PHYS 211 Exam 1 - Practice Test Solutions

Size: px
Start display at page:

Download "PHYS 211 Exam 1 - Practice Test Solutions"

Transcription

1 PHYS Exam - Practice Test Solutions A Although the numbers on the graphs don t exactly fit with wh they should actually be, the ptern or structure of the graph is wh we should be looking. So, based on the graph for accelerion, we can see th for the first 3 secs we have a constant negive accelerion (- m/s ). This should eque to a negive or downward slope for velocity during the first 3 secs. Only answers (a) and (b) show this. From t = 3 to t = 6, the acc becomes positive (+ m/s ), and so we expect a positive or upward slope, which again is present in both (a) and (b). However, since the magnitude of the accelerions is larger for the first three seconds we should expect to see a steeper slope from t = to t = 3 than from t = 3 to t = 6. This only happens in graph (a). B Remember people, the formula for accelerion is: Δv Average Accelerion, a = Δt However, we can t just plug in the velocities given since they re not all in the same dimension. The easiest way is to use the vector coordines for both velocities: V(initial) = (i + 4.j) m/s, V(final) = (3.i + j) ΔV = V(final) - V(initial) = (3.i i) + (j 4.j) = (3.i 4.j) m/s The next step is to write th vector in terms of its magnitude, using Pythagorean Theory to get ΔV = 5 m/s. Finally, we plug into the equion for accelerion: 5m / s a = =.5m s s LionTutors 7

2 3E The area under the graph, the integral, from t= to t=3, will give us the displacement. The area equals 7m, so the final position t=3 is m, since the particle was originally x=5m. 4D Here the definition for average speed is total distance / total time. The informion given has everything we need except the distance travelled during the first portion of the trip, so we must calcule th first: Δx = v t = (8km/hr)(/hr) = 4km So we get average speed = [4 + + ] / [/ + /6 + ] = 6 5C There are two parts to this problem, the first requires figuring out the displacement and speed the cheetah reaches after the first.5s: x-axis V = m/s V =? a = 5 m/s t =.5 s Δx =? 3 out of 5 is enough and so we can solve for both using: Δx = v t + =6.875m v = v + =.5m /s Since we need to know how long it will take to reach 6m, we must now determine how much farther the cheetah needs to travel: = 43.5 m.5 m/s. The speed is constant, so the time required is: t = 43.5m /.5m/s =.9s Thus the total time taken to reach 6m equals =.5s +.9s = 3.4s LionTutors 7

3 6B This is essentially a question dealing with -dimensional motion where both dimensions (x-axis and y-axis) have their own constant accelerion. We are concerned with finding the y-coordine, which is like solving for Δy. The only problem is we are only given initial velocity and accelerion for the y-axis ( variables are not enough). Remember, when dealing with -D motion, you can always use the same time found in the other axis, in this case we can use the time for motion along the x-axis. All we need to do is find out wh th time is: x-axis V = m/s V = a = 6. m/s t =? Δx = 7 m 3 out of 5 is enough and so we can solve for time using: Δ x = vt + This gives us t = 3. s, which we can use for calculions involving the y-axis: y-axis V = 4. m/s V = a = 4. m/s t = 3. s Δy =? Again we use: Δ y = vt + To get Δy = 3 m LionTutors 7 3

4 7C The velocity as the ball leaves the table is completely horizontal, so we should first look to the x-axis to calcule the value: V x = Δx/t =.5/t Since we don t know the time, we must use the y-axis to get th informion: y-axis V = m/s V = a = -9.8 m/s t =? Δy = -.5m Again we use: Δy = v t + = t = Δy a =.55s Now we have time, we can plug it back into the x-axis equion to get velocity: V x = Δx/t =.5/.55 =.76 m/s LionTutors 7 4

5 8B The only way to travel due north is to counter the vector pointing east with a vector th has an x-component pointing west, as shown below: Specifically, we must ensure th x-component of the m/s vector is equal to 3.5 m/s, so th the only net vector is the y-component of the m/s which points north. So we get: sinθ = ! θ = sin = 7 Which gets us 7 west of north. LionTutors 7 5

