Quadratic Backward Stochastic Volterra Integral Equations

Size: px
Start display at page:

Download "Quadratic Backward Stochastic Volterra Integral Equations"

Transcription

1 Quadraic Backward Sochaic Volerra Inegral Equaion Hanxiao Wang Jingrui Sun Jiongmin Yong Ocober 25, 218 arxiv: v1 mah.pr 24 Oc 218 Abrac. Thi paper i concerned wih backward ochaic Volerra inegral equaion (BSVIE, for hor) wih generaor having quadraic growh. The exience and uniquene for boh he o-called adaped oluion and adaped M-oluion are obained. The comparion heorem for adaped oluion i eablihed a well. A applicaion of uch BSVIE, coninuou-ime equilibrium dynamic rik meaure and equilibrium recurive uiliy procee are preened. Key word. Backward ochaic Volerra inegral equaion, quadraic generaor, comparion heorem, equilibrium dynamic rik meaure, equilibrium recurive uiliy proce. AMS ubjec claificaion. 6H1, 6H2, 91B3, 91B7, 91G8. 1 Inroducion Le (Ω, F, P) be a complee probabiliy pace on which a one-dimenional andard Brownian moion W = {W(); < } i defined, wih F = {F } being he naural filraion of W augmened by all he P-null e in F. Le g :,T 2 R R R Ω R, ψ :,T Ω R be wo given random field. We are concerned wih he following backward ochaic Volerra inegral equaion (BSVIE, for hor): Y() = ψ()+ g(,,y(),z(,),z(,))d Z(,)dW(),,T. (1.1) By an adaped oluion o BSVIE (1.1), we mean an (R R)-valued random field (Y, Z) = {(Y(), Z(,));, T} uch ha (i) Y( ) i F-progreively meaurable (no necearily coninuou), (ii) for each fixed T, Z(, ) i F-progreively meaurable, and (iii) equaion (1.1) i aified in he uual Iô ene for Lebegue meaure almo every,t. School of Mahemaical Science, Fudan Univeriy, Shanghai 2433, China (hxwang14@fudan.edu.cn). Thi auhor i uppored in par by he China Scholarhip Council, while viiing Univeriy of Cenral Florida. Correponding auhor. Deparmen of Mahemaic, Univeriy of Cenral Florida, Orlando, FL 32816, USA (jr@mail.uc.edu.cn). Deparmen of Mahemaic, Univeriy of Cenral Florida, Orlando, FL 32816, USA (jiongmin.yong@ucf.edu). Thi auhor i uppored in par by NSF Gran DMS

2 Condiion (ii) implie ha for any,t), he random variable Z(,) i F -meaurable for any,t. In (1.1), g and ψ are called he generaor and he free erm, repecively. Le u poin ou ha in hi paper, we only udy he BSVIE wih Y( ) being one-dimenional. The cae ha Y( ) being higher dimenional will be ignificanly differen in general, and will be inveigaed in he near fuure. However, he Brownian moion W( ) aumed o be one-dimenional i ju for convenience of our preenaion. When Z(,) i aben, (1.1) i reduced o he form Y() = ψ()+ g(,,y(),z(,))d Z(,)dW(),,T, (1.2) which i a naural exenion of he o-called backward ochaic differenial equaion (BSDE, for hor) of he following (inegral) form: Y() = ξ + g(,y(),z())d Z()dW(),,T. (1.3) BSVIE of form (1.2), referred o a Type-I BSVIE, wa firly udied by Lin 29, followed by everal oher reearcher: Aman and N Zi 3, Wang and Zhang 43, Djordjević and Janković 15, 16, Hu and Økendal 2. BSVIE of he form (1.1) (conaining Z(, )) were firly inroduced by Yong 45, 47, moivaed by he udy of opimal conrol for forward ochaic Volerra inegral equaion (FSVIE, for hor). We call (1.1) a Type-II BSVIE o diinguih i from Type-I BSVIE. Type-II BSVIE (1.1) ha a remarkable feaure ha i adaped oluion, imilarly defined a ha for Type-I BSVIE, migh no be unique due o lack of rericion on he erm Z(,) (wih T). Suggeed by he naure of he equaion from he adjoin equaion in he Ponryagin ype maximum principle, Yong 47 inroduced he noion of adaped M-oluion: A pair (Y( ),Z(, )) i called an adaped M-oluion o (1.1), if in addiion o (i) (iii) aed above, he following condiion i alo aified: Y() = EY()+ Z(,)dW(), a.e.,t, a.. (1.4) Under uual Lipchiz condiion, well-poedne wa eablihed in 47 for he adaped M-oluion o Type-II BSVIE of form (1.1). Thi imporan developmen ha riggered exenive reearch on BSVIE and heir applicaion. For inance, Anh, Greckch and Yong 4 inveigaed BSVIE in Hilber pace; Shi, Wang and Yong 36 udied well-poedne of BSVIE conaining mean-field (of he unknown); Ren 34, Wang and Zhang 44 dicued BSVIE wih jump; Overbeck and Röder 32 even developed a heory of pah-dependen BSVIE; Numerical apec wa conidered by Bender and Pokalyuk 6; relevan opimal conrol problem were udied by Shi, Wang and Yong 37, Agram and Økendal 2, Wang and Zhang 42, and Wang 39; Wang and Yong 4 eablihed variou comparion heorem for boh adaped oluion and adaped M-oluion o BSVIE in muli-dimenional Euclidean pace. Recenly, inpired by he Four-Sep Scheme in he heory of forward-backward ochaic differenial equaion(fbsde, for hor) (31) and he ime-inconien ochaic opimal conrol problem (48), Wang and Yong 41 eablihed a repreenaion of adaped oluion o Type-I BSVIE and adaped M-oluion o Type-II BSVIE in erm of he oluion o a yem of (non-claical) parial differenial equaion and he oluion o a (forward) ochaic differenial equaion. Noe ha in all he above-menioned work on BSVIE, he generaor g(,,y,z,z ) of he BSVIE (1.1) aifie a uniform Lipchiz condiion in (y,z,z ) o ha he generaorha a linear growh in (z,z ). 2

3 From he exiing lieraure, ay, for inance 45, 47, one ee ha here are wo obviou moivaion for inroducing and udying BSVIE: a naural exenion of BSDE, and o mee he need of he aemen of Ponryagin ype maximum principle for opimal conrol of (forward) ochaic Volerra inegral equaion. I urn ou ha here are ome oher inereing moivaion for BSVIE from finance and economic. Le u now briefly elaborae ha. Le ξ be a (random) payoff a ome fuure ime T of cerain European ype coningen claim. Le Y( ) olve he following equaion: ( Y() = E ξ + f(c(),y()) A(Y())Z() 2) d,,t, (1.5) where, and hereafer, E = E F, f : R R R i a given map, called he aggregaor, c( ) i a conumpion rae, Z() 2 = d d Y (), wih Y () being he quadraic variaion of Y( ), and A(Y()) i called he variance muliplier. Such defined Y( ) i called a recurive uiliy proce (which ha been alo called ochaic differenial uiliy proce) of he payoff ξ. Thi noion wa firly inroduced by Duffie and Epein 17 in A lile more generally, we may conider he following equaion: Y() = E e δ(t ) ξ + e δ( ) f(,y(),z())d,,t, (1.6) where δ > i called a dicoun rae, and f(,y,z) = f(c(),y) A(y)z 2, (,y,z),t R R. I i eay o ee ha (Y( ),Z( )) olve (1.6) if and only if i i an adaped oluion o he following BSDE: ( ) T Y() = ξ + δy()+ f(,y(),z()) d Z()dW(),,T, (1.7) which i a pecial cae of (1.3). Becaue of he above obervaion, recurive uiliy proce wa laer exended o he adaped oluion of general BSDE (ee 28, 27). A for BSDE (1.3), when (y,z) g(,y,z)aifiea uniform Lipchiz condiion, wih g(,,)being L p -inegrable (wih ome p > 1), for any F T -meaurable L p -inegrable random variable ξ, BSDE (1.3) admi a unique adaped oluion(y( ), Z( )) (33, 31, 49) which could be called a recurive uiliy proce for ξ. On he oher hand, we ee ha in order (1.3) include (1.7), we need he generaorg(,y,z) of (1.3) allowing a quadraic growh in z. For convenience, when z g(,y,z) ha an up o quadraic growh, he BSDE (1.3) i called a quadraic BSDE (QBSDE, for hor). In 2, Kobylanki 24 eablihed he well-poedne of QBSDE wih ξ being bounded. Since hen, ome effor have been made by reearcher o relax he aumpion on he generaor a well a he erminal value ξ. Among relevan work, we would like o menion Briand and Hu 7, 8, Hu and Tang 21, Briand and Richou 9, and Zhang 5, Chaper 7. Furher, BSDE wih uperquadraic growh wa inveigaed by Delbaen, Hu and Bao 1, where ome general negaive reul concerning he well-poedne can be found. Therefore, one can ay ha he heory of recurive uiliy for erminal payoff ξ ha reached a prey maure age. Now, ifineadofξ, we haveanf T -meaurableproceξ(), nonecearilyf-adaped, whichcould be called an anicipaed cah flow proce. For example, i could be an anicipaed received dividend proce of a ock (which depend on he performance of he company, and i i uncerain), anicipaed received morgage paymen (for a bank, ay, wih an uncerainy of defaul or prepaymen), anicipaed claim 3

4 paymen of an inurance policy, he random mainenance co of an owned faciliy, ec. To calculae he recurive uiliy for uch a proce, mimicking (1.6), we migh formally olve he following equaion a he curren ime,t: Y(;r) = E r e δ(t r) ξ()+ e δ( r) f(,y(;),z(;))d, r,t, (1.8) r wih he curren ime being a parameer. Furher, from he udy of ime-inconien opimal conrol (ee 48 and reference cied herein), i i known ha mo people over-weigh he immediae fuure uiliy. To decribe uch a ime-preference, one could ue non-exponenial dicouning, namely, replace e δ in he above by a general decreaing funcion λ(). Thu, inead of (1.8), we hould olve he following: Y(;r) = E r λ(t r)ξ() + λ( r) f(,y(;),z(;))d, r,t. (1.9) r Thi i equivalen o he following BSDE: Y(;r)=λ(T r)ξ()+ r λ( r) f(,y(;),z(;))d r Z(;)dW(), r,t. (1.1) Inuiively, he curren uiliy hould be given by Y(;). However, by aking r = in he above, we obain Y(;)=λ(T )ξ()+ λ( ) f(,y(;),z(;))d Z(;)dW(),,T, (1.11) which i no an equaion for he proce Y(;) ince Y(;) appear in he righ-hand ide of he above. Apparenly, Y(; r) defined by (1.1) ha ome ime-inconien naure. Therefore, Y(; ) defined aboveeem no obe agood candidaeofhe recuriveuiliy proceforhe proceξ( ). Bu, ifinead, we are able o olve he following Type-I BSVIE: Y() = λ(t )ξ()+ λ( ) f(,,y(),z(,))d Z(,)dW(),,T, (1.12) hen Y( ) i ime-conien and i hould be a perfec candidae for he recurive uiliy (or ochaic differenial uiliy) proce for he anicipaed cah flow proce ξ( ). We call uch a Y( ) an equilibrium recurive uiliy proce for he anicipaed cah flow proce ξ( ). Now, we reurn o Type-I BSVIE (1.2). Similar o he BSDE cae, in order (1.2) o include he above (1.12), we hould allow quadraic growh of Z(,) g(,,y(),z(,)). We call uch kind of BSVIE Type-I quadraic BSVIE (QBSVIE, for hor). We can define Type-II QBSVIE imilarly. The purpoe of hi paper i o eablih well-poedne of QBSVIE, under cerain condiion. By chooing uiable pace of procee and uing he mehod inroduced by Yong 47, combining hoe found in Briand Hu 7, 8, we ge he exience and uniquene of adaped oluion and adaped M- oluion for boh Type-I and Type-II QBSVIE. Conequenly, we will eablih he heory of equilibrium recurive uiliy procee. In addiion, ome comparion heorem for adaped oluion of Type-I QBSVIE will be eablihed, and he o-called coninuou-ime equilibrium dynamic rik meaure will be inveigaed a an applicaion of he reul obained for QBSVIE. See Yong 46 and Wang Yong 4, Agram 1 for ome earlier work. See alo Di Perio 14 for ochaic differenial uiliy, and Kromer Overbeck 26 for dynamical capial allocaion by mean of BSVIE. The re of hi paper i organized a follow. In Secion 2, we inroduce ome preliminary noaion and definiion, and preen ome lemma which are of frequen ue in he equel. Secion 3 i devoed o he udy of exience and uniquene of adaped oluion for Type-I QBSVIE, and Secion 4 i 4

