1-D Kinematics Problems

Size: px
Start display at page:

Download "1-D Kinematics Problems"

Transcription

1 x (m) Name: AP Physics -D Kinemics Problems 5. Answer the following based on the elocity s. time graph straight cured a. Gie a written description of the motion. t (s) Object moes in negie direction a constant speed of 4m/s for s -4sec, object continues to moe in neg direction, but slows down to stop momentarily 4s 4-8sec, object reerses direction to moe in positie direction, speeding up to 8m/s by 8s. b. Determine the displacement from t = s to t = 4 s. x -4 = Area under -t from -4 = (-4)()+/(-4)() = - m c. Determine the displacement from t = s to t = 6 s. x -6 = Area under -t from -6 = /(-4)() +/()(4) = m d. Determine the object s accelerion t =4s. a = Slope of -t 4s = m/s e. Sketch a possible x-t graph for the motion of the object. Explain why your graph is only one of many possible graphs. 6. Answer the following based on the position s. time graph. a. Where on the graph aboe is the object moing most slowly? (How do you know?)

2 B and F because slope, which represents elocity, is approximely b. Between which points is the object speeding up? (How do you know?) between B and C, between C and D between F and G For all these interals, the magnitude of the slope (elocity) is increasing (getting steeper) c. Between which points is the object slowing down? (How do you know?) between A and B (slope is getting shallower) between D and E between E and F d. Where on the graph aboe is the object changing direction? (How do you know?) At B changes from positie to negie direction At F, changes from negie to positie direction 3. A car moes m/s and coasts up a hill with a uniform accelerion of -.6 m/s a) Wh is the displacement after 6 sec? m a.6m x t 6sec x t (6) 43.m (.6)6 b) Wh is the displacement after 9 sec? m/ s a.6m x t 9sec x t (9) 43.m (.6)9

3 c) Wh is going on? Plot -t graph of this problem to explain. Determine x from the graph. If you plot the -t graph, you see th t=, = and the slope is the accelerion which is -.6m/s. Knowing the initial point and the slope, you can find the 6 sec and 9 sec. The -t graph shows th the car goes in the positie direction (up the hill), slowing down for the first 7.5sec. At 7.5 sec, it momentarily stops. After 7.5sec, it reerses direction and speeds up (rolls down the hill speeding up). At 6 sec, car is on the way up and its displacement is 43.6 m (area under cure) At 9 sec, car is rolling back down and is the same position it was 6 sec so its displacement is the same. (area under cure from 6-9 sec is ). (m/s) t (s) 4. A speedbo starts from rest and acceleres +. m/s for 7. s. At the end of this time, the bo continues for an additional 6. s with an accelerion of +.58 m/s. Following this, the bo acceleres.49 m/s for 8. s. (a) Wh is the elocity of the bo t =. s? (b) Find the total displacement of the bo. This is a 3 segment problem! The end elocity of the first segment is the start elocity of the second, the end elocity of the second is the start elocity of the third, etc 7 sec 6 sec 8 sec a=. m/s a=.58 m/s a= -.49 m/s m a.m x t 7.s a.58m x t 6.s There aren t enough ariables in the nd and 3 rd accelerion parts to determine any unknowns. We must start in the st part and rele ariables in the st part to those in the ler parts. We know th the final elocity the end of the 7 sec is the initial elocity the start of the nd part. With th, we can find the final elocity of the nd part, which is also the initial elocity of the 3 rd part. a.49m x t 8.s

4 (.)(7) 4.7m 4.7 (.58)(6) 7.8m 7.8 (.49)(8) 5.6m x t 49.m (.)7 x t 93.7m 4.7(6) (.58)6 x total m x t 89.8m 7.8(8) (.49)8 5. Challenging: Reaction Time Problem A car is traeling m/s when the drier sees a child standing on the road. She takes.8 s to react then steps on the brakes and slows 7. m/s. How far does the car go before it stops? Reaction time a= m x t.8s x t 6m Brake a= -7m/s a 7m x t m ax x 8.6m ( 7) x x total m

5 4. m 6. On a planet th has no mosphere, a rocket 4. m tall is resting on its launch pad. Freefall accelerion on the planet is 4.45 m/s. A ball is dropped from the top of the rocket with zero initial elocity. a 4.45m y 4.m t a) how long does it take to reach the launch pad y t 4. t.53s gt ( 4.45) t b) wh is the speed of the ball just before it hits the ground? (the speed is.3 m/s, the elocity is -.3 m/s) c) wh is the speed of the ball just before it hits the ground? (the speed is.3 m/s, the elocity is -.3 m/s) f i gt ( 4.45)(.53).3m 7. You are a bungee jumping fanic and want to be the first bungee jumper on Jupiter. The length of your bungee cord is 45. m. Free fall accelerion on Jupiter is 3. m/s. Wh is the rio of your speed on Jupiter to your speed on Earth when you hae dropped 45 m? Ignore the effects of air resistance and assume th you start rest. Jupiter a 3.m y t 45m Earth a 9.8m y 45m t y f f i gy g( 45) fjupiter fearth g g Earth Jupiter ( 45) ( 45)

