driven by Lévy procee (Theorem 2.1). Thi principle involve a BSPDE of he form (1.3)-(1.4) in he aociaed adjoin procee. In Secion 3 we give he precie framework of our general exience and uniquene reul. The exience and uniquene reul and i proof are given in Secion 4. 2 The ochaic maximum principle In hi ecion we prove a verificaion heorem for opimal conrol of a proce decribed by a ochaic parial differenial equaion (SPDE) driven by a Brownian moion B() and a Poion random meaure Ñ(d, dz). We call uch a proce a (conrolled) random jump field. The verificaion heorem ha he form of a ufficien ochaic maximum principle and he adjoin equaion for hi principle urn ou o be a backward SPDE driven by B( ) and Ñ(, ). Thi par of he paper i an exenion of [Ø o he cae including jump and an exenion of [FØS o SPDE conrol. Le Γ(, x) = Γ (u) (, x); [, T, x R k be he oluion of a (conrolled) ochaic reacion-diffuion equaion of he form dγ(, x) = [(LΓ)(, x) + b(, x, Γ(, x), u(, x)) d + σ(, x, Γ(, x), u(, x))db() + θ(, x, Γ(, x), u(, x), z)ñ (d, dz); (, x) [, T (2.1) R Γ(, x) = ξ(x); x (2.2) Γ(, x) = η(, x); (, x) (, T ) (2.3) Here dγ(, x) = d Γ(, x) i he differenial wih repec o and L = L x i a given parial differenial operaor of order m acing on he variable x R k. We aume ha R k, R l are given open and cloed e, repecively, and ha b : [, T R R, σ : [, T R R, θ : [, T R R R, ξ : R and η : (, T ) R are given meaurable funcion. The proce u : [, T i called an admiible conrol if he equaion (2.1)-(2.3) ha a unique coninuou oluion Γ(, x) = Γ (u) (, x) which aifie [ ( ) E f(, x, Γ(, x), u(, x)) dx d + g(x, Γ(T, x)) dx <, (2.4) 4

5 where f : [, T R R and g : R R are given C 1 funcion. The e of all admiible conrol i denoed by A. If u A we define he performance of u, J(u), by [ ( ) J(u) = E f(, x, Γ(, x), u(, x))dx d + g(x, Γ(T, x))dx. (2.5) We conider he problem o find J R and u A uch ha J := up J(u) = J(u ). (2.6) u A J i called he value of he problem and u A (if i exi) i called an opimal conrol. In he following we le L denoe he adjoin of he operaor L, defined by (L ϕ 1, ϕ 2 ) = (ϕ 1, Lϕ 2 ) ; ϕ 1, ϕ 2 C (), (2.7) where (ϕ, ψ) = (ϕ, ψ) L 2 () = ϕ(x)ψ(x)dx and C () i he e of infiniely many ime differeniable funcion wih compac uppor in. We now formulae a (ufficien) ochaic maximum principle for he problem (2.6): Le R denoe he e of funcion r : [, T R Ω R. Define he Hamilonian by H : [, T R R R R R H(, x, γ, u, p, q, r(, x, )) = f(, x, γ, u) + b(, x, γ, u)p + σ(, x, γ, u)q + R θ(, x, γ, u, z)r(, x, z)ν(dz) (2.8) For each u A conider he following adjoin backward SPDE in he 3 unknown adaped procee p(, x), q(, x) and r(, x, z): dp(, x) = { H γ (, x, Γ(u) (, x), u(, x), p(, x), q(, x), r(, x, )) + L p(, x)}d + q(, x)db() + r(, x, z)ñ(d, dz); < T. (2.9) p(t, x) = g γ (x, Γ(u) (, x)); x (2.1) p(, x) = ; (, x) (, T ). (2.11) The following reul may be regarded a a ynhei of Theorem 2.1 in [Ø and Theorem 2.1 in [FØS: R Theorem 2.1(Sufficien SPDE maximum principle for opimal conrol of reaciondiffuion jump field) 5

6 Le û A wih correponding oluion Γ(, x) of (2.1)-(2.3) and le p(, x), q(, x), r(, x, ) be a oluion of he aociaed adjoin backward SPDE (2.9)-(2.11). Suppoe he following, (2.12)-(2.15), hold: The funcion (2.12) (γ, u) H(γ, u) := H(, x, γ, u, p(, x), q(, x), r(, x, )); (γ, u) R and γ g(x, γ); γ R are concave for all (, x) [, T. For all u A [ E H(, x, Γ(, x), û(, x), p(, x), q(, x), r(, x, )) (2.13) = up H(, x, Γ(, x), v, p(, x), q(, x), r(, x, )) v for all (, x) [, T. ( Γ(, x) Γ(, ) { } 2 x) q(, x) 2 + r(, x, z) 2 ν(dz) ddx < (2.14) R and [ } E p(, x) {σ(, 2 x, Γ(, x), u(, x)) 2 + θ(, x, Γ(, x), u(, x), z) 2 ν(dz) ddx < R (2.15) Then û(, x) i an opimal conrol for he ochaic conrol problem (2.6). Proof. Le u be an arbirary admiible conrol wih correponding oluion Γ(, x) = Γ (u) (, x) of (2.1)-(2.3). Then by (2.5) where Similarly we pu [ J(û) J(u) = E { } f f dxd + {ĝ g} dx, (2.16) f = f(, x, Γ(, x), û(, x)), f = f(, x, Γ(, x), u(, x)) ĝ = g(x, Γ(T, x)) and g = g(x, Γ(T, x)). b = b(, x, Γ(, x), û(, x)), b = b(, x, Γ(, x), u(, x)) σ = σ(, x, Γ(, x), û(, x)), σ = σ(, x, Γ(, x), u(, x)) and θ = θ(, x, Γ(, x), û(, x), z), θ = θ(, x, Γ(, x), u(, x), z). 6