5 devoed o he udy of exience and uniquene of adaped M-oluion for Type-II QBSVIE. Some comparion heorem for adaped oluion o Type-I QBSVIE (1.2) will be eablihed in Secion 5, and an applicaion of QBSVIE o coninuou-ime rik meaure will be preened in Secion 6. Some concluion remark will be colleced in Secion 7. 2 Preliminarie For a < b T, we denoe by B(a,b) he Borel σ-field on a,b and define he following e: a,b { (,) a b }, c a,b { (,) a < b }, a,b 2 { (,) a, b } = a,b c a,b, a,b c a,b. Noe ha a,b i a lile differen from he complemen c a,b of a,b in a,b 2, ince boh a,b and a,b conain he diagonalline egmen. In he equel we hall deal wih varioupace of funcion and procee, which we collec here fir for he convenience of he reader: { L 1 (a,b) = h : a,b R h( ) i B(a,b)-meaurable, b a }, h() d < { } L F b (Ω) = ξ : Ω R ξ i F b -meaurable and bounded, { } L F b (a,b) = ϕ : a,b Ω R ϕ( ) i B(a,b) F b -meaurable and bounded, { L 2 F (a,b) = ϕ : a,b Ω R ϕ( ) i F-progreively meaurable, E } b a ϕ() 2 d <, { L F (a,b) = ϕ( ) L 2 F (a,b) ϕ( ) i bounded }, { L 2 F(Ω;Ca,b) = ϕ : a,b Ω R ϕ( ) i coninuou, F-adaped, E up ϕ() 2 } <, a b L F {ϕ( ) (Ω;Ca,b) = L 2 F (Ω;Ca,b) } upa b ϕ() L F b (Ω), { L F b (Ω;C U a,b) = ϕ( ) L F b (a,b) here exi a modulu of coninuiy ρ :, ), ) } uch ha ϕ() ϕ() ρ( ), (,) a,b, a.., L 2 F {ϕ ( a,b) = : a,b Ω R ϕ(, ) i F-progreively meaurable on,b, a.e. a,b, E b } b a ϕ(,) 2 dd <, { L 2 F (a,b2 ) = ϕ :a,b 2 Ω R ϕ(, ) i F-progreively meaurable on a,b, a.e. a,b, E b b a a ϕ(,) 2 dd < }, H 2 a,b = L 2 F (a,b) L2 F (a,b2 ). Now, we recall he definiion of adaped oluion and adaped M-oluion for BSVIE (1.1) inroduced in 47. Definiion 2.1. A pair of procee (Y( ),Z(, )) H 2,T i called an adaped oluion of BSVIE (1.1) if (1.1) i aified in he uual Iô ene for Lebegue meaure almo every,t. Definiion 2.2. For any r,t), a pair of procee (Y( ),Z(, )) H 2 r,t i called an adaped M-oluion of BSVIE (1.1) on r,t if (1.1) i aified in he uual Iô ene for Lebegue meaure almo every r,t and, in addiion, he following hold: Hereafer, we recall E r = F r. Y() = E r Y()+ r Z(,)dW(), a.e. r,t. (2.1) 5

6 Le M 2 r,t be he e of all (y( ),z(, )) H 2 r,t aifying (2.1). Clearly, M 2 r,t i a cloed ubpace of H 2 r,t. Furher, for any (y( ),z(, )) M 2 r,t, we have I follow ha E y() 2 = E Er y() 2 +E (y( ),z(, )) 2 H 2 r,t E r r z(,) 2 d E y() 2 d+ = E y() 2 d+ E 2 r r y() 2 d+2 r r r r r r z(,) 2 d, a.e. r,t. z(,) 2 dd z(,) 2 dd+ z(,) 2 dd 2 (y( ),z(, )) 2 M 2 r,t 2 (y( ),z(, )) 2 H 2 r,t, which implie ha M 2 r,t i an equivalen norm of H 2 r,t on M 2 r,t. r z(,) 2 dd Nex, we recall he Giranov heorem, which will play an imporan role in our ubequen analyi. We refer he reader o Karaza Shreve 22 for a proof. Le X = {X,F ; T} be a meaurable, adaped proce aifying We e P X() 2 d < = 1. E{X} e X()dW() 1 2 X() 2d,,T, (2.2) which i called he Doléan-Dade exponenial of X. Define a probabiliy meaure P on F T by Then, he Giranov heorem can be aed a follow. dp = E{X} T dp. (2.3) Lemma 2.3. Aume ha E{X} defined by (2.2) i a maringale, hen he proce W = {W(),F T} defined by W() W() i a andard Brownian moion on (Ω,F T,P). X()d, T (2.4) In order o give a ufficien condiion under which E{X} defined by (2.2) i a maringale, we need he following reul. We refer he reader o Kazamaki 23 for he deail. Definiion 2.4. Le M = {M(),F ; T}be auniformly inegrablemaringalewih M() =. Proce M( ) i called a BMO maringale on,t, if M( ) 2 BMO(,T) up E τ M(T) M(τ) 2 <, τ T,T where T,T i he e of all opping ime τ valued in,t. Someime, he norm BMO(,T) i wrien a BMOP(,T), indicaing he dependence on he probabiliy P. Lemma 2.5. If M( ) i a BMO maringale on,t, hen Ē{M} e M() 1 2 M () ; T i a uniformly inegrable maringale, where M ( ) i he quadraic variaion proce of M( ). 6

7 Remark 2.6. By Lemma 2.3, if X()dW(); T i a BMO maringale on,t, hen E{X} defined by (2.2) i a uniformly inegrable maringale. Thu, by Giranov heorem (Lemma 2.3), W( ) defined by (2.4) i a one-dimenional Brownian moion on (Ω,F T,P). Nex, we inroduce he following pace: Le a < b < c T, and { BMO(a,b) = ϕ : a,b Ω R ϕ( ) L 2 F (a,b), BMO( a, b) = ϕ( ) 2 BMO(a,b) up τ T a,b b E τ { ϕ : a,b Ω R ϕ(, ) L 2 F ( a,b), ϕ(, ) 2 BMO( a,b ϕ(, ) 2 BMO(a,b b,c) ) eup a,b eup a,b τ up τ T,b } ϕ() d 2 <, τ T b,c b E τ BMO ( a,b b,c ) { = ϕ : a,b b,c Ω R ϕ(, ) L 2 F (a,b b,c), c up E τ τ } ϕ(,) d 2 <, τ } ϕ(,) d 2 <. We noe ha for ϕ( ) BMO(a,b), if we le ϕ(),,a), hen ϕ(r)dw(r); b i a BMO maringale on,b. Similarly, for ϕ(, ) BMO( a,b), if we le ϕ(,),,), hen ϕ(,r)dw(r); b i a BMO maringale on,b for almo all a,b). The iuaion for BMO ( a,b b,c ) i alo imilar. The following lemma play a baic role in our ubequen argumen. we refer he reader o 23, Theorem 3.3 for he proof and deail. Lemma 2.7. For K >, here are conan c 1,c 2 > depending only on K uch ha for any BMO maringale M( ), we have for any one-dimenional BMO maringale N( ) uch ha N( ) BMO(,T) K, c 1 M( ) BMOP (,T) M( ) BMOP (,T) c 2 M( ) BMOP (,T), where M( ) M( ) M,N ( ) and dp = Ē{N( )} T dp. We now conider he following BSDE: Y() = ξ + Le u inroduce he following hypohei. f(,y(),z())d Z()dW(),,T. (2.5) (A). Le he generaor f :,T R R Ω R be B(,T R R) F T -meaurable uch ha f(,y,z) i F-progreively meaurable for all (y,z) R R. There exi conan β, γ, L and a funcion h( ) L 1 (,T) uch ha f(,y,z) h()+β y + γ 2 z 2, (,y,z),t R R; (2.6) f(,y 1,z 1 ) f(,y 2,z 2 ) L y 1 y 2 +L(1+ z 1 + z 2 ) z 1 z 2, (,y i,z i ),T R R, i = 1,2. (2.7) Lemma 2.8. Le (A) hold. Then, for any ξ L F T (Ω), BSDE (2.5) admi a unique adaped oluion (Y( ),Z( )) L F (Ω; C,T) BMO(,T). Moreover, e γ Y() E e γeβ(t ) ξ +γ T h() eβ( ) d. (2.8) Proof. By 5, Theorem 7.3.3, BSDE (2.5) admi a unique adaped oluion (Y( ), Z( )) L F (Ω;C,T) L2 F (,T). Then, by 5, Theorem 7.2.1, we ee ha he adaped oluion (Y( ), Z( )) L F (Ω;C,T) BMO(,T). Furher, by 8, Propoiion 1, we have inequaliy (2.8). 7

8 3 Adaped Soluion o Type-I BSVIE In hi ecion, we will eablih he exience and uniquene of he adaped oluion o Type-I BSVIE. Fir, le u look a he following imple example. Example 3.1. Conider he one-dimenional BSVIE: Y() = ψ()+ Z(,) 2 d Z(, )dw(), (3.1) where ψ( ) L F T (,T), and W( ) i a one-dimenional andard Brownian moion. In order o olve equaion (3.1), we inroduce a family of BSDE parameerized by,t: η(,) = ψ()+ ζ(,r) 2 dr ζ(,r)dw(r),,t. (3.2) By Lemma 2.8, BSDE (3.2) admi a unique adaped oluion (η(, ),ζ(, )) L F (Ω;C,T) BMO(,T). Le Y() = η(,) and Z(,) = ζ(,), (,),T, hen Y() = ψ()+ Z(,) 2 d Z(,)dW(),,T, which implie ha (Y( ),Z(, )) i an adaped oluion o BSVIE (3.1). The uniquene of he oluion o BSVIE (3.1) can be obained by he following Theorem 3.2. From he above example, we ee ha BSVIE (3.1) can be fully characerized by a family of BSDE (3.2). The main reaon i ha he generaor of equaion (3.1) i independen of y. Thi ugge u fir conider a pecial cae of Type-I BSVIE (1.2). 3.1 A pecial cae Conider he following BSVIE: Y() = ψ()+ g(,,z(,))d Z(, )dw(), (3.3) where he generaor g :,T R Ω R and he free erm ψ :,T Ω R are given map. We adop he following aumpion concerning g( ), which i comparable wih (A). (A1). Le he generaor g :,T R Ω R be B(,T R) F T -meaurable uch ha g(,,z) i F-progreively meaurable on,t, for all (,z),t) R. There exi wo conan γ, L and a funcion h( ) L 1 (,T;R) uch ha g(,,z) h()+ γ 2 z 2, (,,z),t R; g(,,z 1 ) g(,,z 2 ) L(1+ z 1 + z 2 ) z 1 z 2, (,,z i ),T R, i = 1,2. Now, we ae he following exience and uniquene reul of BSVIE (3.3). Theorem 3.2. Le (A1) hold. Then for any ψ( ) L F T (,T), Type-I BSVIE (3.3) admi a unique adaped oluion (Y( ),Z(, )) L F (,T) BMO(,T). 8