6 8. A stone is thrown ertically upwards with a speed of. m/s. a) How fast is it moing when it reaches a height of. m? a 9.8m y m t m.8m There are solutions: +.8 m/s when the stone is going up -.8 m/s when it is coming back down b) How long is required to reach this height? Time to get to m on the way up: gy Time to get to m on the way down c) Why are there answers to b? The rock has t 3.35s a displacement of +m twice : m aboe its starting position on the way up and m aboe its starting position on the way down. 9. A stone is thrown ertically upward with a speed of. m/s from the edge of a cliff 75. m high as shown right. m a) How much ler does it reach the bottom of the cliff? y t gt 75 t ( 9.8)() t ( 9.8) t t.73s gt gt.8 9.8t t a 9.8m y 75m y= 75m 4.9t This is a quadric equion. You can sole it by using the quadric formula to find the roots. The solution gies roots: t = 5.3 s and trock = -.88 s t 75

7 Since there is no negie time, we take the physically meaningful solution of t = 5.3 s b) Wh is its speed just before hitting? gt 9.8(5.3) 4.m c) Wh total distance did it trael? The total distance is the distance to the peak + distance back from the peak to top of cliff (same) + distance to the bottom of the cliff (75m). We first need to find y to peak of stone s flight. At the peak, =. m a 9.8m y? t gy y 7.35m ( 9.8) y ( to peak) Total distance traeled = = 89.7 m

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Displacement, Time, Velocity

Displacement, Time, Velocity Lecture. Chapter : Motion along a Straight Line Displacement, Time, Velocity 3/6/05 One-Dimensional Motion The area of physics that we focus on is called mechanics: the study of the relationships between

More information

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t

Review. acceleration is the rate of change of velocity (how quickly the velocity is changing) For motion in a line. v t Accelerated Motion Reiew acceleration is the rate o change o elocity (how quickly the elocity is changing) For motion in a line a i t t When an object is moing in a straight line, a positie acceleration

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

MCAT Physics - Problem Drill 06: Translational Motion

MCAT Physics - Problem Drill 06: Translational Motion MCAT Physics - Problem Drill 06: Translational Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. An object falls from rest

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 00 Lecture #6 Monday, Feb. 4, 008 Examples for 1-Dim kinematic equations Free Fall Motion in Two Dimensions Maximum ranges and heights Today s homework is homework #3, due 9pm, Monday,

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Math 130 www.timetodare.com Section 3.1 Quadratic Functions and Models Quadratic Function: ( ) f x = ax + bx+ c ( a 0) The graph of a quadratic function is called a parabola. Graphing Parabolas: Special

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down)

1. Linear Motion. Table of Contents. 1.1 Linear Motion: Velocity Time Graphs (Multi Stage) 1.2 Linear Motion: Velocity Time Graphs (Up and Down) . LINEAR MOTION www.mathspoints.ie. Linear Motion Table of Contents. Linear Motion: Velocity Time Graphs (Multi Stage). Linear Motion: Velocity Time Graphs (Up and Down).3 Linear Motion: Common Initial

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

CHAPTER 3: Kinematics in Two Dimensions; Vectors

CHAPTER 3: Kinematics in Two Dimensions; Vectors HAPTER 3: Kinematics in Two Dimensions; Vectors Solution Guide to WebAssign Problems 3.1 [] The truck has a displacement of 18 + (16) blocks north and 1 blocks east. The resultant has a magnitude of +

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 1 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Car and Bicycle Rider Problem Set 1 A car is driving along a straight line with a speed v 0. At time t = 0 the car is at the

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Note on Posted Slides. Motion Is Relative

Note on Posted Slides. Motion Is Relative Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 9, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Acceleration review. Regular

Acceleration review. Regular Acceleration review Regular Book pg 82 #91 A car is traveling 20m/s when the driver sees a child standing on the road. She takes 0.80s to react, then steps on the brakes and slows at 7.0m/s 2. How far

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4

9/7/11. Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Reading Quiz Which of the following is not a vector? Physics 101 Tuesday 9/6/11 Class 4 Chapter 3 Sections 3.1 3.4 Free fall Components of a Vector Adding and Subtracting Vectors Unit Vectors A: speed