6 9D A typical -D question where we re asked to determine Δy but don t have enough variables to do so. So, as usual, when dealing with projectile motion we can use the time from the other dimension, x-axis, to help us out. x-axis Δx Vx =, t so Δx t = = =.63s V cos 5 x Now we can go to the y-axis and solve for Δy: y-axis V = sin5 = 8.87 m/s V = a = -9.8 m/s t =.63 s Δy =? We then use: Δ y = vt + = 3.65 m LionTutors 7 6

7 C Remember th whenever you re asked to solve for final speed/velocity in any projectile motion problem, you must consider both the x-and y- components of the vector. So for this particular question, we can start with either the x- or y-axis. For the x-axis, the final velocity is the same as initial velocity since there s no accelerion along the horizontal axis. Therefore V x = Vcosθ = 8cos55 = 6.6 m/s For the y-axis: y-axis V = 8sin55 =.9 m/s V =? a = -9.8 m/s t = 3 s Δy = And we can use the following to solve for V y : V y = V + = m/s Lastly, we solve for the resultant vector of the two velocity components using Pythagorean theory to get V = 7.3 m/s. LionTutors 7 7

8 C Despite how morbid this question might be, the physics behind it is quite straightforward. The scenario suggests a -D motion type-problem where we re solving for time and ae given the following da: y-axis V = +8 m/s V = a = -9.8 m/s t =? Δy = - 4 m The only problem is th to solve for t we would have to set up a quadric eqn; which is time consuming, unless you plot the function on your graphing calculor and see where it crosses the x-axis. Alternively, we can first solve for V and then solving for time will be far easier. So we use: v = v + aδx And get V = -9.8 (remember th it s negive because the man is falling down, not up) Now we can use any equion to solve for time: v = v + v v t = a = =.s 9.8 LionTutors 7 8

9 B Since the two balls have different initial speeds, but the same constant accelerion due to gravity, the easiest way to solve this problem is to cree position functions for each of the balls and use them to solve for time. () Δy () Δy = 5t + = t + The question asks for when the two balls will be 5m apart, so th means we want: Δy Δy = 5 Which can be re-written as: (5t + 5t = 5 t = s ) ( t + ) = 5 LionTutors 7 9

10 3B This is a particularly difficult question to deal with especially when you consider th you are not even given the height of the building. With only the initial velocities of the two stones, this question would be impossible to solve except th in this particular case the two velocities have equal magnitude. Why is th important?...we ll get to th in a minute. First, we must recognize a rule about projectile motion th stes th an object thrown up with any initial velocity, V, will be traveling a velocity of negive V when it falls back down to the height th it was initially thrown from. In other words, or to give an example relive to this question, the stone th is thrown upwards 5 m/s will reach its max height and then start falling back down towards earth with increasing negive velocity and when it gets to the position from which it was released (the start point of this question) it will be traveling -5 m/s. So why is this informion helpful?...well it tells us th the stone thrown upwards will eventually return to its starting point after some amount of time, and th th exact time it will the same velocity th the other stone had when it was initially released (-5 m/s).which means th it will follow the exact same ph as th stone and will take the exact same amount of time to reach the ground as th stone did when it was initially released. And so to find out how much time will pass between the two stones hitting the ground, we only have to calcule how much time the stone thrown upwards spends in the air before returning to its initial release point. For this scenario we have the following: y-axis V = 5 m/s V = -5 a = -9.8 m/s t =? Δy = Yes..we even have 4 variables as a reward for understanding physics. And we can use any equion to solve for time: v = v + v v t = a = 5 5 = 3.6s 9.8 LionTutors 7