7 Moreover, we e Ĥ = H(, x, Γ(, x), û(, x), p(, x), q(, x), r(, x, )) H = H(, x, Γ(, x), u(, x), p(, x), q(, x), r(, x, )). Combining hi noaion wih (2.8) and (2.16) we ge where and [ I 1 = E Since γ g(x, γ) i concave we have Therefore, if we pu J(û) J(u) = I 1 + I 2, (2.17) { } Ĥ H ( b b) p ( σ σ) q ( θ θ) rν(dz) dxd R (2.18) [ I 2 = E {ĝ g} dx. (2.19) g ĝ g γ (x, Γ(T, x)) (Γ(T, x) Γ(T, x)). Γ(, x) = Γ(, x) Γ(, x) we ge, by he Iô formula (or inegraion by par formula) for jump diffuion ([ØS, Ex. 1.7) I 2 [ g E γ (x, Γ(T, x)) Γ(T, x)dx [ = E p(t, x) Γ(T, x)dx [ ( = E p(, x) Γ(, x) where + + { Γ(, x)d p(, x) + p(, x)d Γ(, x) + (σ σ) q(, x) } d R ) (θ θ) r(, x, z)n(d, dz) dx [ ( { [ ( ) H = E Γ(, x) L x) p(, γ [ + p(, x) L Γ(, x) + (b b) + (σ σ) q(, x) } ) + (θ θ) r(, x, z)ν(dz) d dx, (2.2) R ( ) H = H γ γ (, x, Γ(, x), û(, x), p(, x), q(, x), r(, x, )). 7

8 Combining (2.17)-(2.2) we ge [ ( J(û) J(u) E [ +E ( ) { ΓL p pl Γ} dx d { Ĥ H + ( ) H ) x)} γ Γ(, d dx. (2.21) Since Γ(, x) = p(, x) = for all (, x) (, T ) we ge by an exenion of (2.7) ha { ΓL p pl Γ} dx = for all (, T ). Combining hi wih (2.21) we ge [ ( J(û) J(u) E { Ĥ H + From he concaviy aumpion in (2.12) we deduce ha ( ) H ) x)} γ Γ(, d dx. (2.22) H Ĥ H γ ( Γ, û) (Γ Γ) + H u ( Γ, û) (u û). (2.23) From he maximaliy aumpion in (2.13) we ge ha Combining (2.23) and (2.24) we ge which ubiued in (2.22) give H u ( Γ, û) (u û). (2.24) H Ĥ H γ ( Γ, û) (Γ Γ), J(û) J(u). Since u A wa arbirary hi prove Theorem Framework We now preen he general eing in which we will prove our main exience and uniquene reul for backward SPDE wih jump: Le V, H be wo eparable Hilber pace uch ha V i coninuouly, denely imbedded in H. Idenifying H wih i dual we have V H = H V, (3.1) where V and for he opological dual of V. Le A be a bounded linear operaor from V o V aifying he following coerciviy hypohei: There exi conan α > and λ uch ha 2 Au, u + λ u 2 H α u 2 V for all u V, (3.2) 8

9 where Au, u = Au(u) denoe he acion of Au V on u V. Remark ha A i generally no bounded a an operaor from H ino H. Le K be anoher eparable Hilber pace. Le (Ω, F, P ) be a probabiliy pace. Le {B, } be a cylindrical Brownian moion wih covariance pace K on he probabiliy pace (Ω, F, P ), i.e., for any k K, B, k i a real valued-brownian moion wih E[ B, k 2 = k 2 K. Le (, B()) be a meaurable pace, where i a opological vecor pace. Furher le η() be a Lévy proce on. Denoe by ν(dx) he Lévy meaure of η. Denoe by L 2 (ν) he L 2 -pace of quare inegrable H-valued meaurable funcion aociaed wih ν. Se p() = η() = η() η( ). Then p = (p(), D p ) i a aionary Poion poin proce on wih characeriic meaure ν. See [IW for deail on Poion poin procee. Denoe by N(d, dx) he Poion couning meaure aociaed wih he Lévy proce, i.e., N(, A) = D I p, A(p()). Le Ñ(d, dx) := N(d, dx) dν(dx) be he compenaed Poion meaure. Define F = σ(b, N(, A), A B(), ). Recall ha a linear operaor S from K ino H i called Hilber-Schmid if i=1 Sk i 2 H < for ome orhonormal bai {k i, i 1} of K. L 2 (K, H) will denoe he Hilber pace of Hilber-Schmid operaor from K ino H equipped wih he inner produc S 1, S 2 L2 (K,H) = i=1 S 1k i, S 2 k i H. Le b(, y, z, q, ω) be a meaurable mapping from [, T H L 2 (K, H) L 2 (ν) Ω ino H uch ha b(, y, z, q, ω) i F -adaped,i.e., b(, y, z, q, ) i F -meaurable for all, y, z, q. Suppoe we are given an F T -meaurable, H-valued random variable φ(ω). We are looking for F -adaped procee Y, Z, Q wih value in H, L 2 (K, H) and L 2 (ν) repecively, uch ha he following backward ochaic evoluion equaion hold: dy = AY d + b(, Y, Z, Q )d + Z db + Q (x)ñ(d, dx), (, T ) (3.3) Y T = φ(ω) a.. (3.4) From now on we aume ha he following, (3.5) and (3.6), hold: There exi a conan c < uch ha for all, y 1, z 1, q 1, y 2, z 2, q 2. b(, y 1, z 1, q 1 )(ω) b(, y 2, z 2, q 2 )(ω) H c( y 1 y 2 H + z 1 z 2 L2 (K,H) + q 1 q 2 L 2 (ν)) (3.5) 4 Exience and Uniquene E[ b(,,, ) 2 H d < (3.6) We now ae and prove he main exience and uniquene reul of hi paper. Theorem 4.1 Aume ha E[ φ 2 H <. Then here exi a unique H L 2(K, H) L 2 (ν)-valued progreively meaurable proce (Y, Z, Q ) uch ha (i) (ii) φ = Y + E[ Y 2 H d <, E[ AY d + Z 2 L 2 (K,H) d <, E[ Q 2 L 2 (ν) d <. Z db + Q(x)Ñ(d, dx); T. b(, Y, Z, Q )d + 9