9 Proof. We fir how he exience of he adaped oluion o BSVIE (3.3). Conider he following BSDE parameerized by,t: η(,) = ψ()+ g(,r,ζ(,r))dr ζ(,r)dw(r),,t. (3.4) For almo all, T, by Lemma 2.8, under (A1), BSDE (3.4) admi a unique adaped oluion (η(, ),ζ(, )) L F (Ω;C,T) BMO(,T). Le Y() = η(,), Z(,) = ζ(,), (,),T, hen (Y( ),Z(, )) L F (,T) BMO(,T) and Y() = ψ()+ g(,,z(,))d Z(,)dW(),,T, which implie ha (Y( ),Z(, )) i an adaped oluion for BSVIE (3.3). The uniquene will follow from he nex heorem. Conider he following BSVIE: For i = 1,2, Y i () = ψ i ()+ g i (,,Z i (,))d Z i (,)dw(),,t. (3.5) We have he following comparion heorem. L F Theorem 3.3. Le g 1 ( ) and g 2 ( ) aify (A1), ψ 1 ( ),ψ 2 ( ) L F T (,T). Le (Y i ( ),Z i (, )) (,T) BMO(,T) be he adaped oluion of correponding BSVIE (3.5). Suppoe ψ 1 () ψ 2 (), g 1 (,,z) g 2 (,,z), a.., a.e. (,,z),t R, (3.6) hen we have Y 1 () Y 2 (), a.., a.e.,t. (3.7) In paricular, if g 1 ( ) = g 2 ( ) and ψ 1 ( ) = ψ 2 ( ), he comparion implie he uniquene of adaped oluion o Type-I BSVIE (3.3). Proof. We noe ha Y 1 () Y 2 () = ψ 1 () ψ 2 ()+ Define he proce θ(, ) uch ha g 1 (,,Z 1 (,)) g 2 (,,Z 2 (,))d Z 1 (,) Z 2 (,)dw(). (3.8) θ(,) =, (,),T; (3.9) θ(,) C(1+ Z 1 (,) + Z 2 (,) ), (,),T; (3.1) g 1 (,,Z 1 (,)) g 1 (,,Z 2 (,)) = Z 1 (,) Z 2 (,) θ(,), (,),T. (3.11) Hereafer, C > and for a generic conan which could be differen from line o line. Then, for almo all,t, W(; ) defined by W(;) W() 9 θ(,r)dr,,t (3.12)

10 i a Brownian moion on,t under he equivalen probabiliy meaure P defined by dp E{θ(, )} T dp. The correponding expecaion i denoed by E P. Thu, by (3.8) and (3.12), we have Y 1 () Y 2 () = ψ 1 () ψ 2 ()+ Z 1 (,) Z 2 (,)dw(;). g 1 (,,Z 2 (,)) g 2 (,,Z 2 (,))d Taking he condiional expecaion wih repec o P on he boh ide of he above equaion and hen by (3.6), we have Y 1 () Y 2 () = E P ψ 1 () ψ 2 ()+ Hence, (3.7) follow. g 1 (,,Z 2 (,)) g 2 (,,Z 2 (,))d, a.. Remark 3.4. Theorem 3.2 and Theorem 3.3 are boh concerned wih he BSVIE (3.3), a very pecial cae of Type-I BSVIE (1.2), in which, he generaor g( ) i independen of he variable y. Thi make he BSVIE (3.3) much eaier o handle. Even hough, Theorem 3.2 and Theorem 3.3 erve a a crucial bridge o he proof of he reul for general Type-I BSVIE. 3.2 The general cae In hi ubecion, we will conider he following Type-I BSVIE: Y() = ψ()+ g(,,y(),z(,))d We fir inroduce he following aumpion, which i alo comparable o (A). Z(, )dw(). (3.13) (A2). Le he generaor g :,T R R Ω R be B(,T R R) F T -meaurable uch ha g(,,y,z) i F-progreively meaurable on,t for all (,y,z),t R R. There exi wo conan L and γ uch ha: g(,,y,z) L(1+ y )+ γ 2 z 2, (,,y,z),t R R; g(,,y 1,z 1 ) g(,,y 2,z 2 ) L { y 1 y 2 +(1+ z 1 + z 2 ) z 1 z 2 }, Now, we ae he main reul of hi ubecion. (,,y i,z i ),T R R, i = 1,2. Theorem 3.5. Le (A2) hold. Then for any ψ( ) L F T (,T), Type-I BSVIE (3.13) admi a unique adaped oluion (Y( ),Z(, )) L F (,T) BMO(,T). L F We will prove Theorem 3.5 by mean of conracion mapping heorem. For any (U( ), V(, )) (,T) BMO(,T), conider he following BSVIE: Y() = ψ()+ g(,,u(),z(,))d Z(, )dw(). (3.14) By Theorem 3.2, BSVIE (3.14) admi a unique adaped oluion (Y( ),Z(, )) L F (,T) BMO(,T). Thu, he map Γ(U( ),V(, )) (Y( ),Z(, )), (U( ),V(, )) L F (,T) BMO(,T) (3.15) i well-defined. In order o prove Theorem 3.5, we preen he following lemma. 1

11 Lemma 3.6. Le (A2) hold and ε (, 1 2L. Then for any ψ( ) L F T (,T), he map Γ(, ) defined by (3.15) aifie he following: Γ(B ε ) B ε, (3.16) where B ε i defined by he following: B ε { (U( ),V(, )) L F (T ε,t) BMO( T ε,t) U( ) L F (,T) 2 ψ( ) +1, V(, ) 2 BMO(,T) A }, (3.17) wih A = 2 γ 2eγ ψ( ) + 1 γ e2(γ+1) ψ( ) +γ+2. Proof. For any (U( ),V(, )) B ε, conider a family of BSDE (parameerized by,t): η(,) = ψ()+ g(,r,u(r),ζ(,r))dr ζ(,r)dw(r),,t. (3.18) Noe ha U( ) i bounded. For almo all T ε,t, by Lemma 2.8, he above BSDE admi a unique adaped oluion (η(, ),ζ(, )) L F (Ω;C,T) BMO(,T). Le Y() = η(,), Z(,) = ζ(,), (,) T ε,t. (3.19) Then by Theorem 3.2, (Y( ),Z(, )) L F (,T) BMO(,T) i he unique adaped oluiono BSVIE (3.14). The re of he proof i divided ino hree ep. Sep 1: Eimae of Y( ). For BSDE (3.18), by (A2), we have g(,r,u(r),ζ) L ( 1+ U(r) ) + γ 2 ζ 2. 1 Thu, noe ha ε (, 2L, by Lemma 2.8 wih h() = L(1+ U() ), γ = γ and β =, we have ( e γ η(,) E e γ ψ() +L ) ( ) T (1+ U(r) )dr e γ ψ( ) +Lε 1+ U( ) L (,T) F e γ(2 ψ( ) +1), T ε T, (3.2) which i equivalen o η(,) 2 ψ( ) +1, T ε T. (3.21) Conequenly, noing Y() = η(,), one ha Sep 2: Eimae of Z(, ) 2 BMO(,T). Y( ) L F (,T) 2 ψ( ) +1. Define Then, we have φ(y) γ 2( e γ y γ y 1 ) γ n 2 y n = ; y R. (3.22) n! n=2 φ (y) = φ (y) = n=2 n=1 γ n 2 y n 2 y (n 1)! = n=1 γ n 1 y n 1 y n! γ n 1 ( ) y n 1 +(n 1) y n 2 ygn(y) n! = γ 1 e γ y 1gn(y), = n=1 γ n 1 y n 1 (n 1)! = e γ y, (3.23) 11

12 which lead o φ (y) = γ φ (y) +1. Applying Iô formula o φ(η(,)), we have φ(ψ()) φ(η(,)) = + φ (η(,r))g(,r,u(r),ζ(,r))dr φ (η(,r))ζ(,r)dw(r),,t. Taking condiional expecaion on he boh ide of (3.24) and by (A2), we have φ(η(,))+ 1 2 E φ( ψ( ) )+LE φ (η(,r)) ζ(,r) 2 dr Combining hi wih (3.23), one obain φ(η(,))+ 1 2 E φ (η(,r)) ζ(,r) 2 dr (3.24) φ (η(,r)) ( 1+ U(r) ) dr + γ 2 E φ (η(,r)) ζ(,r) 2 dr. ζ(,r) 2 T dr φ( ψ( ) )+LE φ (η(,r)) (1+ U(r) )dr. (3.25) Then, noing ha φ(η(,)), we imply drop i o ge Hence, E Z(,r) 2 T dr 2φ( ψ( ) )+2LE φ (η(,r)) (1+ U(r) )dr 2 2eγ ψ( ) + 2L εeγ(2 ψ( ) +1) e 2( ψ( ) +1) 2 2eγ ψ( ) + 1 e2(γ+1) ψ( ) +γ+2. γ γ γ γ Thi prove our claim. Z(, ) 2 BMO(,T) 2 γ 2eγ ψ( ) + 1 γ e2(γ+1) ψ( ) +γ+2 = A. (3.26) The nex reul i concerned wih he local oluion of BSVIE (3.13). Propoiion 3.7. Le (A2) hold and he map Γ(, ) be defined by (3.15). Then here i ε > uch ha Γ(, ) i a conracion on B ε, where B ε i defined by (3.17). Thi implie ha BSVIE (3.13) admi a unique adaped oluion on T ε,t. Proof. Le ε (, 1 2L. For any (U( ),V(, )),(Ũ( ),Ṽ(, )) B ε, e ha i, (Y( ),Z(, )) = Γ(U( ),V(, )) and (Ỹ( ), Z( )) = Γ(Ũ( ),Ṽ(, )); (3.27) and η(,) = ψ()+ η(,) = ψ()+ g(,r,u(r),ζ(,r))d g(,r,ũ(r), ζ(,r))dr ζ(, r)dw(r), (3.28) ζ(, r)dw(r), (3.29) Y() = η(,), Ỹ() = η(,), Z(,r) = ζ(,r), Z(,r) = ζ(,r). (3.3) By Lemma 3.6, (Y( ),Z(, )) and (Ỹ( ), Z(, )) B ε. By (A2), for almo all,t, we can define he proce θ(, ) in an obviou way uch ha: θ(,) =, (,) T ε,t,, (3.31) 12

13 θ(,) L(1+ ζ(,) + ζ(,) ), (,) T ε,t, (3.32) g(,,ũ(),ζ(,)) g(,,ũ(), ζ(,)) = ζ(,) ζ(,)θ(,). (3.33) Noe ha (Y( ),ζ(, )),(Ỹ ( ), ζ(, )) B ε. Thu, by (3.31) (3.32), θ(, ) 2 BMO(,T) 3L2 T +3L 2 ζ(, ) 2 BMO(,T) +3L2 ζ(, ) 2 BMO(,T) 3L 2 T +6L 2 A. (3.34) Thu, for almo all T ε,t, θ(,r)dw(r); T i a BMO maringale and 2 θ(, r)dw(r) 3L 2 T +6L 2 A. (3.35) By Lemma 2.3 and Lemma 2.5, W(; ) defined by W(;) W() BMO(,T) θ(,r)dr,,t (3.36) i a Brownian moion on,t under he equivalen probabiliy meaure P, which i defined by dp E{θ(, )} T dp. (3.37) Denoe he expecaion in P by E P. Combining (3.28), (3.29), and (3.33) (3.36), we have η(,) η(,)+ = ζ(,r) ζ(,r)dw(;r) g(,r,u(r),ζ(,r)) g(,r,ũ(r),ζ(,r)) dr. (3.38) Taking quare and hen aking condiional expecaion wih repec o P on he boh ide of he above equaion, we have (noing T ε T) η(,) η(,) 2 T +E P { = E P E P { ζ(,r) ζ(,r) 2 dr (g(,r,u(r),ζ(,r)) g(,r,ũ(r),ζ(,r)) ) dr (L U(r) Ũ(r) ) 2 } dr 2 } L 2 (T ) 2 U( ) Ũ( ) 2 L F (,T) L2 ε 2 U( ) Ũ( ) 2 L F (,T). Le =, by (3.3) and (3.39), we have (3.39) Y( ) Ỹ( ) 2 L F (,T) L2 ε 2 U( ) Ũ( ) 2 L F (,T). (3.4) Alo, by (3.3), (3.39), (3.35), and Lemma 2.7, here i a conan C (which i depending on ψ( ) and i independen of ) uch ha Thu, up E Z(,r) Z(,r) 2 dr = up E ζ(,r) ζ(,r) 2 dr,t,t C up E P ζ(,r) ζ(,r) 2 dr CL 2 ε 2 U( ) Ũ( ) 2 L F,T Z(, ) Z(, ) 2 BMO(,T) CL2 ε 2 U( ) Ũ( ) 2 L F (,T). (3.41) (,T). (3.42) Combining (3.4) (3.42), we ee ha for ome mall ε >, he map Γ(, ) i a conracion on he e B ε. Hence, BSVIE (3.13) admi a unique adaped oluion on T ε,t. 13