11 4D This question asks for the speed and represents -D motion. However, the equions for position in both axis are given, so we cannot rely on the typical equions for motion th we have used up to this point. The easiest solution is take the derivive of each position function to get velocity for each axis and then to calcule the specific velocities t = s: d x( t) = vx( t) = 4, dt v () = 4m / s x d y( t) = v y ( t) = 6t 9, dt v () = 3m / s y Thus the resultant vector velocity (speed) is: = 5m / s 5B The y-axis is the best approach to analyzing the variables since it is due to the accelerion of gravity along the y-axis th the ball drops back down: So we get: y-axis V = v sinθ V = a = -g t =? Δy = We then use the below equion which we can simplify to solve for time: Δy = v t + = (v sinθ)t + ( g)t gt = (v sinθ)t gt = v sinθ t = v sinθ /g LionTutors 7

12 6C The easiest approach will be to cree position functions for each ball. First though, we must consider th the balls collide some point between and 5 m, called y. Th means th for ball A its displacement will be Δy A = y = y And then for ball B its displacement will be Δy B = y 5 Now th we ve clarified how the two displacements rele to the point of collision, y, we can go ahead and write our position functions: () Δy A () Δy B = y = V t + = y 5 = t + If we then solve eqn () in terms of y, and set it equal to y in eqn () we get: y 5= t + y = y = 5= V t = V t + Thus when we plug in t =.5 s we get: 5 V = = m.5 s LionTutors 7

13 7B The approprie vector diagram should look as follows: To counter the easterly wind, the plane s velocity vector must have an x-component th is equal to m/s. So we get: 9sinθ = θ = sin =.84 9! Now th we have the angle we can calcule the velocity component th heads due north using V = 9cos.84 = 87.7 m/s Finally we use the equion for average velocity: Δx V =, t Δx t = = V = s = 66.5 min 8B Here we re looking for centripetal accelerion, which only requires velocity and radius. We get velocity by converting revolutions per second to meters per second: (πr ) (π.5) m v = = = π m s t s And so we get accelerion: v ac = r t (π ) =.5 = 8π m s LionTutors 7 3

14 9A (Not On Test) We can split this problem up into two parts, each one dealing with a separe axis. For both the x- and y- axes, we have two forces (one given, one unknown) and we get the following equions: F x =.5 + x = ma x F x =.5 + x = (.7)(3.) x = 7.77N F y =.4 + y = ma y F y =.4 + y = (.7)(.5) y = 5.65N Since we now have the x and y components of the force, we use Pythagorean equion to get F = 9.6N E (Not On Test) All of the stements could be true: i. If the elevor were accelering in either direction the normal force would not be equal to the man s weight, however since they don t mention accelerion we must assume the accelerion is zero, and the upward velocity is constant. ii. iii. The accelerion would have to be in the upward direction for normal force to be greer, which would mean th although the elevor is moving downward it is slowing down due to an upward accelerion. This is always true when accelering downward. LionTutors 7 4

PHYS 211 Exam 1 - Practice Test Solutions

PHYS 211 Exam 1 - Practice Test Solutions PHYS Exam - Practice Test Solutions A The ptern or structure of the graph is wh we should be looking. Based on the graph for accelerion, we can see th for the first 3 secs we have a constant negive accelerion

More information

Solutions - Practice Test - PHYS211 Final Exam (Old Material)

Solutions - Practice Test - PHYS211 Final Exam (Old Material) Solutions - Practice Test - PHYS Final Exam (Old Material) A Although the numbers on the graphs don t exactly fit with what they should actually be, the pattern or structure of the graph is what we should

More information

REVISION SHEET MECHANICS 1 MOTION GRAPHS OCR MEI. Displacement-time graphs and distance-time graphs

REVISION SHEET MECHANICS 1 MOTION GRAPHS OCR MEI. Displacement-time graphs and distance-time graphs the Further Mhemics network www.fmnetwork.org.uk V 07 1 REVISION SHEET MECHANICS 1 MOTION GRAPHS The main ideas are AQA Edx MEI OCR Displacement-time graphs M1 M1 M1 M1 Distance-time graphs M1 M1 M1 M1

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Solutions PHYS 250 Exam 2 Practice Test

Solutions PHYS 250 Exam 2 Practice Test Solutions PHYS 250 Exam 2 Practice Test 1C This questions really deals with conservation of energy, ΔK +ΔU = 0. The main problem is determining the initial height, h, of the man just as he starts to swing.