10 A he proof i long, we pli i ino lemma. Lemma 4.2 Aume ha E[ φ 2 H <, and ha b(, y, z, q, ω) = b(, ω) i independen of y, z and q, and E[ b() 2 H d <. Then here exi a unique H L 2(K, H) L 2 (ν)- valued progreively meaurable proce (Y, Z, Q ) uch ha (i) (ii) φ = Y + E[ Y 2 H d <, E[ AY d + Z 2 L 2 (K,H) d <, E[ Q 2 L 2 (ν) d <. Z db + Q(x)Ñ(d, dx); T. b()d + Proof. Exience of oluion. Se D(A) = {v; v V, Av H}. Then D(A) i a dene ubpace of H. Thu we can chooe and fix an orhonormal bai {e 1,...e n,...} of H uch ha e i D(A). Se V n = pan(e 1, e 2,..., e n ). Denoe by P n he projecion operaor from H ino V n. Pu A n = P n A. Then A n i a bounded linear operaor from V n o V n. For he cylindrical Brownian moion B, i i well known ha he following decompoiion hold: B = β i k i (4.1) i=1 where {k 1, k 2,..., k i,...} i an orhonormal bai of K, and β i, i = 1, 2, 3,... are independen andard Brownian moion. Se B n = (β 1,..., βn ). Define F n = σ(b n, N(, A), A B(), ) compleed by he probabiliy meaure P, and pu φ n = E[P n φ FT n and b n () = E[P n b() F n. Conider he following backward ochaic differenial equaion on he finie dimenional pace V n : dy n = A n Y n d + b n()d + Z n dbn + (x)ñ(d, dx) ; < T (4.2) Q n Y n T = φ n (ω) a.. (4.3) A A n i a bounded linear operaor from V n o V n, i follow from he reul of Siu [S ha (4.2) (4.3) admi a unique F n - adaped oluion (Y n, Zn, Qn ), where Y n V n, Z n L 2 (K n, V n ), K n = pan(k 1, k 2,..., k n ) and Q n L 2 (ν). We are going o how ha he equence (Y n, Z n, Q n ) admi a convergen ubequence. Uing Iô formula, we find ha 2E[ E[ Y n 2 H = E[ φ n 2 H 2E[ Y n, P nay n d < Y n, b n () > d E[ Z n 2 L 2 (K d E[ n,v n) d Q n (x) 2 Hν(dx), (4.4) where Z n 2 L 2 (K = n n,v n) i,j=1 (Zn (i, j))2 and for he Hilber-Schmid norm. I follow from (3.2) ha E[ Y n 2 H E[ φ 2 H αe[ Y n 2 V d + λe[ Y n 2 Hd 1

11 +E[ Y n 2 H d + E[ b() 2 H d E[ Z n 2 L 2 (K d E[ n,v n) d Q n (x) 2 H ν(dx). Hence, E[ Y n 2 H + αe[ Y n 2 V d + E[ E[ φ 2 H + (λ + 1)E[ Z n 2 L 2 (K,H) d + E[ Y n 2 H d + E[ d Q n (x) 2 H ν(dx) b() 2 H d where Z n = Z n P n, and P n i he projecion from K ino K n = pan(k 1,..., k n ). In paricular, Se Ȳ n = E[ Y n 2 H E[ φ 2 H + (λ + 1)E[ Y n 2 Hd + E[ Y n 2 Hd. Then (4.5) implie ha d(e(λ+1) Ȳ n) e (λ+1) (E[ φ 2 d H + E[ b() 2 Hd) Hence, E[ Y n 2 Hd C(E[ φ 2 H + E[ b() 2 Hd), where C i an appropriae conan. Thi furher implie ha up{ n up{ n up{ n up{ n E[ Y n 2 Hd} < b() 2 Hd (4.5) E[ Y n 2 V d} < (4.6) E[ Z n 2 L 2 (K,H)d} < (4.7) E[ Q n 2 L 2 (ν)d} < (4.8) For a eparable Hilber pace L, we denoe by M 2 ([, T, L) he Hilber pace of progreively meaurable, quare inegrable, L-valued procee equipped wih he inner produc < a, b > M = E[ < a, b > L d. By he weak compacne of a Hilber pace, i follow from (4.6),(4.7)and (4.8) ha a ubequence {n k, k 1} can be eleced o ha Y n k., k 1 converge weakly o ome limi Y in M 2 ([, T, V ), Z n k., k 1 converge weakly o ome limi Z in M 2 ([, T, L 2 (K, H)) and Q n k., k 1 converge weakly o ome limi Q in M 2 ([, T, L 2 (ν)). Le u prove ha ( a verion of )(Y, Z, Q) i a oluion o he backward ochaic evoluion equaion (3.3) and (3.4). For n i 1, we have ha d Y n, e i = P n AY n, e i d + b n (), e i d + Z n db, e i + Q n (x), e i Ñ(d, dx) = AY n, e i d + b n (), e i d + Z n db, e i + Q n (x), e i Ñ(d, dx) (4.9) 11

