A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass).

Size: px
Start display at page:

Download "A+B. Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass)."

Transcription

1 Honors Physics Examination I Review Questions #1-#11 - Vectors & Measurements vector quantity is specified by magnitude and direction (examples: displacement, velocity, acceleration, momentum, and weight). lthough a ll forces are vector quantities not all vectors are forces. Contact forces include tension, air resistance, and friction. Tension can be measured using a spring balance. The negative of a vector is a vector of the same magnitude, but in the opposite direction. Two vectors are equal if and only if they have the same magnitude and direction. The tip-to-tail method of vector addition consists of moving the vectors parallel to their original position until the tail of one vector is at the tip of the next vector. The resultant vector is drawn from the tail of the first vector to the head of the last vector. + - Scalar quantities are described by magnitude only (examples: distance, speed, temperature, energy, and mass). The base SI units include length (meters), time (seconds), temperature (Kelvin) and mass (kg). n example of a derived unit is a Newton (kg-m/s 2 ). The surface area of an object equals its length multiplied by its width. For example, the surface area of a rectangular plate measuring 10cm by 15cm is 150cm 2 or 0.015m 2. Precision is an indication of accuracy only if there are no systematic errors. Large random errors yield neither precision nor accuracy. Measurements can be precise (with small random errors) but not necessarily accurate (agreement with accepted value). For example, if measuring the length of a wire yields results of 3.52cm, 3.41cm, 3.55cm, 3.45cm and the actual length is 3.50cm, the results were both precise and accurate. system may be placed in equilibrium if a vector of equal magnitude but opposite direction to the sum of the vectors (resultant) is added to the set of vectors. The x-component of a vector (v) is vcosθ and the y-component is vsinθ. 2 2 R = Σ ( v cos θ ) + Σ ( v sin θ ) θ = tan 1 v v y x What is the magnitude and direction of a vector with the components x = 9m and y = 12m? R= ( )=15m and θ=tan -1 (12/9)=53 o Questions #12-#30 - Kinematics n object with a constant acceleration increases its velocity by the same during each time interval. The amount of time required for an object to reach its maximum height is equal to the time required for that object to return to ground level relative to its starting position. The y or vertical component of velocity at the maximum height of a projectile equals zero. The horizontal or x-component of a projectile is constant and non-zero throughout its entire path. The rate of change of the velocity is the same during the entire time of projectile motion due to the constant downward acceleration of gravity (-9.8m/s 2 ). The vertical and horizontal components of a projectile s velocity are independent of each other. The maximum range is achieved at a 45 o angle.

2 The slope of a position-time graph yields velocity, while the slope of a velocity-time graph yields the object s acceleration. The displacement of an object is a straight-line vector from its origin to its end point. The distance traveled is a scalar quantity which depends upon the actual path taken by the object. x=v i t+½at 2 v f =v i +at x=(v f2 -v i2 )/(2a) x=[(v i +v f )/2]t n object with an initial velocity of 5m/s accelerates at 3m/s 2 for 4s. What is the displacement and final velocity of the object? x=(5m/s)+½(3m/s 2 )(4s) 2 =29m v f=(5m/s)+(3m/s 2 )(4s)=17m/s car is moving at a constant velocity when it is involved in a collision. The car comes to rest after 0.45s with an average acceleration of 65m/ s 2 in the direction opposite that of the car s velocity. What was the speed of the car before the collision? [nswer: 29.2m/s] car is initially traveling at 13.8m/s. The brakes are applied and the car stops over a distance of 35m. What was magnitude of the car's acceleration while it was braking? [nswer: -2.8m/s 2 ] v y =v i sinθ+gt (velocity) y=v isinθt+½gt 2 (height) R=v i cosθt (range) n object with an initial velocity of 20m/s is launched at a 60 o angle. What is the maximum height and range of the object? 0=v y=v isinθ+gt at maximum height so 0=(20m/s)sin60 o +(-9.8m/s 2 )t therefore t=1.7s y=(20m/s)sin60 o (1.7s)+½(-9.8m/s 2 )(1.7s) 2 = 15.3m Note that the time is doubled to reach the ground for the range: R=(20m/s)cos60 o (1.7s x 2)=34m ball is thrown straight upward from the top of a 35m tall cliff with an initial velocity of 15 m/sec. ssuming the ball just misses the edge of the cliff on its way down, what is the ball s maximum height and the velocity before it hits the ground? v f=v i + gt Note that v y=0 at maximum height t=(0-15m/s)/-9.8m/s 2 =1.5s y=v it+ ½gt 2 y=(15m/s)(1.5s)+½(-9.8m/s 2 )(1.5s) 2 y=11.5m The total distance traveled by the ball from the maximum height is 11.5m+35m=46.5m where its initial velocity is 0. y=v it+ ½gt 2 Note y is negative as the ball is moving downward -46.5m=(0)(t)+½(-9.8m/s 2 )(t) 2 solving for t yields 3.1s v f=v i + gt v f=(0)(3.1s)+(-9.8m/s 2 )(3.1s)=-30.2m/s (negative indicates downward velocity of ball relative to maximum height) ball is dropped from rest from a tower and strikes the ground 125 m below. pproximately how many seconds does it take the ball to strike the ground after being dropped from the tower? [nswer: 5.05s] ball rolls off a frictionless table top 4m above the ground with a constant horizontal velocity of 2m/s. How far from the table does the ball strike the floor? [nswer: 1.8m]