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

Halliday/Resnick/Walker 7e Chapter 4

Halliday/Resnick/Walker 7e Chapter 4 HRW 7e Chapter 4 Page of Hallida/Resnick/Walker 7e Chapter 4 3. The initial position vector r o satisfies r r = r, which results in o o r = r r = (3.j ˆ 4.k) ˆ (.i ˆ 3.j ˆ + 6. k) ˆ =.ˆi + 6.ˆj k ˆ where

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

Physics 1A, Week 2 Quiz Solutions

Physics 1A, Week 2 Quiz Solutions Vector _ A points north and vector _ B points east. If _ C = _ B _ A, then vector _C points: a. north of east. b. south of east. c. north of west. d. south of west. Find the resultant of the following

More information

Velocity, Speed, and Acceleration. Unit 1: Kinematics

Velocity, Speed, and Acceleration. Unit 1: Kinematics Velocity, Speed, and Acceleration Unit 1: Kinematics Speed vs Velocity Speed is a precise measurement of how fast you are going. It is your distance traveled over time. Speed is a scalar quantity. To measure

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

Phys 2425: University Physics I Spring 2016 Practice Exam 1

Phys 2425: University Physics I Spring 2016 Practice Exam 1 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 140 c. PHYS 45 d. PHYS 46 Survey Questions no points. (0 Points) Which exam is this? a. Exam 1 b. Exam c. Final Exam 3. (0 Points) What version of

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1

Physics 125: Classical Physics A. 1 Practice Problems for Midterm Exam 1 Physics 125: Classical Physics A 1 Practice Problems for Midterm Exam 1 Problem 1 The Figure 1 depicts velocity as a function of time for a short run. Find: a) The acceleration at t = 5 seconds. b) The

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Physics 1100: 1D Kinematics Solutions

Physics 1100: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Physics 1100: 1D Kinematics Solutions 1. Neatly sketch the following dot motion diagrams: (a) A particle moving right

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction.

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. Vectors and Scalars Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. To distinguish a vector from a scalar quantity, it is usually written

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

Webreview cp physics ch 3 practice test (holt)

Webreview cp physics ch 3 practice test (holt) Name: Class: _ Date: _ ID: A Webreview cp physics ch 3 practice test (holt) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Identify the following quantities

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.4 Equations of Kinematics for Constant Acceleration vx0 = 0m s ax = +31 m s 2 Δx vx = 62m s Example: Catapulting a Jet Find its displacement. vx0 = 0m

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

CHAPTER 4 -- KINEMATICS

CHAPTER 4 -- KINEMATICS Solutions--Ch. 4 (Kinematics CHAPTER 4 -- KINEMATICS 4.1 a. The total distance traversed (versus the net displacement divided by the elapsed time. That scalar is: s = dist/time = (440 m/(49 sec = 8.98

More information

KINEMATICS REVIEW VECTOR ALGEBRA - SUMMARY

KINEMATICS REVIEW VECTOR ALGEBRA - SUMMARY 1 KINEMATICS REVIEW VECTOR ALGEBRA - SUMMARY Magnitude A numerical value with appropriate units. Scalar is a quantity that is completely specified by magnitude. Vector requires both, magnitude and direction

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Much of the physics we ll learn this semester will deal with the motion of objects We start with the simple case of one-dimensional motion Or, motion in x: As always, we begin by

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm! me if you have conflicts! Your intuitive understanding of the Physical world

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm!  me if you have conflicts! Your intuitive understanding of the Physical world v a = -9.8 m/s Projectile Motion Good practice problems in book: 3.3, 3.5, 3.7, 3.9, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Practice test Reminder: test Feb 8, 7-10pm! Email me if you have conflicts!