12 Le h() be an aboluely coninuou funcion from [, T o R wih h ( ) L 2 ([, T ) and h() =. By he Iô formula, YT n, e i h(t ) = h() AY n, e i d + h() b n (), e i d + h()d Z n db, e i + h() Q n (x), ei Ñ(d, dx) + Replacing n by n k in (4.1) and leing k o obain φ, e i h(t ) = + h() AY, e i d + h()d Z db, e i + h() b(), e i d + Y n, e i h ()d. (4.1) h() Q (x), e i Ñ(d, dx) Y, e i h ()d. (4.11) From (4.1) o (4.11), we have ued he fac ha he linear mapping from M 2 ([, T, L 2 (K, H)) ino L 2 (Ω) defined by (Z) = h()d Z db, e i = j=1 h() Z (k j ), e i dβ j i coninuou and alo he linear mapping F from M 2 ([, T, L 2 (ν)) ino L 2 (Ω) defined by F (Q) = h() Q (x), e i Ñ(d, dx) i coninuou. So, he convergence of (4.1) o (4.11) ake place weakly in L 2 (Ω). Fix (, T ) and chooe, for n 1, 1, + 1 2n, h n () = 1 1 n ( + 1 2n ), 1 2n + 1 2n,, 1 2n Wih h( ) replaced by h n ( ) in (4.11), i follow ha φ, e i = h n () AY, e i d + + h n ()d h n () b(), e i d + Z u db u, e i + 1 n Sending n o infiniy in (4.12) we ge ha φ, e i = + AY, e i d n b(), e i d 1 2n Q (x), e i Ñ(d, dx) + d h() Q (x), e i Ñ(d, dx) Y, e i d. (4.12) Z u db u, e i + Y, e i. 12

13 for almo all [, T ( wih repec o Lebegue meaure). A i i arbirary, hi implie ha φ = AY d + b()d + Z db + Q (x)ñ(d, dx) + Y. (4.13) for almo all [, T ( wih repec o Lebegue meaure). For [, T, define Ŷ = φ AY d b()d Z db Q (x)ñ(d, dx). Then we ee ha (Ŷ, Z, Q ) alo aifie (ii) in he Theorem 4.1 wih Y replaced by Ŷ for all [, T. Hence, (Ŷ, Z, Q ) i a oluion o he equaion (3.3) and (3.4). Uniquene: Le (Y, Z, Q ) and (Ȳ, Z, Q ) be wo oluion of he equaion (3.3). Then A(Y Ȳ)d + Applying Iô formula, we ge (Z Z )db + (Y Ȳ) + (Q (x) Q (x))ñ(d, dx) = = Y Ȳ 2 H + 2 Y Ȳ, dm [ Y Ȳ + Q (x) Q (x) 2 2 H Y Ȳ HÑ(d, dx) A(Y Ȳ), Y Ȳ d + where M = (Z Z )db. By (3.2),we ge ha E[ Y Ȳ 2 H = 2 E[ α λ Z Z 2 L 2 (K,H) d Q (x) Q (x) 2 Hdν(dx) (4.14) E[ A(Y Ȳ), Y Ȳ d E[ Q (x) Q (x) 2 H dν(dx) E[ Y Ȳ 2 V d + λ E[ Y Ȳ 2 H d. E[ Y Ȳ 2 Hd Z Z 2 L 2 (K,H) d By a ronwall ype inequaliy, i follow ha E[ Y Ȳ 2 H =, which prove he uniquene. 13

14 Lemma 4.3 Aume ha E[ φ 2 H <, and ha b(, y, z, q, ω) = b(, z, q, ω) i independen of y. Then here exi a unique H L 2 (K, H) L 2 (ν)-valued progreively meaurable proce (Y, Z, Q ) uch ha (i) (ii) φ = Y + E[ Y 2 H d <, E[ AY d + Z 2 L 2 (K,H) d <, E[ Q 2 L 2 (ν) d <. Z db + Q(x)Ñ(d, dx); T. b(, Z, Q )d + Proof. Se Z =, Q =. Denoe by (Y n, Zn, Qn ) he unique oluion of he backward ochaic evoluion equaion: dy n = AY n d + b(, Zn 1, Q n 1 )d + Z n db + Q n (x)ñ(d, dx) (4.15) YT n = φ(ω). (4.16) The exience of uch a oluion (Y n, Zn, Qn ) ha been proved in Lemma 4.2. Puing M n = Zn db, and by Iô formula we ge ha = Y n+1 T = Y n Y n T 2 H Y n 2 H + 2 b(, Z n, Qn Y n+1 [ Y n+1 Q n+1 In virue of (3.2), for ε >, E[ Y n+1 = 2E[ 2E[ λe[ + εe[ Y n 2 H + E[ A(Y n+1 b(, Z n, Qn Y n+1 b(, Z n, Qn A(Y n+1 Y n ), Y n+1 Y n d ) b(, Zn 1, Q n 1 ), Y n+1 Y n d Y n + Q n+1 Q n 2 H Y n+1 Y n 2 HÑ(d, dx) Q n 2 H dν(dx) Y n, d(m n+1 M n ) + Z n+1 Z n+1 Z n 2 L 2 (K,H) d + E[ Y n ), Y n+1 Y n d ) b(, Zn 1, Q n 1 ), Y n+1 Y n d Y n 2 Hd αe[ Y n+1 Y n 2 V d ) b(, Zn 1 Z n 2 L 2 (K,H) d Q n+1 Q n 2 H dν(dx), Q n 1 ) 2 H d + 1 ε E[ Y n+1 Y n 2 Hd (4.17) 14