3 Questions #31-#50 - Translational Equilibrium & Newton s Laws of Motion Newton s first law of motion (law of inertia) states that an object at rest will remain at rest or an object in motion will remain in motion in a straight line with a constant velocity unless acted upon by an external unbalanced force. No force is required to keep an object in motion. ccording to Newton's second law (F=ma), whenever a net external unbalanced force acts upon a body, it will cause that body to accelerate directly proportional to the applied force and inversely proportional to the mass of the body in a direction in keeping with the direction of the applied force. Inertia describes a body s resistance to change in motion. Mass (kg) is a measure of an object s inertia and is independent of gravity. n object s weight (W=mg) measured in Newtons is equal to the force of gravity acting on the body that varies with location with respect to the Earth s gravitational field. The weight of an object only equals the Normal force on a flat surface where no other forces except those parallel to the surface act on the object. The Normal force of an object on an incline with no other forces acting upon it equals the y-component of the object s weight. The apparent weight of an object equals zero when the object moves vertically downward with an acceleration equal to gravity. Whenever an object is in translational equilibrium, the body is either at rest or moving at a constant speed, since the sum of the forces acting on the object equals zero. Newton's third law of motion states that for every acting force, there exists a reacting force of equal magnitude and opposite direction. (Example: For a box resting on a surface, the force of the earth pulling on the box and the box pulling on the earth are the action-reaction pair). Friction is a dissipative force caused by the irregularities present between surfaces. The direction of friction is always opposed to the direction of the actual or the impending relative motion of the body. The frictional force is proportional to the normal force (F N) which may not necessarily be equal to the object s weight. [F k=μ kf N]. The frictional force is dependent upon the nature/conditions of the surfaces, but nearly independent of the area of contact between the surfaces and the velocity of the object in contact with the surface. More force is required to initiate motion than to maintain motion for a given set of surfaces. The angle at which an object will start to move down an incline at a constant speed depends upon the coefficient of friction rather than the mass. ll objects regardless of their mass experience the same acceleration (-9.8m/s 2 ) when in a state of free fall. Newton s Law of Universal Gravitational Force states that gravitational force is directly proportional to the product of the masses and inversely proportional to the square of the distance between them. F=ma m=w/g where g = 9.8 What is the acceleration of a 245N block on a flat surface pushed horizontally by a 147N force if the coefficient of kinetic friction is 0.20 for the surface? For the 245N block, Fy=F N-245N=0 since there is no vertical motion, so the normal F N = 245N pplying F=ma where F= Fx yields: (note that the weight of 245N is divided by 9.8m/s 2 to yield mass in the solution) Fx=147N-(0.20)(245N)=(245N/9.8m/s 2 )a so a=3.92m/s 2 What is the acceleration of the system and the tension in the cable if the coefficient of friction for the surface is 0.1 in this case?