More information

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t = PH 2213 : Chapter 02 Homework Solutions Problem 2.6 : You are driving home from school steadily at 90 km/hr for 130 km. It then begins to rain and you slow to 50 km/hr. You arrive home after driving 3

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chapter 2 Kinematics in One Dimension The Cheetah: A cat that is built for speed. Its strength and agility allow it to sustain a top speed of over 100 km/h. Such speeds can only be maintained for about

More information

A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass).

A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass). Honors Physics Examination I Review Questions #1-#11 - Vectors & Measurements vector quantity is specified by magnitude and direction (examples: displacement, velocity, acceleration, momentum, and weight).

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

Physics 110. Exam #1. April 15, 2013

Physics 110. Exam #1. April 15, 2013 Physics 110 Exam #1 April 15, 013 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them Your work must be legible, and the organization clear

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6. 1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Physics 1120: 1D Kinematics Solutions

Physics 1120: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 Physics 1120: 1D Kinematics Solutions 1. Initially, a ball has a speed of 5.0 m/s as it rolls up an incline. Some time later, at a distance of 5.5 m up the incline, the ball has

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 246 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Do Now: 1. Walk in silently. Due Next Class: Derby Car Supplies Due On CA Day: Unit 1 and 2 Review (quiz grade)

Do Now: 1. Walk in silently. Due Next Class: Derby Car Supplies Due On CA Day: Unit 1 and 2 Review (quiz grade) Do Now: 1. Walk in silently. Created by M. Kelly OBJECTS IN MOTION STAY IN MOTION! 2. Grab a calculator and any papers for today. 3. Get out your mastery tracker and track your U2 mastery. (also track

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Graphical Analysis; and Vectors

Graphical Analysis; and Vectors Graphical Analysis; and Vectors Graphs Drawing good pictures can be the secret to solving physics problems. It's amazing how much information you can get from a diagram. We also usually need equations

More information

Unit 2 - Linear Motion and Graphical Analysis

Unit 2 - Linear Motion and Graphical Analysis Unit 2 - Linear Motion and Graphical Analysis Motion in one dimension is particularly easy to deal with because all the information about it can be encapsulated in two variables: x, the position of the

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the motion

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground?

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground? Physics Lecture #6: Falling Objects A falling object accelerates as it falls. A bowling ball dropped on your foot will hurt more if it is dropped from a greater height since it has more time to increase

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3. v a = -9.8 m/s 2 A projectile is anything experiencing free-fall, particularly in two dimensions. 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Projectile Motion Good practice problems

More information

Solutions to Exam #1

Solutions to Exam #1 SBCC 2017Summer2 P 101 Solutions to Exam 01 2017Jul11A Page 1 of 9 Solutions to Exam #1 1. Which of the following natural sciences most directly involves and applies physics? a) Botany (plant biology)

More information

b) (6) How far down the road did the car travel during the acceleration?

b) (6) How far down the road did the car travel during the acceleration? General Physics I Quiz 2 - Ch. 2-1D Kinematics June 17, 2009 Name: For full credit, make your work clear to the grader. Show the formulas you use, all the essential steps, and results with correct units

More information

A surprising number of people did not divide by 2 and thus got 50 km/hr

A surprising number of people did not divide by 2 and thus got 50 km/hr 1. There are (36) 3 cubic inches in a cubic yard. There are (2.54) 3 cubic centimeters (that is cm 3 ) in a cubic inch. So, we have (2.54) 3 x(36) 3 = 764554.857984 (The 2.54 is defined as the conversion

More information

Graphing Motion Part 2

Graphing Motion Part 2 Kinematics 2: Motion Graphs & Free Fall Sep 5 10:34 AM Sep 5 1:25 PM Graphing Motion Part 2 How do you calculate the slope of a line? What would the slope of a distance vs time graph represent? What would

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity

Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity Physics Ch. 4 Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity (either in magnitude or direction) is

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

1-D Kinematics Problems

1-D Kinematics Problems x (m) Name: AP Physics -D Kinemics Problems 5. Answer the following based on the elocity s. time graph. 6 8 4-4 -8 - straight cured 4 6 8 a. Gie a written description of the motion. t (s) Object moes in

More information

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover?