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line

Lesson 2: Kinematics (Sections ) Chapter 2 Motion Along a Line Lesson : Kinematics (Sections.-.5) Chapter Motion Along a Line In order to specify a position, it is necessary to choose an origin. We talk about the football field is 00 yards from goal line to goal line,

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014

PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 2014 PHYS 1443 Section 004 Lecture #4 Thursday, Sept. 4, 014 One Dimensional Motion Motion under constant acceleration One dimensional Kinematic Equations How do we sole kinematic problems? Falling motions

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

Chapter 2 Motion in One Dimension

Chapter 2 Motion in One Dimension Chapter 2 Motion in One Dimension Multiple Choice 1. The position of a particle moving along the x axis is given by 2 x = ( 21+ 22t 6 0. t )m, where t is in s. What is the average velocity during the time

More information

Kinematics 2. What equation relates the known quantities to what is being asked?

Kinematics 2. What equation relates the known quantities to what is being asked? Physics R Date: 1. A cheetah goes from rest to 60 miles per hour (26.8 m/s) in 3 seconds. Calculate the acceleration of the cheetah. Kinematics Equations Kinematics 2 How to solve a Physics problem: List

More information

11.3 Acceleration. What Is Acceleration? How are changes in velocity described?

11.3 Acceleration. What Is Acceleration? How are changes in velocity described? What Is Acceleration? How are changes in velocity described? What Is Acceleration? Changes in Speed In science, acceleration applies to Acceleration can be caused by Deceleration is DOK question Predict

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Note on Posted Slides. Chapter 3 Pre-Class Reading Question. Chapter 3 Reading Question : The Fine Print. Suggested End of Chapter Items

Note on Posted Slides. Chapter 3 Pre-Class Reading Question. Chapter 3 Reading Question : The Fine Print. Suggested End of Chapter Items Note on Posted Slides These are the slides that I intended to show in class on Wed. Jan. 9, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Repaso Examen No. 1 Física 215 Profesor: Santander Nieto Ramos, Ms. PhD.

Repaso Examen No. 1 Física 215 Profesor: Santander Nieto Ramos, Ms. PhD. Repaso Examen No. 1 Física 215 Profesor: Santander Nieto Ramos, Ms. PhD. Nota aclaratoria: Esto es solo un repaso de algunos temas que se van a evaluar en el examen No. 1 de curso Física 215, los ejercicios

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

11.3 Acceleration The basketball constantly changes velocity as it rises and falls.

11.3 Acceleration The basketball constantly changes velocity as it rises and falls. The basketball constantly changes velocity as it rises and falls. Describing changes in velocity, and how fast they occur, is a part of describing motion. What Is Acceleration? How are changes in velocity

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2

Problem: Projectile (CM-1998) Justify your answer: Problem: Projectile (CM-1998) 5 10 m/s 3. Show your work: 3 m/s 2 Physics C -D Kinematics Name: AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors Specify

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

phy 3.1.notebook September 19, 2017 Everything Moves

phy 3.1.notebook September 19, 2017 Everything Moves Eerything Moes 1 2 \ Diagrams: Motion 1) Motion (picture) no reference! time lapsed photo Type Motion? 3 origin Diagrams: reference pt. Motion reference! 1) Motion (picture) diagram time lapsed photo by

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.)

3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.) FLEX Physical Sciences AP Physics 1 (Honors Physics) Final Homework Exam 1) A toy rocket is launched vertically from ground level at time t = 0 s. The rocket engine provides constant upward acceleration

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Graphing Motion Part 2

Graphing Motion Part 2 Kinematics 2: Motion Graphs & Free Fall Sep 5 10:34 AM Sep 5 1:25 PM Graphing Motion Part 2 How do you calculate the slope of a line? What would the slope of a distance vs time graph represent? What would

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places.

2 If ax + bx + c = 0, then x = b) What are the x-intercepts of the graph or the real roots of f(x)? Round to 4 decimal places. Quadratic Formula - Key Background: So far in this course we have solved quadratic equations by the square root method and the factoring method. Each of these methods has its strengths and limitations.