4 F x =0 and F y =0 F k =μ k N [nswer: 2.6m/s 2 and T=14.4N] 18kg box is moved up a 60 o incline plane at a constant speed by a horizontal force of 160N. What is the coefficient of friction? Note that 18kg mass must be converted to weight (18kg)(9.8m/s 2 )=180N Draw a free-body force diagram and label the forces. Fx=160N-μ sf N+180Ncos210 o =0 Fy=180sin210 o +F N=0 solving for F N yields F N=90N then substituting gives Fx=160N-μ s(90n)+180cos210 o =0, solving for μ s yields What is the tension in each cable? [nswer: 300N, 260N] dditional Practice Problems 1. Which one of the following choices is equivalent to 2.0 m 2? (a) cm 2 (b) cm 2 (c) cm 2 (d) cm 2 (e) cm 2 2. Two vectors and are added together to form a vector C. The relationship between the magnitudes of the vectors is given by + = C. Which one of the following statements concerning these vectors is true? (a) and must be displacements. (b) and must have equal lengths. (c) and must point in opposite directions. (d) and must point in the same direction. (e) and must be at right angles to each other. 3. student adds two displacement vectors with magnitudes of 3.0 m and 4.0 m, respectively. Which one of the following could not be a possible choice for the resultant? (a) 1.3 m (b) 5.0 m (c) 7.8 m (d) 3.3 m (e) 6.8 m 4. Which expression is false concerning the vectors shown in the sketch?

5 (a) C = + (b) C < + (c) C + = (d) = C 2 (e) + + C = 0 5. force, F1, of magnitude 2.0 N and directed due east is exerted on an object. second force exerted on the object is F2 = 2.0 N, due north. What is the magnitude and direction of a third force, F3, which must be exerted on the object so that the resultant force is zero? (a) 1.4 N, 45 north of east (b) 2.8 N, 45 north of east (c) 4.0 N, 45 east of north (d) 1.4 N, 45 south of west (e) 2.8 N, 45 south of west 6. bird flies 25.0 m in the direction 55 east of south to its nest. The bird then flies 75.0 m in the direction 55 west of north. What are the northward and westward components of the resultant displacement of the bird from its nest? (a) 29 m, 41 m (b) 41 m, 29 m (c) 35 m, 35 m (d) 81 m, 57 m (e) 57 m, 81 m 7. During the first 18 minutes of a 1.0-hour trip, a car has an average speed of 11 m/s. What must the average speed of the car be during the last 42 minutes of the trip be if the car is to have an average speed of 21 m/s for the entire trip? (a) 21 m/s (b) 25 m/s (c) 29 m/s (d) 23 m/s (e) 27 m/s 8. n object moving along a straight line is decelerating. Which of the following statements concerning the object s acceleration is necessarily true? (a) The value of the acceleration is positive. (b) The direction of the acceleration is in the same direction as the displacement. (c) n object that is decelerating has a negative acceleration. (d) The direction of the acceleration is in the direction opposite to that of the velocity. (e) The acceleration changes as the object moves along the line. 9. car is stopped at a red traffic light. When the light turns to green, the car has a constant acceleration and crosses the 9.10m intersection in 2.47 s. What is the magnitude of the car s acceleration? (a) 1.77 m/s 2 (b) 3.60 m/s 2 (c) 9.80 m/s 2 (d) 2.98 m/s 2 (e) 7.36 m/s kg rock is dropped from rest down a vertical mine shaft. How long does it take for the rock to reach a depth of 79 m? (a) 2.8 s (b) 4.9 s (c) 4.0 s (d) 9.0 s (e) 1.0 s 11a. football is kicked with a speed of 18 m/s at an angle of 65 to the horizontal. How long is the football in the air? (a) 1.1 s (b) 2.0 s (c) 4.0 s (d) 1.6 s (e) 3.3 s 11b. How far does the football travel horizontally before it hits the ground? (a) 18 m (b) 36 m (c) 72 m (d) 25 m (e) 48 m 12a. 600N box rests on a 45 o inclined surface (u k=0.5). What is the normal force? (a) 424N (b) 600N (c) 325N (d) 255N (e) 732N 12b. What would be the frictional force if the surface were level? (a) 1200N (b) 300N (c) 450N (c) 625N (d) 180N 12c. If a 450N weight were attached by a horizontal cable passing over a frictionless pulley to the 600N block described above, what would be the acceleration of the system? (a) 3.1m/s 2 (b) 1.4m/s 2 (c) 8.0m/s 2 (d) 2.6m/s 2 (e) 9.8m/s 2 12d. What would be the tension in the cable when the 450N weight is attached to the 600N block? (a) 127N (b) 450N (c) 600N (d) 285N (e) 385N nswers: 1D, 2D, 3C, 4, 5E, 6, 7, 8D, 9D, 10C, 11a E, 11b D, 12a, 12b, 12c, 12d E

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant

1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Projectile [86 marks]