15 Chooe ε < 1 4c, where c i he Lipchiz conan in (3.5). I follow from (4.17) ha Y n 2 H + E[ +αe[ Y n+1 Y n 2 V d + E[ E[ Y n+1 (λ + 1 ε )E[ E[ Y n+1 Z n+1 Le β = λ + 1 ε. Then we have from (4.18) ha Z n 2 L 2 (K,H) d Y n 2 Hd E[ Q n+1 Q n 2 H dν(dx) Z n Z n 1 2 L 2 (K,H) d Q n Qn 1 2 H dν(dx) (4.18) d d (eβ E[ + e β E[ + e β E[ + αe β E[ 1 2 eβ E[ eβ E[ Z n+1 Y n+1 Q n+1 Y n+1 Y n 2 Hd Z n 2 L 2 (K,H) d Q n 2 H dν(dx) Y n 2 V d Z n Zn 1 2 L 2 (K,H) d Q n Q n 1 2 Hdν(dx) (4.19) From here, following a imilar proof a in [PP1 we will how ha (Y n, Z n, Q n ) converge o ome limi (Y, Z, Q) in he produc pace of M 2 ([, T, V ),M 2 ([, T, L 2 (K, H)) and M 2 ([, T, L 2 (ν)). Inegraing boh ide in (4.19) we ge ha E[ + Y n e β E[ E[ In paricular, 1 2 Y n 2 H d + Z n+1 E[ [ Q n+1 E[ Z n+1 Q n 2 Hdν(dx)d + α Z n Zn 1 2 L 2 (K,H) deβ d Z n 2 L 2 (K,H) deβ d + E[ Z n Z n 1 2 L 2 (K,H) deβ d + Z n 2 L 2 (K,H) deβ d e β E[ E[ e β E[ e β E[ Y n+1 Q n+1 Y n 2 V de β d Q n Qn 1 2 H dν(dx)d Q n 2 H dν(dx)d (4.2) Q n Q n 1 2 Hdν(dx)d (4.21) 15

16 Thi implie ha E[ Z n+1 Z n 2 L 2 (K,H) deβ d + e β E[ Q n+1 Q n 2 Hdν(dx)d ( 1 2 )n C for ome conan C. Thu, i follow from (4.2) ha Hence, we conclude from (4.18) ha E[ Y n+1 Y n 2 Hd ( 1 2 )n C (4.22) E[ Z n+1 Z n 2 L 2 (K,H) d + E[ Q n+1 Q n 2 H dν(dx)d ( 1 2 )n Cβ {E[ Z n Zn 1 2 L 2 (K,H) d + E[ Uing he above inequaliy repeaedly give Q n Qn 1 2 H dν(dx)} (4.23) E[ Z n+1 Z n 2 L 2 (K,H) d + E[ Q n+1 Q n 2 Hdν(dx) Combining (4.18) and (4.23) we have ha ( 1 2 )n ncβ (4.24) E[ Y n+1 Y n 2 V d ( 1 2 )n (n + 1)Cβ (4.25) I follow now from (4.24) and (4.25) ha he he equence (Y n, Z n, Q n ), n 1 converge in M 2 ([, T, V ) M 2 ([, T, L 2 (K, H)) M 2 ([, T, L 2 (ν)) o ome limi (Y, Z, Q ). Leing n in (4.14), we ee ha (Y, Z, Q ) aifie Y + AY d + b(, Z )d + Z db + Q (x)ñ(d, dx) = φ (4.26) i.e., (Y, Z, Q ) i a oluion o equaion (3.3). Uniquene 16