Kinematics A train accelerates from rest at a rate of 2 m/(s*s), for a time of 20 seconds. How much distance does the train cover? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: 1.

More information

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits)

Trial 1 Trial 2 Trial 3. From your results, how many seconds would it take the car to travel 1.50 meters? (3 significant digits) SPEED & ACCELERATION PART I: A DISTANCE-TIME STUDY AT CONSTANT SPEED Speed is composed of two fundamental concepts, namely, distance and time. In this part of the experiment you will take measurements

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

Today. 1. Problem-solving: are you getting it (if not, why not)? Lecture-heavy class, but problem solving skills are critical! 2. Clicker dry run.

Today. 1. Problem-solving: are you getting it (if not, why not)? Lecture-heavy class, but problem solving skills are critical! 2. Clicker dry run. Self-Assessment Day Today. 1. Problem-solving: are you getting it (if not, why not)? Lecture-heavy class, but problem solving skills are critical!. Clicker dry run. 3. Standardized Pre-test of conceptual

More information

PH 2213 : Chapter 05 Homework Solutions

PH 2213 : Chapter 05 Homework Solutions PH 2213 : Chapter 05 Homework Solutions Problem 5.4 : The coefficient of static friction between hard rubber and normal street pavement is about 0.90. On how steep a hill (maximum angle) can you leave

More information

Derivation of Kinematic Equations. View this after Motion on an Incline Lab

Derivation of Kinematic Equations. View this after Motion on an Incline Lab Derivation of Kinematic Equations View this after Motion on an Incline Lab Constant velocity Average velocity equals the slope of a position vs time graph when an object travels at constant velocity. v

More information

Chapter 2. Kinematics in one dimension

Chapter 2. Kinematics in one dimension Chapter 2 Kinematics in one dimension Galileo - the first modern kinematics 1) In a medium totally devoid of resistance all bodies will fall at the same speed 2) During equal intervals of time, a falling

More information

Chapter 2 Solutions. = 16.1 m/s. = 11.5 m/s m. 180 km = ( ) h. = 2.5 m/s. = 3.3 m/s

Chapter 2 Solutions. = 16.1 m/s. = 11.5 m/s m. 180 km = ( ) h. = 2.5 m/s. = 3.3 m/s Chapter Solutions *.1 (a) v.30 m/s v x 57.5 m 9.0 m 3.00 s 16.1 m/s (c) v x 57.5 m 0 m 5.00 s 11.5 m/s. (a) Displacement (8.50 10 4 m/h) 35.0 60.0 h + 130 103 m x (49.6 + 130) 10 3 m 180 km Average velocity

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics-B Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit. MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

More information

Kinematics in Two Dimensions; 2D- Vectors

Kinematics in Two Dimensions; 2D- Vectors Kinematics in Two Dimensions; 2D- Vectors Addition of Vectors Graphical Methods Below are two example vector additions of 1-D displacement vectors. For vectors in one dimension, simple addition and subtraction

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

Phys 201, Lecture 5 Feb.2. Chapter 3: Mo;on in Two and Three Dimensions

Phys 201, Lecture 5 Feb.2. Chapter 3: Mo;on in Two and Three Dimensions Phys 201, Lecture 5 Feb.2 Chapter 3: Mo;on in Two and Three Dimensions Displacement, Velocity and Acceleration Displacement describes the location change of a particle Velocity is rate of change of displacement

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

PHY2048 Physics with Calculus I

PHY2048 Physics with Calculus I PHY2048 Physics with Calculus I Section 584761 Prof. Douglas H. Laurence Exam 1 (Chapters 2 6) February 14, 2018 Name: Solutions 1 Instructions: This exam is composed of 10 multiple choice questions and

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

Multiple Choice Review for Final Exam ~ Physics 1020

Multiple Choice Review for Final Exam ~ Physics 1020 Multiple Choice Review for Final Exam ~ Physics 1020 1. You are throwing a ball straight up in the air. At the highest point, the ball s a) velocity and acceleration are zero b) velocity is nonzero, but

More information