14 Le u make ome commen on he above local exience of he unique adaped oluion. T 2 1,T ε, (Figure 1) T We have een ha (Y(),Z(,)) i defined for (,) T ε,t, he region marked 1 in he above figure. Now, for any,t ε, we can rewrie our Type-I BSVIE a follow: where Y() = ψ ()+ ε g(,,y(),z(,))d ε Z(,)dW(),,T ε, (3.43) ψ () = ψ()+ g(,,y(),z(,))d Z(,)dW(),,T ε. (3.44) If ψ ( ) L F (,T ε), hen (3.43) i a BSVIE on,t ε. However, unlike BSDE, having (Y(),Z(,)) defined on T ε,t, ψ ();,T ε ha ill no been defined ye. Since, on he righ-hand ide of (3.44), alhough Y() wih T ε,t ha already been deermined, Z(,) ha no been defined for (,),,T, he region marked 2 in he above figure, which i needed o define ψ (). Moreover, we need ha ψ () i F -meaurable (no ju F T -meaurable). Hence, (3.44) i acually a ochaic Fredholm inegral equaion (SFIE, for hor) o be olved o deermine ψ ();,T ε. Now, we are a he poiion o prove Theorem 3.5. Proof of Theorem 3.5. The proof will be divided ino hree ep. Sep 1: Eimae of Y( ) 2. For given ψ( ) L F T (,T), we can find a conan C > uch ha ψ( ) 2 C and (by (A2)) 2xg(,,y,) C + C x 2 + C y 2, (,,x,y),t R R. (3.45) Le u conider he following (inegral form of) ordinary differenial equaion: α() = C + Cα()d + Cα()+1d,,T. (3.46) I i eay o ee ha he unique oluion o he above ordinary differenial equaion i given by 1 ) α() = ( C + e 2 C(T ) 1 2 2,,T, which i a (coninuou) decreaing funcion. Thu, ψ( ) 2 C = α(t) α(). 14

15 By Propoiion 3.7, here exi an ε > (depending on ψ( ) ) uch ha Γ(, ) defined by (3.15) i a conracion on B ε. Therefore, a Picard ieraion equence converge o he unique adaped oluion (Y( ),Z(, )) of he BSVIE on T ε,t. Namely, if we define: { (Y ( ),Z (, )) =, (3.47) (Y k+1 ( ),Z k+1 (, )) = Γ(Y k ( ),Z k (, )), k ; ha i, hen (Y ( ),Z (, )) =, η k+1 (,) = ψ()+ g(,r,y k (r),ζ k+1 (,r))dr ζ k+1 (,r)dw(r), Y k+1 () = η k+1 (,), Z k+1 (,) = ζ k+1 (,), (,) T ε,t, lim (Y k ( ),Z k (, )) (Y( ),Z(, )) k L F (,T) BMO(,T) =. (3.48) Nex, for almo all T ε,t, imilar o (3.32), (3.33), (3.36), and (3.37), here exi a proce θ k+1 (, ) uch ha and g(,r,y k (r),ζ k+1 (,r)) g(,r,y k (r),) = ζ k+1 (,r)θ k+1 (,r), (3.49) W k+1 (;) W() θ k+1 (,r)dr,,t (3.5) i a Brownian moion on,t under he correponding equivalen probabiliy meaure P k+1 P k+1 = E{θ k+1 (, )} T dp. defined by For impliciy, we denoe P k+1 by P k+1 here, uppreing he ubcrip. The correponding expecaion i denoed by E k+1. I follow ha η k+1 (,) = ψ()+ g(,r,y k (r),ζ k+1 (,r))dr ζ k+1 (,r)dw(r), = ψ()+ g(,r,y k (r),)dr ζ k+1 (,r)dw k+1 (;r). (3.51) Applying he Iô formula o he map η k+1 (,) 2 and aking condiional expecaion E k+1 τ = E k+1 F τ for any τ T ε,, by (3.45), we have E k+1 τ η k+1 (,) 2 +E k+1 τ = E k+1 τ ψ() 2 +E k+1 τ C + C ζ k+1 (,r) 2 dr E k+1 τ η k+1 (,r) 2 dr + C We now prove he following inequaliy by inducion: 2η k+1 (,r)g(,r,y k (r),)dr { E k+1 τ Y k (r) 2 } +1 dr. (3.52) Y k () 2 α(), T ε,t, for any k. (3.53) In fac, by (3.47), i i obviou o ee Y () 2 = α(). Suppoe Y k () 2 α() for any T ε,t, hen E k+1 τ η k+1 (,) 2 C + C E k+1 τ η k+1 (,r) 2 dr+ C α(r) + 1dr. (3.54) 15

16 In ligh of (3.46), by he comparion heorem of ordinary differenial equaion, we have E k+1 τ η k+1 (,) 2 α(). (3.55) Le τ = and =, we have Y k+1 () 2 α(), T ε,t. (3.56) Thu, by inducion, (3.53) hold. Then by (3.48), we have Y() 2 α(), T ε,t. (3.57) Sep 2: A relaed ochaic Fredholm inegral equaion i olvable on,t ε. We now olve SFIE (3.44) on,t ε. Le u inroduce a family of BSDE parameerized by,t ε: η(,) = ψ()+ g(,r,y(r),ζ(,r))dr ζ(,r)dw(r), T ε,t. (3.58) By Lemma 2.8, he above BSDE admi a unique adaped oluion (η(, ),ζ(, )) on T ε,t. Noe ha (3.57), imilar o (3.55), we have Similar o (3.26), we have η(,) 2 α(), T ε,t. (3.59) eup ζ(, ) 2 <. (3.6) BMO(,T),T ε Le ψ () = η(,t ε) and Z(,) = ζ(,), we have (ψ ( ),Z(, )) L F (,) BMO(,T ε T ε,t) and (ψ ( ),Z(, )) i a oluion o SFIE (3.44). Moreover, by (3.59), we have ψ () 2 = η(,t ε) 2 α(t ε) α(),,t ε. (3.61) Nex, we will prove he oluion o SFIE (3.44) i unique. Le (ψ ( ),Z(, )), ( ψ ( ), Z(, )) L F (,T ε) BMO(,T ε T ε,t). be wo oluion o SFIE (3.44). Then ψ () ψ () = g(,,y(),z(,)) g(,,y(), Z(,)) d (3.62) Z(,) Z(,) dw(),,t ε. For almo all,t ε, imilar o (3.32), (3.33), (3.36), and (3.37), here i a proce θ(, ) uch ha: g(,,y(),z(,)) g(,,y(), Z(,)) = Z(,) Z(,) θ(,), (3.63) and W(;) W() θ(,r)dr,,t (3.64) i a Brownian moion on,t under he correponding equivalen probabiliy meaure P. The correponding expecaion i denoed by E P. Combining (3.62) (3.64), we have ψ () ψ () = Z(,) Z(,) dw(;),,t ε. (3.65) 16

17 Taking condiional expecaion E P E P F on he boh ide of he equaion (3.65), we have ψ () ψ () =,,T ε. (3.66) E P Noe ha ψ () i F -adaped for any,t ε. I follow ha By (3.65) (3.67), we have which implie ψ () = ψ (), a..,,t ε. (3.67) Z(,) Z(,) dw(;) =,,T ε, (3.68) Z(,) = Z(,), a.., (,),T ε T ε,t. (3.69) Combining (3.67) (3.69), SFIE (3.44) admi a unique oluion. Sep 3: Complee he proof by inducion. Combining Sep 1 and 2, we have uniquely deermined Y(), T ε,t, Z(,), (,) T ε,t ) (,T ε T ε,t. (3.7) Now, we conider BSVIE (3.43) on,. By (3.61), we ee ha he above procedure can be repeaed. We poin ou ha he inroducion of α( ) i o uniformly conrol he erminal ae ψ(t ε), ψ(t 2ε), ec. Then we can ue inducion o finih he proof of he exience and uniquene of adaped oluion o BSVIE (3.13). We now would like o look ome beer regulariy for he adaped oluion of BSVIE under addiional condiion. More preciely, we inroduce he following aumpion. (A3). Le g :,T 2 R R Ω R be meaurable uch ha for every (,y,z),t R R, g(,,y,z) i F-progreively meaurable. There exi a modulu of coninuiy ρ :, ), ) (a coninuou and monoone increaing funcion wih ρ() = ) uch ha g(,,y,z) g(,,y,z) ρ( ),,,,T, (y,z) R R. Noe ha in (A3), he generaor g(,,y,z) i defined for (,) in he quare domain,t 2 inead of he riangle domain,t. Theorem 3.8. Le (A2) (A3) hold. Then for any ψ( ) L F T (Ω;C U,T), BSVIE (3.13) admi a unique adaped oluion (Y( ),Z(, )) L F (Ω;C,T) BMO(,T). Proof. Wihou lo of generaliy, le u aume ha ψ( ) ψ() ρ( ),,,T, wih he ame modulu of coninuiy ρ( ) given in (A3). By Theorem 3.5, BSVIE (3.13) admi a unique adaped oluion (Y( ),Z(, )) L F (,T) BMO(,T). We ju need o prove ha Y( ) L F (Ω;C,T), i.e., Y( ) i coninuou. Conider he following family of BSDE (parameerized by,t): η(,) = ψ()+ g(,r,y(r),ζ(,r))dr ζ(,r)dw(r),,t. (3.71) 17

18 By Lemma 2.8, for any,t, BSDE (3.71) admi a unique adaped oluion (η(, ),ζ(, )) L F (Ω;C,T) BMO(,T). By Theorem 3.5, we have Y() = η(,), Z(,) = ζ(,) for any (,),T. Now, le < T. Similar o (3.32), (3.33), (3.36), and (3.37), here i a proce θ(, ; ) uch ha g(,,y(),ζ(,)) g(,,y(),ζ(,)) = ζ(,) ζ(,)θ(, ;), (3.72) and W(, ;) W() θ(, ;r)dr,,t (3.73) i a Brownian moion on,t under he correponding equivalen probabiliy meaure P,. The correponding expecaion i denoed by E P,. Combining (3.71), (3.72), and (3.73), we have η(,) η(,) = ψ() ψ( ) + ζ(,r) ζ(,r)dw(, ;r) g(,r,y(r),ζ(,r)) g(,r,y(r),ζ(,r))dr. Taking condiional expecaion E P, E P, F on he boh ide of he above equaion, we have ( ) η(,) η(,) = E P, ψ() ψ( )+ g(,r,y(r),ζ(,r)) g(,r,y(r),ζ(,r)) dr. Combining hi wih (A3), we have η(,) η(,) E P, ψ() ψ( ) + g(,r,y(r),ζ(,r)) g(,r,y(r),ζ(,r)) dr (T +1)ρ( ). Thi lead o lim up,t η(,) η(,) =, a.. On he oher hand, ince η(, ) L F (Ω;C,T) for any,t, one ha I follow ha (,) η(,) i coninuou, i.e., Conequenly, η(,) = Y() i coninuou. lim η(,) η(, ) =,,T, a.. (3.74) lim (, ) (,) η(, ) η(,) =, (,),T 2, a.. 4 Adaped M-oluion o Type-II BSVIE We now conider he following one-dimenional Type-II BSVIE: Y() = ψ()+ g(,,y(),z(,),z(,))d Z(,)dW(),,T. (4.1) Since Z(, ) i preened in he generaor g( ), we hall conider he adaped M-oluion. Le u fir inroduce he following aumpion: 18