More information

Chapter 2 Test Item File

Chapter 2 Test Item File Chapter 2 Test Item File Chapter 2: Describing Motion: Kinetics in One Dimension 1. What must be your average speed in order to travel 350 km in 5.15 h? a) 66.0 km/h b) 67.0 km/h c) 68.0 km/h d) 69.0 km/h

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics

Algebra Based Physics. Motion in One Dimension. 1D Kinematics Graphing Free Fall 2016.notebook. August 30, Table of Contents: Kinematics Table of Contents: Kinematics Algebra Based Physics Kinematics in One Dimension 06 03 www.njctl.org Motion in One Dimension Aerage Speed Position and Reference Frame Displacement Aerage Velocity Instantaneous

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes

2018 AP PHYSICS 1 FREE-RESPONSE QUESTIONS. PHYSICS 1 Section II 1 Questions Time 25 minutes 2018 AP FREE-RESPONSE QUESTIONS Time 25 minutes Directions: Question 1 is a long free-response question that requires about 25 minutes to answer and is worth 12 points. Show your work for each part in

More information

UAM Paradigm Lab. Uniform Acceleration Background. X-t graph. V-t graph now. What about displacement? *Displacement method 2 9/18/2017

UAM Paradigm Lab. Uniform Acceleration Background. X-t graph. V-t graph now. What about displacement? *Displacement method 2 9/18/2017 9/8/07 UAM Paradigm Lab Uniform Acceleration Background Wheel down a rail Observations Dots got further apart as the wheel rolled down rail This means the change in position increased over time X-t graph

More information

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t = PH 2213 : Chapter 02 Homework Solutions Problem 2.6 : You are driving home from school steadily at 90 km/hr for 130 km. It then begins to rain and you slow to 50 km/hr. You arrive home after driving 3

More information

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( )

( ) Momentum and impulse Mixed exercise 1. 1 a. Using conservation of momentum: ( ) Momentum and impulse Mixed exercise 1 1 a Using conseration of momentum: ( ) 6mu 4mu= 4m 1 u= After the collision the direction of Q is reersed and its speed is 1 u b Impulse = change in momentum I = (3m

More information

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: 1. Which of the following best represents the momentum of a small car

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

Physics 11 Comprehensive Exam Preparation

Physics 11 Comprehensive Exam Preparation Physics 11 Comprehensive Exam Preparation Kinematics 1. A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5 s, then continues at this constant speed for another 4.5 s. What is the total distance traveled

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER 27 The McGraw-Hill Companies, Inc. All rights resered. Eighth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Kinematics of Particles Lecture Notes: J.

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

SKAA 1213 Engineering Mechanics

SKAA 1213 Engineering Mechanics SKAA 113 Engineering Mechanic TOPIC 8 KINEMATIC OF PARTICLES Lecturer: Roli Anang Dr. Mohd Yunu Ihak Dr. Tan Cher Siang Outline Introduction Rectilinear Motion Curilinear Motion Problem Introduction General

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY

EDEXCEL INTERNATIONAL A LEVEL MATHEMATICS. MECHANICS 1 Student Book SAMPLE COPY SPECIFICATIN 1.1.1 UNIT 1 THE MARKET i EDEXCEL INTERNATINAL A LEVEL MATHEMATICS MECHANICS 1 Student Book CNTENTS ii ABUT THIS BK VI 1 MATHEMATICAL MDELS IN MECHANICS 2 2 VECTRS IN MECHANICS 12 3 CNSTANT

More information

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter.

Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. Practice Test 1 1. A steel cylinder is 39 mm in height and 39 mm in diameter. (a) How much does it weigh? (density of steel: ρ = 7560 kg/m3) 2. An automobile moving along a straight track changes its velocity

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram!

3. What is the minimum work needed to push a 950-kg car 310 m up along a 9.0 incline? Ignore friction. Make sure you draw a free body diagram! Wor Problems Wor and Energy HW#. How much wor is done by the graitational force when a 280-g pile drier falls 2.80 m? W G = G d cos θ W = (mg)d cos θ W = (280)(9.8)(2.80) cos(0) W = 7683.2 W 7.7 0 3 Mr.

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

AP Physics C: One Dimensional Kinematics

AP Physics C: One Dimensional Kinematics Slide 1 / 33 P Physics : One imensional Kinematics Multiple hoice Questions Slide 2 / 33 1 In the absence of air resistance, a ball dropped near the surface of the arth experiences a constant acceleration

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Physics! Unit 2 Review Constant Acceleration Particle Model

Physics! Unit 2 Review Constant Acceleration Particle Model Physics! Unit 2 Review Constant Acceleration Particle Model Name 1. Use the graph to answer the following questions. a. Describe the motion of the object. b. Determine the of the object from the graph.

More information

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE

UIC Physics 105. Midterm 1 Practice Exam. Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE UIC Physics 5 Midterm 1 Practice Exam Summer 2013 Best if used by July 2 PROBLEM POINTS SCORE Multiple Choice Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 40 Total 0 Page 1 of 11 MULTIPLE

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information