17 Le (Y, Z, Q ), (Ȳ, Z, Q ) be wo oluion. By Iô formula, a in (4.14) we have E[ Y Ȳ 2 H + E[ Z Z 2 L 2 (K,H) d Conequenly, + E[ = 2E[ 2E[ λe[ E[ E[ By ronwall inequaliy, Q (x) Q (x) 2 H dν(dx) < A(Y Ȳ), Y Ȳ > d b(, Z, Q ) b(, Z, Q ), Y Ȳ d Y Ȳ 2 Hd αe[ Y Ȳ 2 V d Z Z 2 L 2 (K,H) d + ce[ Y Ȳ 2 H d Q (x) Q (x) 2 Hdν(dx) (4.27) E[ Y Ȳ 2 H (λ + c)e[ Y = Ȳ which furher implie Z = Z and Q = Q by (4.27). Proof of Theorem 4.1. Y Ȳ 2 Hd (4.28) Le Y =. Define, for n 1, (Y n+1, Z n+1, Q n+1 ) o be he oluion of he equaion: dy n+1 = AY n+1 d + b(, Y n + Z n+1 db +, Q n+1 )d, Zn+1 Q n+1 (x)ñ(d, dx) (4.29) Y n+1 T = φ (4.3) The exience of (Y n+1, Z n+1, Q n+1 ) i conained in Lemma 4.3. Uing he imilar argumen a in he proof of Lemma 4.3 i can be hown ha (Y n+1, Z n+1, Q n+1 converge o ome limi (Y, Z, Q ), and moreover (Y, Z, Q ) i he unique oluion o equaion (3.3). We omi he deail avoiding he repeaing. Example 4.2 Le H = L 2 (R d ), and e V = H 1 2 (Rd ) = {u L 2 (R d ); u L 2 (R d R d )} Denoe by a(x) = (a ij (x)) a marix-valued funcion on R d aifing he uniform ellipiciy condiion: 1 c I d a(x) ci d for ome conan c (, ). 17 )

18 Le f(x) be a vecor field on R d wih f L p (R d ) for ome p > d. Define Au = div(a(x) u(x)) + f(x) u(x) Then (3.2) i fulfilled for (H, V, A). Thu, for any choice of cylindrical Brownian moion B, any drif coefficien b(, y, z, ω) aifying (3.5) and (3.6) and erminal random variable φ, he main reul in Secion 4 applie. Acknowledgemen Thi work wa iniiaed when he fir and he hird auhor aended a workhop on SPDE in Warwick in May, 21. We would like o hank he organizer Jo Kennedy, Roger Tribe and Jerzy Zabczyk, a well a David Elworhy, for he inviaion and hopialiy. We alo hank he Mahemaic Iniue a Univeriy of Warwick for providing he imulaing reearch environmen. Reference [B1 [B2 A.Benouan: Maximum principle and dynamic programming approache of he opimal conrol of parially oberved diffuion. Sochaic 9 (1983), A.Benouan: Sochaic maximum principle for yem wih parial informaion and applicaion o he eparaion principle. In M.Davi and R.Ellio (edior): Applied Sochaic Analyi. ordon and Breach 1991, pp [EPQ N. El Karoui, S. Peng and M.C. Queuez: Backward ochaic differenial equaion in finance. Mahemaical Finance 7 (1997), [FØS N.C. Framad, B. Økendal and A. Sulem: Sufficien ochaic maximum principle for he opimal conrol of jump diffuion and applicaion o finance. J. Opim. Theory and Appl. 121 (24), and Vol. 124, No. 2 (25) (Erraa). [MY J. Ma and J. Yong: Forward-Backward Sochaic Differenial Equaion and Their Applicaion. Springer LNM 172, Springer-Verlag [NS D. Nualar and W. Schouen: Backward ochaic differenial equaion and Feynman-Kac formula for Lévy procee, wih applicaion in finance. Bernoulli 7 (21), [Ø [ØS [P B. Økendal: Opimal conrol of ochaic parial differenial equaion. Soch. Anal. and Appl. (o appear). B. Økendal, Sulem, A.: Applied Sochaic Conrol of Jump Diffuion. Springer- Verlag 24 (o appear). E. Pardoux: Sochaic parial differenial equaion and filering of diffuion procee. Sochaic 3 (1979),

19 [PP1 E. Pardoux and S. Peng: Adaped oluion of backward ochaic differenial equaion. Syem and Conrol Leer 14 (199), [PP2 E. Pardoux and S. Peng: Backward doubly ochaic differenial equaion and yem of quailinear ochaic parial differenial equaion, Probabiliy Theory and Relaed Field 98 (1994), [PZ [S.D. Prao and J. Zabczyk: Sochaic equaion in infinie dimenion. Cambridge Univeriy Pre, R. Siu: On oluion of backward ochaic differenial equaion wih jump and applicaion. Sochaic Procee and heir Applicaion 66(1997), [YZ J.Yong and.y.zhou: Sochaic Conrol. Springer-Verlag

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Singular control of SPDEs and backward stochastic partial diffe. reflection

Singular control of SPDEs and backward stochastic partial diffe. reflection Singular conrol of SPDEs and backward sochasic parial differenial equaions wih reflecion Universiy of Mancheser Join work wih Bern Øksendal and Agnès Sulem Singular conrol of SPDEs and backward sochasic

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t Dynamic Syem and Applicaion 16 (7) 11-14 BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS MICHA L KISIELEWICZ Faculy of Mahemaic, Compuer Science and Economeric, Univeriy of Zielona Góra, Podgórna 5, 65 46

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH

DIMENSIONAL REDUCTION IN NONLINEAR FILTERING: A HOMOGENIZATION APPROACH DIMNSIONAL RDUCION IN NONLINAR FILRING: A HOMOGNIZAION APPROACH PR IMKLLR 1, N. SRI NAMACHCHIVAYA 2, NICOLAS PRKOWSKI 1, AND HOONG C. YONG 2 Abrac. We propoe a homogenized filer for mulicale ignal, which

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES

ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES Communicaion on Sochaic Analyi Vol. 5, No. 1 211 121-133 Serial Publicaion www.erialpublicaion.com ON FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES TERHI KAARAKKA AND PAAVO SALMINEN Abrac. In hi paper we udy