19 (A4). Le he generaor g :,T R R R Ω R be B(,T R R R) F T -meaurable uch ha g(,,y,z,z ) i F-progreively meaurable on,t for all (,y,z,z ),T R R R. There exi wo conan L and γ uch ha: g(,,y,z,z ) L(1+ y )+ γ 2 z 2, (,,y,z,z ),T R R R; g(,,y 1,z 1,z 1 ) g(,,y 2,z 2,,z 2 ) L ( y 1 y 2 +(1+ z 1 + z 2 ) z 1 z 2 + z 1 z 2 ), (,,y i,z i,z i),t R R R, i = 1,2. Noe ha in (A4), we have aumed ha z g(,,y,z,z ) i bounded. Thi will allow u o ue he reul for Type-I BSVIE. The main reul of hi ecion i he following. Theorem 4.1. Le (A4) hold. Then for any ψ( ) L F T (,T), Type-II BSVIE (4.1) admi a unique adaped M-oluion (Y( ),Z(, )) M 2,T ( L F (,T) BMO(,T)). Proof. For any (y( ),z(, )) M 2,T, conider he following BSVIE: Y() = ψ()+ g(,,y(),z(,),z(,))d Z(,)dW(),,T. (4.2) In ligh of (A4), by Theorem 3.5, BSVIE (4.2) admi a unique adaped oluion (Y( ),Z(, )) L F (,T) BMO(,T). Deermine Z(,);(,),T by maringale repreenaion heorem, i.e., Y() = EY()+ Z(,)dW(),,T. Thi mean ha BSVIE (4.2) admi a unique adaped M-oluion (Y( ),Z(, )) M 2,T. Thu he map Γ(y( ),z(, )) (Y( ),Z(, )), (y( ),z(, )) M 2 (,T) (4.3) i well-defined. In order o prove BSVIE (4.1) admi a unique adaped M-oluion, we need o prove ha Γ(, ) ha a fixed poin in M 2,T. The proof i divided ino wo ep. Sep 1. There i an ε > uch ha Γ(, ) i a conracion on M 2 T ε,t and hence BSVIE (4.1) admi a unique adaped M-oluion on T ε,t. For any (y( ),z(, )),(ỹ( ), z(, )) M 2 T ε,t, wih ε > undeermined, e ha i, for T ε,t, and (Y( ),Z(, )) = Γ(y( ),z(, )), (Ỹ( ), Z(, )) = Γ(ỹ( ), z(, )); (4.4) Y() = ψ()+ Ỹ() = ψ()+ g(,,y(),z(,),z(,))d g(,,ỹ(), Z(,), z(,))d Y() = EY() F + Ỹ() = EỸ() F + Z(, )dw(), (4.5) Z(, )dw(), (4.6) Z(,)dW(), T ε,t, (4.7) Z(,)dW(), T ε,t. (4.8) Similar o Lemma 3.6, noing ha z g(,,y,z,z ) i bounded, here i an ε > uch ha Γ(y( ),z(, )) B ε for any (y( ),z(, )) M 2 (T ε,t), where B ε i defined by (3.17). Thu, we have (Y( ),Z(, )), (Ỹ( ), Z(, )) B ε. (4.9) 19

20 By (A4), for any T ε,t, here i a proce θ(, ) uch ha: Similar o (3.35), we have θ(,) =, T ε,t,,, (4.1) θ(,) L(1+ Z(,) + Z(,) ), (,) T ε,t, (4.11) g(,,ỹ(),z(,), z(,)) g(,,ỹ(), Z(,), z(,)) = Z(,) Z(,)θ(,), (,) T ε,t. (4.12) θ(, ) 2 BMO(,T) 3L2 T +6L 2 A. (4.13) For almo all T ε,t, by Lemma 2.3 and Lemma 2.5, W(; ) defined by W(;) W() θ(,r)dr,,t (4.14) i a Brownian moion on,t under he equivalen probabiliy meaure P, which i defined by dp E{θ(, )} T dp. (4.15) The correponding expecaion i denoed by E P. Combining (4.5) (4.6) and (4.12) (4.14), we have Y() Ỹ()+ Z(,) Z(,)dW(,) = g(,,y(),z(,),z(,)) g(,,ỹ(),z(,), z(,)) d. (4.16) Taking quare and hen aking he condiional expecaion E P = E P F, we have Y() Ỹ() 2 +E P = E P L 2 E P Z(,) Z(,) 2 d (g(,,y(),z(,),z(,)) g(,,ỹ(),z(,), z(,)) ) d ( Y() Ỹ() + z(,) z(,) ) d 2. (4.17) By (Y( ),Z(, )),(Ỹ( ), Z(, )) B ε and Lemma 2.7, here i a conan C > (which i depending on ψ( ) and i independen of ) uch ha Y() Ỹ() 2 +E CE C(T )E Thu, inegraing he above on T ε,t, we obain Z(,) Z(,) 2 d ( Y() Ỹ() + z(,) z(,) ) d 2 ( Y() Ỹ() 2 + z(,) z(,) 2) d. (4.18) E Y() Ỹ() 2 d+e Z(,) Z(,) 2 dd CεE Y() Ỹ() 2 + z(,) z(,) 2 dd, (4.19) wih a poible differen conan C >. By he variaion of conan formula, we obain E Y() Ỹ() 2 d+e 2 Z(,) Z(,) 2 dd 2

21 CεE z(,) z(,) 2 dd CεE y() ỹ() 2 d. (4.2) The conan appear above i generic (only depend on he conan L, γ, T, and ψ( ), and i independen of ε > ). Therefore, when ε i mall enough, Γ(, ) i a conracion on M 2 (T ε,t). Conequenly, BSVIE (4.1) admi a unique adaped oluion on T ε,t. Furher, by (4.9), he unique adaped M-oluion (Y( ),Z(, )) alo belong o L F (T ε,t) BMO( T ε,t). T 2,T ε, (Figure 2) T The above deermined Y() for T ε,t and deermined Z(,) for (,) T ε,t (he region marked 1 in he above figure) by uing Type-I BSVIE, and for (,) T ε,t (he region marked 3 in he above figure) by uing maringale repreenaion. Sep 2. BSVIE (4.1) admi a unique adaped M-oluion on,t. By Sep 1, BSVIE (4.1) admi a unique oluion on T ε,t. For almo every T ε,t, E Y() L 2 F (Ω), by maringale repreenaion heorem, here i a unique Z(, ) L 2 (T ε,t;l 2 F (,T ε)) uch ha: E Y() = EY() + ε Z(,)dW(), T ε,t. (4.21) Hence, we have uniquely deermined (Y(),Z(,)) for (,) T ε,t,t (he region marked 1, 3 and 4 ) and he following i well-defined: g (,,z) = g(,,y(),z,z(,)), (,),T ε T ε,t. (4.22) Noe ha,,t i he region marked 2 in he above Figure 2. Now, conider he following SFIE: ψ () = ψ()+ g (,,Z(,))d Z(,)dW(),,T ε. (4.23) Similar o he Sep 2 of he proof of Theorem 3.5, SFIE (4.23) admi a unique oluion (ψ ( ),Z(, )) on,t ε T ε,t and he following eimae hold: ψ () 2 α(),,t ε, (4.24) where α( ) olve an equaion imilar o (3.46). The above uniquely deermined Y(), T ε,t, ( ) ( ) Z(,), (,) T ε,t,t,t ε T ε,t. (4.25) 21

22 Now, we conider Y() = ψ ()+ ε g(,,y(),z(,),z(,))d ε Z(, )dw() (4.26) on,t ε. Since ψ ( ) L F (,T ε), (4.26) i a BSVIE on,t ε. Then he above procedure can be repeaed. Since he ep-lengh ε > can be fixed, we hen could ue inducion o complee he proof. 5 Comparion Theorem for Adaped Soluion o Type-I BSVIE Conider he following BSVIE: For i = 1,2, Y i () = ψ i ()+ g i (,,Y i (),Z i (,))d Z i (,)dw(),,t. (5.1) We aume ha he generaor g i ( ), i = 1,2 of BSVIE (5.1) aify (A2). Then by Theorem 3.5, BSVIE (5.1) admi a unique adaped oluion (Y i ( ),Z i (, )) L F (,T) BMO(,T) for any ψi ( ) L F T (,T). In order o udy he comparion heorem of he oluion o BSVIE (5.1), we inroduce he following BSVIE: Ȳ() = ψ()+ ḡ(,,ȳ(), Z(,))d Z(,)dW(),,T, (5.2) wih he generaor ḡ( ) alo aifie (A2). Furher, we adop he following aumpion. (C). Le he generaor ḡ :,T R R Ω R aify ha y ḡ(,,y,z) i nondecreaing for any (,,z),t R. We preen he comparion heorem for BSVIE (5.1) now. Theorem 5.1. Le g 1 ( ),g 2 ( ) and ḡ( ) aify (A2) and le ḡ( ) aify (C). Suppoe g 1 (,,y,z) ḡ(,,y,z) g 2 (,,y,z), (y,z) R R, a.., a.e. (,),T. (5.3) Then for any ψ 1 ( ),ψ 2 ( ) L F T (,T) aifying ψ 1 () ψ 2 (), a.., a.e.,t, (5.4) he correponding unique adaped oluion (Y i ( ),Z i (, )), i = 1,2 of BSVIE (5.1) aify Proof. Le ψ( ) L F T (,T) uch ha Y 1 () Y 2 (), a.., a.e.,t. (5.5) ψ 1 () ψ() ψ 2 (), a.., a.e.,t. (5.6) Wihou lo of generaliy, le ψ( ) L, (5.7) where ψ( ) = ψ 1 ( ),ψ 2 ( ), ψ( ). By Theorem 3.5, BSVIE (5.1) admi a unique adaped oluion (Y 1 ( ),Z 1 (, )) L F (,T) BMO(,T) for i = 1. Se Ỹ( ) = Y 1 ( ) and conider Ỹ 1 () = ψ()+ ḡ(,,ỹ(), Z 1 (,))d Z 1 (,)dw(),,t. (5.8) 22

23 By Theorem 3.2, here i a unique adaped oluion (Ỹ1( ), Z 1 (, )) L F (,T) BMO(,T) o he above BSVIE. By (5.3), we have g 1 (,,Ỹ(),z) ḡ(,,ỹ(),z), z R, a.., a.e. (,),T. (5.9) Combining hi and (5.6), by Theorem 3.3, for almo all,t, here exi a meaurable e Ω 1 Ω aifying P(Ω 1 ) = uch ha Nex, we conider he following BSVIE Ỹ () = Y 1 () Ỹ1(), ω Ω\Ω 1, a.e.,t. (5.1) Ỹ 2 () = ψ()+ ḡ(,,ỹ1(), Z 2 (,))d Z 2 (,)dw(),,t. (5.11) Le (Ỹ2( ), Z 2 (, )) be he unique oluion o he above equaion. Since y ḡ(,,y,z) i nondecreaing, by (5.1), we have ḡ(,,ỹ(),z) ḡ(,,ỹ1(),z), z R, a.., a.e. (,),T. (5.12) Similar o he above, for almo everywhere,t, here exi a meaurable e Ω 2 Ω aifying P(Ω 2 ) = uch ha Ỹ 1 () Ỹ2(), ω Ω\Ω 2, a.e.,t. (5.13) By inducion, we can conruc a equence (Ỹk( ), Z k (, )) and Ω k aifying P(Ωk ) = uch ha and Ỹ k+1 () = ψ()+ ḡ(,,ỹk(), Z k+1 (,))d ( Y 1 () = Ỹ() Ỹ1() Ỹ2(), ω Ω\ Noe ha PΩ\( k 1 Ωk ) =. We may aume ha Z k+1 (,)dw(),,t, (5.14) k 1 Ω k ), a.e.,t. (5.15) ψ() α(),,t, (5.16) where ψ( ) = ψ 1 ( ),ψ 2 ( ), ψ( ) and α( ) olve an ODE of form (3.46). By Propoiion 3.7, here i an ε > uch ha Ỹ k ( ) i Cauchy in L F (T ε,t) and Combining (5.15) and (5.17), we have Nex, conider he following SFIE: ψ 1, () = ψ 1 ()+ ψ () = ψ()+ lim k Ỹk( ) Ȳ( ) L F (,T) =. (5.17) Y 1 () Ȳ(), a.., a.e. T ε,t. (5.18) g 1 (,,Y 1 (),Z 1 (,))d ḡ(,,ȳ(), Z(,))d Z 1 (,)dw(),,t ε; (5.19) Z(,)dW(),,T ε. (5.2) Similar o he Sep 2 in Theorem 3.5, he above SFIE (5.19) and (5.2) admi unique oluion (ψ 1, ( ),Z 1 (, )), ( ψ ( ), Z(, )) L F (,T ε) BMO(,T ε T ε,t), repecively. Similar o (3.61), we have ψ 1, () α(), ψ () α(),,t ε. (5.21) 23

24 For almo all,t ε, imilar o (3.32) (3.33) and (3.36) (3.37), here i a proce θ(, ) uch ha: and g 1 (,,Y 1 (),Z 1 (,)) g 1 (,,Y 1 (), Z(,)) = Z 1 (,) Z(,) θ(,), (5.22) W(;) W() θ(,r)dr,,t (5.23) i a Brownian moion on,t under he correponding equivalen probabiliy meaure P. The correponding expecaion i denoed by E P. Combining (5.19) (5.2) and (5.22) (5.23), we have ψ 1, () ψ () = ψ 1 () ψ()+ g 1 (,,Y 1 (), Z(,)) ḡ(,,ȳ(), Z(,)) d Z 1 (,) Z(,) dw(;),,t ε. (5.24) Since y ḡ(,,y,z) i nondecreaing for any (,,z),t R, by (5.18), we have ḡ(,,y 1 (),z) ḡ(,,ȳ(),z), (,,z),t T ε,t R. (5.25) Taking condiional expecaion E P E P, on he boh ide of (5.24), by (5.3), (5.25) and (5.18), we have ψ 1, () ψ () ψ 1 () ψ()+ = E P E P ψ 1 () ψ()+,,t ε. g 1 (,,Y 1 (), Z(,)) ḡ(,,ȳ(), Z(,)) d g 1 (,,Y 1 (), Z(,)) ḡ(,,y 1 (), Z(,)) d (5.26) Now, we conider he following BSVIE: y 1 () = ψ 1, ()+ ȳ() = ψ ()+ ε ε g 1 (,,y 1 (),z 1 (,))d ḡ(,,ȳ(), z(,))d ε ε z 1 (,)dw(),,t ε; (5.27) z(,)dw(),,t ε. (5.28) By Theorem 3.5, he above equaion (5.27), (5.28) admi unique oluion (y 1 ( ),z 1 (, )), (ȳ( ), z(, )) (,T ε) BMO(,T ε), repecively. By he Sep 3 in he proof of Theorem 3.5, we have L F y 1 () = Y 1 (), z 1 (,) = Z 1 (,), (,),T ε; (5.29) ȳ() = Ȳ(), z(,) = Z(,), (,),T ε. (5.3) Hence, by inducion, we have Similarly, we can prove ha Y 1 () Ȳ(), a.., a.e.,t. (5.31) Ȳ() Y 2 (), a.., a.e.,t. (5.32) Thu, he inequaliy (5.5) hold. Noe ha he inequaliy (5.5) in Theorem 5.1 hold for almo everywhere,t. We may renghen he above reul under a ronger condiion. More preciely, we have he following heorem which give he comparion for all,t. 24

25 Theorem 5.2. Le he generaor g 1 ( ), g 2 ( ) and ḡ( ) aify (A2) (A3) and furher le ḡ( ) aify (C). Suppoe g 1 (,,y,z) ḡ(,,y,z) g 2 (,,y,z), Then for any ψ 1 ( ),ψ 2 ( ) L F T (Ω;C U,T) aifying (,y,z),t R R, a.., a.e.,t. (5.33) ψ 1 () ψ 2 (),,T, a.., (5.34) he correponding unique adaped oluion (Y i ( ),Z i (, )), i = 1,2 of BSVIE (5.1) aify Proof. By Theorem 5.1, we have Y 1 () Y 2 (),,T, a.. (5.35) Y 1 () Y 2 (), a..,,t. (5.36) Le { k } k 1,T be all he raional number in,t. For any fixed k, by (5.36), here i a Ω k Ω aifying P(Ω k ) = uch ha: Y 1 ( k ) Y 2 ( k ), ω Ω\Ω k. (5.37) Le Ω = k 1 Ω k, hen P( Ω) =. By (5.37), we have Y 1 () Y 2 (), { k } k 1, ω Ω\ Ω. (5.38) By Theorem 3.8, here i a Ω Ω aifying P( Ω) = uch Y i (,ω), i = 1,2 are coninuou for any ω Ω\ Ω. For any fixed ω Ω\( Ω Ω), by (5.38), we have Y 1 (,ω) Y 2 (,ω), { k } k 1. (5.39) Since Y i (,ω), i = 1,2 are coninuou on,t and { k } k 1,T i dene on,t, we have Noe ha P(Ω\( Ω Ω)) =, we have Thi complee he proof. Y 1 (,ω) Y 2 (,ω),,t. (5.4) Y 1 () Y 2 (),,T, a.. (5.41) 6 Coninuou-Time Equilibrium Dynamic Rik Meaure We have een he o-called equilibrium recurive uiliy proce in he inroducion ecion, which erve a a very imporan moivaion of udying BSVIE. In hi ecion, we will look anoher cloely relaed applicaion of BSVIE. Saic rik meaure have been udied by many reearcher. Among many of hem, we menion Arzner Delbaen Eber Heah 5, Föllmer Schied 19, and he reference cied herein. For dicreeime dynamic rik meaure, we menion Riedel 35 and Delefen Scandolo 13, and he reference cied herein. We now look a coninuou-ime dynamic rik meaure. Any ξ L F T (Ω) repreen he payoff of cerain European ype coningen claim a he mauriy ime T. According o El Karoui Peng Quenez 18, we inroduce he following definiion. 25

26 Definiion 6.1. A map ρ :,T L F T (Ω) R i called a dynamic rik meaure if he following are aified: (i) (Adapivene) For any ξ L F T (Ω), ρ(;ξ) i F-adaped; (ii) (Monooniciy) For any ξ, ξ L F T (Ω) wih ξ ξ, one ha ρ(;ξ) ρ(; ξ), for all,t; (iii) (Tranlaion Invarian) For any σ L F T (Ω) and c R, ρ(;+c) = ρ(;ξ) c. Furher, ρ i aid o be convex if he following hold: (iv) (Convexiy): ξ ρ(; ξ) i convex; and ρ i aid o be coheren if he following are aified: (v) (Poiive Homogeneiy): For any ξ L F T (Ω) and λ, ρ(;λξ) = λρ(;ξ); (vi) (Subaddiiviy): For any ξ, ξ L F T (Ω), ρ(;ξ + ξ) ρ(;ξ)+ρ(; ξ). Each iem in he above definiion can be naurally explained. For example, (ii) mean ha beween wo gain, he one dominanly larger one ha a maller rik; (vi) mean ha combining wo invemen will have maller rik. The following i quoed from 18. Propoiion 6.2. Le g :,T R R be meaurable uch ha z g(,z) i convex and grow a mo quadraically. Then for any ξ L F T (Ω), he following BSDE: Y() = ξ + g(, Z())d Z()dW(),,T, (6.1) admi a unique adaped oluion (Y( ),Z( )) (Y( ;ξ),z( ;ξ)). Le ρ :,T L F T (Ω) R be defined by he following: ρ(,ξ) = Y(;ξ), (,ξ),t L F T (Ω). Then ρ i a dynamic convex rik meaure. One of he mo inereing example i he following. Y() = ξ + 1 T 2γ Z() 2 d Z()dW(),,T. The above admi a unique adaped oluion (Y( ), Z( )), and ρ(,ξ) Y() = γlne e ξ γ F e γ, (ξ),,t, i called a dynamic enropic rik meaure for ξ. Now, if we havean anicipaed cah flow proce ψ( ) inead of ju a erminal payoffξ, hen formally, he correponding dynamic rik hould be meaured via he following parameerized BSDE: Y(,r) = ψ()+ g(,y(,),z(,))d Z(,)dW()), (r,),t, r r and he curren dynamic rik hould be Y(; ). Bu, imilar o he inroducion ecion, imply aking r = in he above lead o he following: Y(,) = ψ()+ g(,y(,),z(,))d Z(,)dW()),,T, 26

27 which i no a cloed form equaion for he pair (Y(,),Z(,)) of procee. A we indiced in he inroducion, Y(, r) above ha ome hidden ime-inconiency naure. One expec ha he dynamic rik meaure hould be ime-conien. Namely, he value of he rik oday (for a proce ψ( )) hould mach he one ha one expeced yeerday. Therefore, i i naural o ue BSVIE o decribe/meaure he dynamic rik of he proce ψ( ). We now make hi precie. We call ψ( ) L F T (,T) a poiion proce (a name borrowed from 35), and ψ() could repreen he oal (nominal) value of cerain porfolio proce which migh be a combinaion of cerain (ay, European ype) coningen claim (which are maure a ime T, hu hey are uually only F T -meaurable), ome curren cah flow (uch a dividend o be received, premia o be paid), poiion of ock, muual fund, and bond, and oon, a ime he curren ime. Thu, he poiion proceψ( ) i merely F T -meaurable (no necearily F-adaped). Now, mimicking Definiion 6.1, we inroduce he following. Definiion 6.3. A map ρ : L F T (,T) L F (,T) i called an equilibrium dynamic rik meaure if he following hold: (i) (Pa Independence) For any ψ 1 ( ),ψ 2 ( ) L F T (,T), if for ome,t), hen ψ 1 () = ψ 2 (), a.., a.e.,t, ρ(;ψ 1 ( )) = ρ(;ψ 2 ( )), a.. (ii) (Monooniciy) For any ψ 1 ( ),ψ 2 ( ) L F T (,T), if for ome,t), hen ψ 1 () ψ 2 (), a.., a.e.,t, ρ(;ψ 1 ( )) ρ(;ψ 2 ( )), a..,,t. (iii) (Tranlaion Invariance) There exi a deerminiic inegrable funcion r( ) uch ha for any ψ( ) L F T (,T), ρ(;ψ( )+c) = ρ(;ψ( )) ce r()d, a..,,t. Furher, ρ i aid o be convex if he following hold: (iv) (Convexiy) For any ψ 1 ( ),ψ 2 ( ) L F T (,T) and λ,1, ρ(;λψ 1 ( )+(1 λ)ψ 2 ( )) λρ(;ψ 1 ( ))+(1 λ)ρ(;ψ 2 ( )), a..,,t. And ρ i aid o be coheren if he following are aified: (v) (Poiive Homogeneiy) For any ψ( ) L F T (,T) and λ >, ρ(;λψ( )) = λρ(;ψ( )), a..,,t. (vi) (Subaddiiviy) For any ψ 1 ( ),ψ 2 ( ) L F T (,T), ρ(;ψ 1 ( )+ψ 2 ( )) ρ(;ψ 1 ( ))+ρ(;ψ 2 ( )), a..,,t. The word equilibrium indicae he ime-coniency of he rik meaure ρ which i ome kind of modificaion of he naive one. Similar iuaion ha happened in he udy of ime-inconien opimal conrol problem (ee 48). Le u now look a he following Type-I BSVIE: Y() = ψ()+ We have he following reul. g(,,y(),z(,))d Z(,)dW(),,T. (6.2) 27