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

Research Article An Upper Bound on the Critical Value β Involved in the Blasius Problem

Research Article An Upper Bound on the Critical Value β Involved in the Blasius Problem Hindawi Publihing Corporaion Journal of Inequaliie and Applicaion Volume 2010, Aricle ID 960365, 6 page doi:10.1155/2010/960365 Reearch Aricle An Upper Bound on he Criical Value Involved in he Blaiu Problem

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

Analysis of a Non-Autonomous Non-Linear Operator-Valued Evolution Equation to Diagonalize Quadratic Operators in Boson Quantum Field Theory

Analysis of a Non-Autonomous Non-Linear Operator-Valued Evolution Equation to Diagonalize Quadratic Operators in Boson Quantum Field Theory 1 Analyi of a Non-Auonomou Non-Linear Operaor-Valued Evoluion Equaion o Diagonalize Quadraic Operaor in Boon Quanum Field Theory Volker Bach and Jean-Bernard Bru Abrac. We udy a non auonomou, non-linear

More information

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping BSDE Approach o Non-Zero-Sum Sochaic Differenial Game of Conrol and Sopping Ioanni Karaza INTECH Invemen Managemen One Palmer Square, Suie 441 Princeon, NJ 8542 ik@enhanced.com Qinghua Li Saiic Deparmen,

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Identification of the Solution of the Burgers. Equation on a Finite Interval via the Solution of an. Appropriate Stochastic Control Problem

Identification of the Solution of the Burgers. Equation on a Finite Interval via the Solution of an. Appropriate Stochastic Control Problem Ad. heor. Al. Mech. Vol. 3 no. 37-44 Idenificaion of he oluion of he Burger Equaion on a Finie Ineral ia he oluion of an Aroriae ochaic Conrol roblem Arjuna I. Ranainghe Dearmen of Mahemaic Alabama A &

More information

Fractional Brownian Bridge Measures and Their Integration by Parts Formula

Fractional Brownian Bridge Measures and Their Integration by Parts Formula Journal of Mahemaical Reearch wih Applicaion Jul., 218, Vol. 38, No. 4, pp. 418 426 DOI:1.377/j.in:295-2651.218.4.9 Hp://jmre.lu.eu.cn Fracional Brownian Brige Meaure an Their Inegraion by Par Formula

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract

Time Varying Multiserver Queues. W. A. Massey. Murray Hill, NJ Abstract Waiing Time Aympoic for Time Varying Mulierver ueue wih Abonmen Rerial A. Melbaum Technion Iniue Haifa, 3 ISRAEL avim@x.echnion.ac.il M. I. Reiman Bell Lab, Lucen Technologie Murray Hill, NJ 7974 U.S.A.

More information

as representing the flow of information over time, with

as representing the flow of information over time, with [Alraheed 4(4): April 15] ISSN: 77-9655 Scienific Journal Impac Facor: 3.449 (ISRA) Impac Facor:.114 IJSR INRNAIONAL JOURNAL OF NGINRING SCINCS & RSARCH CHNOLOGY H FINANCIAL APPLICAIONS OF RANDOM CONROL

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

ARTIFICIAL INTELLIGENCE. Markov decision processes

ARTIFICIAL INTELLIGENCE. Markov decision processes INFOB2KI 2017-2018 Urech Univeriy The Neherland ARTIFICIAL INTELLIGENCE Markov deciion procee Lecurer: Silja Renooij Thee lide are par of he INFOB2KI Coure Noe available from www.c.uu.nl/doc/vakken/b2ki/chema.hml

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations Hindawi Publishing Corporaion Boundary Value Problems Volume 11, Aricle ID 19156, 11 pages doi:1.1155/11/19156 Research Aricle Exisence and Uniqueness of Periodic Soluion for Nonlinear Second-Order Ordinary

More information

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE

Coupling Homogenization and Large Deviations. Principle in a Parabolic PDE Applied Mahemaical Science, Vol. 9, 215, no. 41, 219-23 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/1.12988/am.215.5169 Coupling Homogenizaion and Large Deviaion Principle in a Parabolic PDE Alioune Coulibaly,

More information

arxiv: v5 [math.pr] 6 Oct 2015

arxiv: v5 [math.pr] 6 Oct 2015 ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION WITH INTEGRAL-LIPSCHITZ COEFFICIENTS XUEPENG BAI AND YIQING LIN arxiv:12.146v5 mah.pr] 6 Oc

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases

Convergence of the gradient algorithm for linear regression models in the continuous and discrete time cases Convergence of he gradien algorihm for linear regreion model in he coninuou and dicree ime cae Lauren Praly To cie hi verion: Lauren Praly. Convergence of he gradien algorihm for linear regreion model

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity ANNALES POLONICI MATHEMATICI LIV.2 99) L p -L q -Time decay esimae for soluion of he Cauchy problem for hyperbolic parial differenial equaions of linear hermoelasiciy by Jerzy Gawinecki Warszawa) Absrac.