28 Propoiion 6.4. Le he generaor be given by g(,,y,z) r()y +g (,,z);(,,y,z),t R R, and aify (A2), where r( ) i a non-negaive deerminiic funcion. Then he following are rue: (i) The map ψ( ) ρ(; ψ( )) i ranlaion invarian. (ii) Suppoe z g (,,z) i convex, o i ψ( ) ρ(;ψ( )). (iii) Suppoe z g (,,z) i poiively homogeneou and ub-addiive, o i ψ( ) ρ(;ψ( )). By Theorem 5.1, he proof of Propoiion 6.4 i very imilar o 46, Corollary 3.4, Propoiion 3.5, we omi hem here. By Propoiion 6.4, we can conruc a large cla of equilibrium dynamic rik meaure by chooing uiable generaor g( ) of BSVIE (6.2). More preciely, we have he following reul. Theorem 6.5. Le he generaor g(,,y,z) r()y+g (,,z);(,,y,z) R R aify (A2), where r( ) i a non-negaive deerminiic funcion and z g (,,z) i convex, hen ψ( ) ρ(;ψ( )) i an equilibrium dynamic convex rik meaure. If z g (,,z) i poiively homogeneou and ub-addiive, hen ψ( ) ρ(; ψ( )) i an equilibrium dynamic coheren rik meaure. From Propoiion 6.4, he proof of he above reul i obviou. According o he above reul, we can have ome example of equilibrium dynamic rik meaure by he choice of g (,,z): If g (,,z) = ḡ(,) z, ḡ(,), hen, i i ub-addiive and poiively homogeneou in z. The correponding equilibrium dynamic rik meaure i coheren. If g (,,z) = ḡ(,) 1+ z 2, ḡ(,), hen, i i convex in z. The correponding equilibrium dynamic rik meaure i convex. If g (,,z) = ḡ(,) z 2, ḡ(,), hen one ha an enropy ype equilibrium dynamic rik meaure. 7 Concluding Remark Recurive uiliy proce (or ochaic differenial uiliy proce) and dynamic rik meaure for erminal payoff can be decribed by he adaped oluion o proper BSDE. For F T -meaurable poiion proce ψ( ), inead of he erminal payoff ξ, one could alo ry o find i recurive uiliy proce and/or dynamic rik. One poibiliy i again ue BSDE. However, one immediaely find ha he reuling proce (recurive uiliy or dynamic rik meaure) are kind of ime-inconien naure. BSVIE urn ou o be a proper ool for decribing hem. To hi end, we need o eablih he well-poedne of QBSVIE. In hi paper, we have achieved hi. Conequenly, he heory of equilibrium recurive uiliy and equilibrium dynamic rik meaure are uccefully eablihed. Reference 1 N. Agram, Dynamic rik meaure for BSVIE wih jump and emimaringale iue, arxiv: v1 mah.oc 3 Mar

Fractional Ornstein-Uhlenbeck Bridge

Fractional Ornstein-Uhlenbeck Bridge WDS'1 Proceeding of Conribued Paper, Par I, 21 26, 21. ISBN 978-8-7378-139-2 MATFYZPRESS Fracional Ornein-Uhlenbeck Bridge J. Janák Charle Univeriy, Faculy of Mahemaic and Phyic, Prague, Czech Republic.

More information

Stability in Distribution for Backward Uncertain Differential Equation

Stability in Distribution for Backward Uncertain Differential Equation Sabiliy in Diribuion for Backward Uncerain Differenial Equaion Yuhong Sheng 1, Dan A. Ralecu 2 1. College of Mahemaical and Syem Science, Xinjiang Univeriy, Urumqi 8346, China heng-yh12@mail.inghua.edu.cn

More information

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY

NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY NECESSARY AND SUFFICIENT CONDITIONS FOR LATENT SEPARABILITY Ian Crawford THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap working paper CWP02/04 Neceary and Sufficien Condiion for Laen

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Multidimensional Markovian FBSDEs with superquadratic

Multidimensional Markovian FBSDEs with superquadratic Mulidimenional Markovian FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,, Ludovic angpi c,3 December 14, 17 ABSRAC We give local and global exience and uniquene reul for mulidimenional coupled

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Mathematische Annalen

Mathematische Annalen Mah. Ann. 39, 33 339 (997) Mahemaiche Annalen c Springer-Verlag 997 Inegraion by par in loop pace Elon P. Hu Deparmen of Mahemaic, Norhweern Univeriy, Evanon, IL 628, USA (e-mail: elon@@mah.nwu.edu) Received:

More information

Explicit form of global solution to stochastic logistic differential equation and related topics

Explicit form of global solution to stochastic logistic differential equation and related topics SAISICS, OPIMIZAION AND INFOMAION COMPUING Sa., Opim. Inf. Compu., Vol. 5, March 17, pp 58 64. Publihed online in Inernaional Academic Pre (www.iapre.org) Explici form of global oluion o ochaic logiic

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Macroeconomics 1. Ali Shourideh. Final Exam

Macroeconomics 1. Ali Shourideh. Final Exam 4780 - Macroeconomic 1 Ali Shourideh Final Exam Problem 1. A Model of On-he-Job Search Conider he following verion of he McCall earch model ha allow for on-he-job-earch. In paricular, uppoe ha ime i coninuou

More information

Backward Stochastic Differential Equations and Applications in Finance

Backward Stochastic Differential Equations and Applications in Finance Backward Sochaic Differenial Equaion and Applicaion in Finance Ying Hu Augu 1, 213 1 Inroducion The aim of hi hor cae i o preen he baic heory of BSDE and o give ome applicaion in 2 differen domain: mahemaical

More information

An introduction to the (local) martingale problem

An introduction to the (local) martingale problem An inroducion o he (local) maringale problem Chri Janjigian Ocober 14, 214 Abrac Thee are my preenaion noe for a alk in he Univeriy of Wiconin - Madion graduae probabiliy eminar. Thee noe are primarily

More information

arxiv: v1 [math.pr] 2 Jan 2015

arxiv: v1 [math.pr] 2 Jan 2015 Mean-field backward ochaic differenial equaion on Markov chain arxiv:151.955v1 [mah.pr] 2 Jan 215 Wen Lu 1 Yong Ren 2 1. School of Mahemaic and Informaional Science, Yanai Univeriy, Yanai 2645, China 2.

More information

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION

FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION J. Au. Mah. Soc. 74 (23), 249 266 FULLY COUPLED FBSDE WITH BROWNIAN MOTION AND POISSON PROCESS IN STOPPING TIME DURATION HEN WU (Received 7 Ocober 2; revied 18 January 22) Communicaed by V. Sefanov Abrac

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Notes on cointegration of real interest rates and real exchange rates. ρ (2) Noe on coinegraion of real inere rae and real exchange rae Charle ngel, Univeriy of Wiconin Le me ar wih he obervaion ha while he lieraure (mo prominenly Meee and Rogoff (988) and dion and Paul (993))

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

ARTIFICIAL INTELLIGENCE. Markov decision processes

ARTIFICIAL INTELLIGENCE. Markov decision processes INFOB2KI 2017-2018 Urech Univeriy The Neherland ARTIFICIAL INTELLIGENCE Markov deciion procee Lecurer: Silja Renooij Thee lide are par of he INFOB2KI Coure Noe available from www.c.uu.nl/doc/vakken/b2ki/chema.hml

More information

Rough Paths and its Applications in Machine Learning

Rough Paths and its Applications in Machine Learning Pah ignaure Machine learning applicaion Rough Pah and i Applicaion in Machine Learning July 20, 2017 Rough Pah and i Applicaion in Machine Learning Pah ignaure Machine learning applicaion Hiory and moivaion

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS

ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS Elec. Comm. in Probab. 3 (998) 65 74 ELECTRONIC COMMUNICATIONS in PROBABILITY ESTIMATES FOR THE DERIVATIVE OF DIFFUSION SEMIGROUPS L.A. RINCON Deparmen of Mahemaic Univeriy of Wale Swanea Singleon Par

More information

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields

Backward Stochastic Partial Differential Equations with Jumps and Application to Optimal Control of Random Jump Fields Backward Sochaic Parial Differenial Equaion wih Jump and Applicaion o Opimal Conrol of Random Jump Field Bern Økendal 1,2, Frank Proke 1, Tuheng Zhang 1,3 June 7, 25 Abrac We prove an exience and uniquene

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms Chaper 6. Laplace Tranform Kreyzig by YHLee;45; 6- An ODE i reduced o an algebraic problem by operaional calculu. The equaion i olved by algebraic manipulaion. The reul i ranformed back for he oluion of

More information

Lecture 26. Lucas and Stokey: Optimal Monetary and Fiscal Policy in an Economy without Capital (JME 1983) t t

Lecture 26. Lucas and Stokey: Optimal Monetary and Fiscal Policy in an Economy without Capital (JME 1983) t t Lecure 6. Luca and Sokey: Opimal Moneary and Fical Policy in an Economy wihou Capial (JME 983. A argued in Kydland and Preco (JPE 977, Opimal governmen policy i likely o be ime inconien. Fiher (JEDC 98

More information

Reflected Solutions of BSDEs Driven by G-Brownian Motion

Reflected Solutions of BSDEs Driven by G-Brownian Motion Refleced Soluion of BSDE Driven by G-Brownian Moion Hanwu Li Shige Peng Abdoulaye Soumana Hima Sepember 1, 17 Abrac In hi paper, we udy he refleced oluion of one-dimenional backward ochaic differenial

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

FUZZY n-inner PRODUCT SPACE

FUZZY n-inner PRODUCT SPACE Bull. Korean Mah. Soc. 43 (2007), No. 3, pp. 447 459 FUZZY n-inner PRODUCT SPACE Srinivaan Vijayabalaji and Naean Thillaigovindan Reprined from he Bullein of he Korean Mahemaical Sociey Vol. 43, No. 3,

More information

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 3, March 28, Page 99 918 S 2-9939(7)989-2 Aricle elecronically publihed on November 3, 27 FIXED POINTS AND STABILITY IN NEUTRAL DIFFERENTIAL

More information

T-Rough Fuzzy Subgroups of Groups

T-Rough Fuzzy Subgroups of Groups Journal of mahemaic and compuer cience 12 (2014), 186-195 T-Rough Fuzzy Subgroup of Group Ehagh Hoeinpour Deparmen of Mahemaic, Sari Branch, Ilamic Azad Univeriy, Sari, Iran. hoienpor_a51@yahoo.com Aricle

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

On the Exponential Operator Functions on Time Scales

On the Exponential Operator Functions on Time Scales dvance in Dynamical Syem pplicaion ISSN 973-5321, Volume 7, Number 1, pp. 57 8 (212) hp://campu.m.edu/ada On he Exponenial Operaor Funcion on Time Scale laa E. Hamza Cairo Univeriy Deparmen of Mahemaic

More information

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1

Measure-valued Diffusions and Stochastic Equations with Poisson Process 1 Publihed in: Oaka Journal of Mahemaic 41 (24), 3: 727 744 Meaure-valued Diffuion and Sochaic quaion wih Poion Proce 1 Zongfei FU and Zenghu LI 2 Running head: Meaure-valued Diffuion and Sochaic quaion

More information

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations

Existence of Stepanov-like Square-mean Pseudo Almost Automorphic Solutions to Nonautonomous Stochastic Functional Evolution Equations Exience of Sepanov-like Square-mean Peudo Almo Auomorphic Soluion o Nonauonomou Sochaic Funcional Evoluion Equaion Zuomao Yan Abrac We inroduce he concep of bi-quare-mean almo auomorphic funcion and Sepanov-like

More information

Additional Methods for Solving DSGE Models

Additional Methods for Solving DSGE Models Addiional Mehod for Solving DSGE Model Karel Meren, Cornell Univeriy Reference King, R. G., Ploer, C. I. & Rebelo, S. T. (1988), Producion, growh and buine cycle: I. he baic neoclaical model, Journal of

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations

Research Article Existence and Uniqueness of Solutions for a Class of Nonlinear Stochastic Differential Equations Hindawi Publihing Corporaion Abrac and Applied Analyi Volume 03, Aricle ID 56809, 7 page hp://dx.doi.org/0.55/03/56809 Reearch Aricle Exience and Uniquene of Soluion for a Cla of Nonlinear Sochaic Differenial

More information

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping

BSDE Approach to Non-Zero-Sum Stochastic Differential Games of Control and Stopping BSDE Approach o Non-Zero-Sum Sochaic Differenial Game of Conrol and Sopping Ioanni Karaza INTECH Invemen Managemen One Palmer Square, Suie 441 Princeon, NJ 8542 ik@enhanced.com Qinghua Li Saiic Deparmen,

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO

Essays on Multidimensional BSDEs and FBSDEs. Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. Rer. Nat.) Presented by PENG LUO Eay on Mulidimenional BSDE and FBSDE Dieraion ubmied for he degree of Docor of Naural Science (Dr. Rer. Na.) Preened by PENG LUO a he Faculy of Science Deparmen of Mahemaic and Saiic Acceped on he recommendaion

More information

Dual Representation of Minimal Supersolutions of Convex BSDEs

Dual Representation of Minimal Supersolutions of Convex BSDEs Dual Repreenaion of Minimal Superoluion of Convex BSDE Samuel Drapeau a,1,, Michael Kupper b,2,, Emanuela Roazza Gianin c,3, Ludovic Tangpi a,4, December 15, 214 ABSTRACT We give a dual repreenaion of

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

On the Benney Lin and Kawahara Equations

On the Benney Lin and Kawahara Equations JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 11, 13115 1997 ARTICLE NO AY975438 On he BenneyLin and Kawahara Equaion A Biagioni* Deparmen of Mahemaic, UNICAMP, 1381-97, Campina, Brazil and F Linare

More information

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS

MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO NUMERICAL SOLUTIONS The Annal of Applied Probabiliy 211, Vol. 21, No. 6, 2379 2423 DOI: 1.1214/11-AAP762 Iniue of Mahemaical Saiic, 211 MALLIAVIN CALCULUS FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS AND APPLICATION TO

More information

arxiv:math/ v2 [math.fa] 30 Jul 2006

arxiv:math/ v2 [math.fa] 30 Jul 2006 ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS arxiv:mah/0511565v2 [mah.fa] 30 Jul 2006 JAKUB DUDA Abrac. We prove ha for every funcion f : X Y, where X i a eparable Banach pace and Y i a

More information

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W.