More information

GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR SECOND ORDER OPERATORS ON THE TORUS

GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR SECOND ORDER OPERATORS ON THE TORUS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 12, Page 3783 3793 S 0002-9939(03)06940-5 Aricle elecronically publihed on February 28, 2003 GLOBAL ANALYTIC REGULARITY FOR NON-LINEAR

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

Semi-linear degenerate backward stochastic partial differential equa- tions and associated forward backward stochastic differential equations

Semi-linear degenerate backward stochastic partial differential equa- tions and associated forward backward stochastic differential equations Univeriy of Wollongong Reearch Online Faculy of Engineering and Informaion Science - Paper: Par A Faculy of Engineering and Informaion Science 213 Semi-linear degenerae backward ochaic parial differenial

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Exponential Sawtooth

Exponential Sawtooth ECPE 36 HOMEWORK 3: PROPERTIES OF THE FOURIER TRANSFORM SOLUTION. Exponenial Sawooh: The eaie way o do hi problem i o look a he Fourier ranform of a ingle exponenial funcion, () = exp( )u(). From he able

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Optimal State-Feedback Control Under Sparsity and Delay Constraints

Optimal State-Feedback Control Under Sparsity and Delay Constraints Opimal Sae-Feedback Conrol Under Spariy and Delay Conrain Andrew Lamperki Lauren Leard 2 3 rd IFAC Workhop on Diribued Eimaion and Conrol in Neworked Syem NecSy pp. 24 29, 22 Abrac Thi paper preen he oluion

More information

Group C*-algebras A.K. Recall 1 that if G is a nonempty set, the linear space

Group C*-algebras A.K. Recall 1 that if G is a nonempty set, the linear space Group C*-algebra A.K. Recall 1 ha if G i a nonempy e, he linear pace c oo (G) = {f : G C : upp f finie } ha a Hamel bai coniing of he funcion {δ : G} where { 1, = δ () = 0, Thu every f c oo (G) i a finie

More information

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota

REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS. BY JIN MA 1 AND JIANFENG ZHANG Purdue University and University of Minnesota The Annal of Applied Probabiliy 22, Vol. 12, No. 4, 139 1418 REPRESENTATION THEOREMS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS BY JIN MA 1 AND JIANFENG ZHANG Purdue Univeriy and Univeriy of Minneoa

More information

Backward stochastic differential equations and integral partial differential equations

Backward stochastic differential equations and integral partial differential equations Backward ochaic differenial equaion and inegral parial differenial equaion Guy BARLS, Rainer BUCKDAHN 1 and ienne PARDOUX 2 June 30, 2009 Abrac We conider a backward ochaic differenial equaion, whoe he

More information

Ricci Curvature and Bochner Formulas for Martingales

Ricci Curvature and Bochner Formulas for Martingales Ricci Curvaure and Bochner Formula for Maringale Rober Halhofer and Aaron Naber Augu 15, 16 Abrac We generalize he claical Bochner formula for he hea flow on M o maringale on he pah pace, and develop a

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

Lower and Upper Approximation of Fuzzy Ideals in a Semiring

Lower and Upper Approximation of Fuzzy Ideals in a Semiring nernaional Journal of Scienific & Engineering eearch, Volume 3, ue, January-0 SSN 9-558 Lower and Upper Approximaion of Fuzzy deal in a Semiring G Senhil Kumar, V Selvan Abrac n hi paper, we inroduce he

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

arxiv: v7 [q-fin.pm] 20 Mar 2019

arxiv: v7 [q-fin.pm] 20 Mar 2019 Porfolio choice, porfolio liquidaion, and porfolio raniion under drif uncerainy arxiv:161107843v7 [q-finpm] 20 Mar 2019 Alexi Bimuh, Olivier Guéan, Jiang Pu Abrac hi paper preen everal model addreing opimal

More information

Backward stochastic differential equations and Feynman±Kac formula for LeÂvy processes, with applications in nance

Backward stochastic differential equations and Feynman±Kac formula for LeÂvy processes, with applications in nance Bernoulli 7(5), 21, 761±776 Backward ochaic differenial equaion and Feynman±Kac formula for LeÂvy procee, wih applicaion in nance DAVID NUALAT 1 and WIM SCHOUTENS 2 1 Univeria de Barcelona, Gran Via de

More information

arxiv:math/ v2 [math.fa] 30 Jul 2006

arxiv:math/ v2 [math.fa] 30 Jul 2006 ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS arxiv:mah/0511565v2 [mah.fa] 30 Jul 2006 JAKUB DUDA Abrac. We prove ha for every funcion f : X Y, where X i a eparable Banach pace and Y i a

More information

On Delayed Logistic Equation Driven by Fractional Brownian Motion

On Delayed Logistic Equation Driven by Fractional Brownian Motion On Delayed Logiic Equaion Driven by Fracional Brownian Moion Nguyen Tien Dung Deparmen of Mahemaic, FPT Univeriy No 8 Ton Tha Thuye, Cau Giay, Hanoi, 84 Vienam Email: dungn@fp.edu.vn ABSTRACT In hi paper

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

A Theoretical Model of a Voltage Controlled Oscillator

A Theoretical Model of a Voltage Controlled Oscillator A Theoreical Model of a Volage Conrolled Ocillaor Yenming Chen Advior: Dr. Rober Scholz Communicaion Science Iniue Univeriy of Souhern California UWB Workhop, April 11-1, 6 Inroducion Moivaion The volage

More information

Quadratic Backward Stochastic Volterra Integral Equations

Quadratic Backward Stochastic Volterra Integral Equations Quadraic Backward Sochaic Volerra Inegral Equaion Hanxiao Wang Jingrui Sun Jiongmin Yong Ocober 25, 218 arxiv:181.1149v1 mah.pr 24 Oc 218 Abrac. Thi paper i concerned wih backward ochaic Volerra inegral

More information