BSDE's, Clark-Ocone formula, and Feynman-Kac formula for Lévy processes Nualart, D.; Schoutens, W. BSD', Clark-Ocone formula, and Feynman-Kac formula for Lévy procee Nualar, D.; Schouen, W. Publihed: 1/1/ Documen Verion Publiher PDF, alo known a Verion of ecord (include final page, iue and volume number)

More information

U T,0. t = X t t T X T. (1)

U T,0. t = X t t T X T. (1) Gauian bridge Dario Gabarra 1, ommi Soinen 2, and Eko Valkeila 3 1 Deparmen of Mahemaic and Saiic, PO Box 68, 14 Univeriy of Helinki,Finland dariogabarra@rnihelinkifi 2 Deparmen of Mahemaic and Saiic,

More information

Research Article On Double Summability of Double Conjugate Fourier Series

Research Article On Double Summability of Double Conjugate Fourier Series Inernaional Journal of Mahemaic and Mahemaical Science Volume 22, Aricle ID 4592, 5 page doi:.55/22/4592 Reearch Aricle On Double Summabiliy of Double Conjugae Fourier Serie H. K. Nigam and Kuum Sharma

More information

EE202 Circuit Theory II

EE202 Circuit Theory II EE202 Circui Theory II 2017-2018, Spring Dr. Yılmaz KALKAN I. Inroducion & eview of Fir Order Circui (Chaper 7 of Nilon - 3 Hr. Inroducion, C and L Circui, Naural and Sep epone of Serie and Parallel L/C

More information

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER John Riley 6 December 200 NWER TO ODD NUMBERED EXERCIE IN CHPTER 7 ecion 7 Exercie 7-: m m uppoe ˆ, m=,, M (a For M = 2, i i eay o how ha I implie I From I, for any probabiliy vecor ( p, p 2, 2 2 ˆ ( p,

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior

An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior An ergodic BSDE approach o forward enropic rik meaure: repreenaion and large-mauriy behavior W. F. Chong Y. Hu G. Liang. Zariphopoulou Fir verion: January 2016; hi verion: November 30, 2016 Abrac Uing

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

A stability approach for solving multidimensional quadratic BSDES

A stability approach for solving multidimensional quadratic BSDES A abiliy approach for olving mulidimenional quadraic BSDES Jonahan Harer, Adrien Richou To cie hi verion: Jonahan Harer, Adrien Richou A abiliy approach for olving mulidimenional quadraic BSDES 17 HAL

More information

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations

Stochastic Optimal Control in Infinite Dimensions: Dynamic Programming and HJB Equations Sochaic Opimal Conrol in Infinie Dimenion: Dynamic Programming and HJB Equaion G. Fabbri 1 F. Gozzi 2 and A. Świe ch3 wih Chaper 6 by M. Fuhrman 4 and G. Teiore 5 1 Aix-Mareille Univeriy (Aix-Mareille

More information

DYNAMIC APPROACHES FOR SOME TIME-INCONSISTENT OPTIMIZATION PROBLEMS

DYNAMIC APPROACHES FOR SOME TIME-INCONSISTENT OPTIMIZATION PROBLEMS The Annal of Applied Probabiliy 27, Vol. 27, No. 6, 3435 3477 hp://doi.org/.24/7-aap284 Iniue of Mahemaical Saiic, 27 DYNAMIC APPROACHES FOR SOME TIME-INCONSISTENT OPTIMIZATION PROBLEMS BY CHANDRASEKHAR

More information

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER

FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER #A30 INTEGERS 10 (010), 357-363 FLAT CYCLOTOMIC POLYNOMIALS OF ORDER FOUR AND HIGHER Nahan Kaplan Deparmen of Mahemaic, Harvard Univeriy, Cambridge, MA nkaplan@mah.harvard.edu Received: 7/15/09, Revied:

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

About the Pricing Equation in Finance

About the Pricing Equation in Finance Abou he Pricing Equaion in Finance Séphane Crépey Déparemen de Mahémaique Univerié d Évry Val d Eonne 91025 Évry Cedex, France Thi verion: July 10, 2007 1 Inroducion In [16], we conruced a raher generic

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Math 2214 Solution Test 1 B Spring 2016

Math 2214 Solution Test 1 B Spring 2016 Mah 14 Soluion Te 1 B Spring 016 Problem 1: Ue eparaion of ariable o ole he Iniial alue DE Soluion (14p) e =, (0) = 0 d = e e d e d = o = ln e d uing u-du b leing u = e 1 e = + where C = for he iniial

More information

Time-Inconsistent Stochastic Linear Quadratic. Control: Characterization and Uniqueness of Equilibrium

Time-Inconsistent Stochastic Linear Quadratic. Control: Characterization and Uniqueness of Equilibrium Time-Inconien Sochaic Linear Quadraic arxiv:504.052v2 q-fin.pm 26 May 205 Conrol: Characerizaion and Uniquene of Equilibrium Ying Hu Hanqing Jin Xun Yu Zhou April 28, 205 Abrac In hi paper, we coninue

More information

Multidimensional Markov FBSDEs with superquadratic

Multidimensional Markov FBSDEs with superquadratic Mulidimenional Markov FBSDE wih uperquadraic growh Michael Kupper a,1, Peng Luo b,2, Ludovic angpi c,3 December 12, 216 arxiv:155.1796v2 [mah.pr] 9 Dec 216 ABSRAC We give local and global exience and uniquene

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

EE Control Systems LECTURE 2

EE Control Systems LECTURE 2 Copyrigh F.L. Lewi 999 All righ reerved EE 434 - Conrol Syem LECTURE REVIEW OF LAPLACE TRANSFORM LAPLACE TRANSFORM The Laplace ranform i very ueful in analyi and deign for yem ha are linear and ime-invarian

More information

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω))

Energy Equality and Uniqueness of Weak Solutions to MHD Equations in L (0,T; L n (Ω)) Aca Mahemaica Sinica, Englih Serie May, 29, Vol. 25, No. 5, pp. 83 814 Publihed online: April 25, 29 DOI: 1.17/1114-9-7214-8 Hp://www.AcaMah.com Aca Mahemaica Sinica, Englih Serie The Ediorial Office of

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion

Approximate Controllability of Fractional Stochastic Perturbed Control Systems Driven by Mixed Fractional Brownian Motion American Journal of Applied Mahemaic and Saiic, 15, Vol. 3, o. 4, 168-176 Available online a hp://pub.ciepub.com/ajam/3/4/7 Science and Educaion Publihing DOI:1.1691/ajam-3-4-7 Approximae Conrollabiliy

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Moral Hazard in Dynamic Risk Management

Moral Hazard in Dynamic Risk Management Moral Hazard in Dynamic Rik Managemen Jakša Cvianić, Dylan Poamaï and Nizar ouzi arxiv:146.5852v2 [q-fin.pm] 16 Mar 215 March 17, 215 Abrac. We conider a conracing problem in which a principal hire an

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Suggested Solutions to Midterm Exam Econ 511b (Part I), Spring 2004

Suggested Solutions to Midterm Exam Econ 511b (Part I), Spring 2004 Suggeed Soluion o Miderm Exam Econ 511b (Par I), Spring 2004 1. Conider a compeiive equilibrium neoclaical growh model populaed by idenical conumer whoe preference over conumpion ream are given by P β

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

arxiv: v1 [math.pr] 23 Apr 2018

arxiv: v1 [math.pr] 23 Apr 2018 arxiv:184.8469v1 [mah.pr] 23 Apr 218 The Neumann Boundary Problem for Ellipic Parial ifferenial Equaion wih Nonlinear ivergence Term Xue YANG Tianjin Univeriy e-mail: xyang213@ju.edu.cn Jing ZHANG Fudan

More information

Pricing the American Option Using Itô s Formula and Optimal Stopping Theory

Pricing the American Option Using Itô s Formula and Optimal Stopping Theory U.U.D.M. Projec Repor 2014:3 Pricing he American Opion Uing Iô Formula and Opimal Sopping Theory Jona Bergröm Examenarbee i maemaik, 15 hp Handledare och examinaor: Erik Ekröm Januari 2014 Deparmen of

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Note on Matuzsewska-Orlich indices and Zygmund inequalities

Note on Matuzsewska-Orlich indices and Zygmund inequalities ARMENIAN JOURNAL OF MATHEMATICS Volume 3, Number 1, 21, 22 31 Noe on Mauzewka-Orlic indice and Zygmund inequaliie N. G. Samko Univeridade do Algarve, Campu de Gambela, Faro,85 139, Porugal namko@gmail.com

More information

Systems of nonlinear ODEs with a time singularity in the right-hand side

Systems of nonlinear ODEs with a time singularity in the right-hand side Syem of nonlinear ODE wih a ime ingulariy in he righ-hand ide Jana Burkoová a,, Irena Rachůnková a, Svaolav Saněk a, Ewa B. Weinmüller b, Sefan Wurm b a Deparmen of Mahemaical Analyi and Applicaion of

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Approximation for Option Prices under Uncertain Volatility

Approximation for Option Prices under Uncertain Volatility Approximaion for Opion Price under Uncerain Volailiy Jean-Pierre Fouque Bin Ren February, 3 Abrac In hi paper, we udy he aympoic behavior of he wor cae cenario opion price a he volailiy inerval in an uncerain

More information

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t

Dynamic Systems and Applications 16 (2007) BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS 1. INTRODUCTION. x t + t Dynamic Syem and Applicaion 16 (7) 11-14 BACKWARD STOCHASTIC DIFFERENTIAL INCLUSIONS MICHA L KISIELEWICZ Faculy of Mahemaic, Compuer Science and Economeric, Univeriy of Zielona Góra, Podgórna 5, 65 46

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

Research Article Stochastic Analysis of Gaussian Processes via Fredholm Representation

Research Article Stochastic Analysis of Gaussian Processes via Fredholm Representation Inernaional Journal of Sochaic Analyi Volume 216, Aricle ID 8694365, 15 page hp://dx.doi.org/1.1155/216/8694365 Reearch Aricle Sochaic Analyi of Gauian Procee via Fredholm Repreenaion ommi Soinen 1 and

More information

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case

Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case Parameer Eimaion for Fracional Ornein-Uhlenbeck Procee: Non-Ergodic Cae R. Belfadli 1, K. E-Sebaiy and Y. Ouknine 3 1 Polydiciplinary Faculy of Taroudan, Univeriy Ibn Zohr, Taroudan, Morocco. Iniu de Mahémaique

More information

Pathwise description of dynamic pitchfork bifurcations with additive noise

Pathwise description of dynamic pitchfork bifurcations with additive noise Pahwie decripion of dynamic pichfork bifurcaion wih addiive noie Nil Berglund and Barbara Genz Abrac The low drif (wih peed ) of a parameer hrough a pichfork bifurcaion poin, known a he dynamic pichfork

More information