Projectile [86 marks] Projectile [86 marks] 1. An object is released from rest in the gravitational field of the Earth. Air resistance is negligible. How far does the object move during the fourth second of its motion? A. 15

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

3. What type of force is the woman applying to cart in the illustration below?

3. What type of force is the woman applying to cart in the illustration below? Name: Forces and Motion STUDY GUIDE Directions: Answer the following questions. 1. What is a force? a. A type of energy b. The rate at which an object performs work c. A push or a pull d. An object that

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

CHAPTER 2: FORCES AND MOTION

CHAPTER 2: FORCES AND MOTION CHAPTER 2: FORCES AND MOTION 2.1 Linear Motion Linear Motion is motion in a straight line with constant acceleration. Classification Scalar Vector Physical quantity with Magnitude only Magnitude and direction

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Physics 185F2013 Lecture Two

Physics 185F2013 Lecture Two Introduction Physics 185F2013 Lecture Two October 1, 2013 Dr. Jones 1 1 Department of Physics Drexel University October 1, 2013 Dr. Jones (Drexel) Physics 185F2013 Lecture Two October 1, 2013 1 / 39 Introduction

More information

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000 Slide 1 / 76 Slide 2 / 76 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports car from 30 m/s to

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Physics 12 Final Exam Review Booklet # 1

Physics 12 Final Exam Review Booklet # 1 Physics 12 Final Exam Review Booklet # 1 1. Which is true of two vectors whose sum is zero? (C) 2. Which graph represents an object moving to the left at a constant speed? (C) 3. Which graph represents

More information

Topic 2.1: Kinematics. How do we analyze the motion of objects?

Topic 2.1: Kinematics. How do we analyze the motion of objects? Topic.1: Kinematics How do we analyze the motion of objects? Characteristic Graphs The most common kinematics problems involve uniform acceleration from rest These have a characteristic shape for each

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

Final Exam Review Topics/Problems

Final Exam Review Topics/Problems Final Exam Review Topics/Problems Units/Sig Figs Look at conversions Review sig figs Motion and Forces Newton s Laws X(t), v(t), a(t) graphs: look at F, displacement, accel, average velocity Boat problems/vector

More information

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ. Slide 1 / 76 Work & nergy Multiple hoice Problems 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports

More information

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics

Forces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.

More information

Physics Chapter 4 Newton s Laws of Motion

Physics Chapter 4 Newton s Laws of Motion Physics Chapter 4 Newton s Classical Mechanics Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

More information

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws Forces and the Laws of Motion Table of Contents Section 1 Changes in Motion Section 2 Newton's First Law Section 3 Newton's Second and Third Laws Section 4 Everyday Forces Section 1 Changes in Motion Objectives

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Physical Science (SCI101) Final Exam

Physical Science (SCI101) Final Exam Department of Mathematics and General Sciences Final Exam Second Semester, Term 132 Date: Wednesday 28/5/2014 Name: ID number: Section number or time: Instructor s name: Important instructions: 1. Examination

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

A force is a push or a pull.

A force is a push or a pull. A force is a push or a pull. Contact forces arise from physical contact. Action at adistance forces do not require contact and include gravity and electrical forces. 1 Force is a vector [F]=[Newton]=[N]

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown?

Physics Christmas Break Packet w/ Answers Which vector below represents the resultant of the two displacement vectors shown? Physics hristmas reak Packet w/ nswers 2018 Name: ate: 1. Which vector below represents the resultant of the two displacement vectors shown? 4. The accompanying diagram represents a block sliding down

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to 1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to A) 9.2 10 12 s B) 8.3 10 14 s C) 1.6 10 16 s D) 4.4 10 17 s E) 2.7

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

Physics 1A, Week 2 Quiz Solutions

Physics 1A, Week 2 Quiz Solutions Vector _ A points north and vector _ B points east. If _ C = _ B _ A, then vector _C points: a. north of east. b. south of east. c. north of west. d. south of west. Find the resultant of the following

More information

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

More information

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: 1. Which of the following best represents the momentum of a small car

More information

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 ame: Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this figure. What is the normal force acting on

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Unit 5 Forces I- Newtonʼ s First & Second Law

Unit 5 Forces I- Newtonʼ s First & Second Law Unit 5 orces I- Newtonʼ s irst & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, riction, Applied orce)

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5 Force and Motion I 5 Force and Motion I 25 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 5-2 Newtonian Mechanics A force is a push or pull acting on a object and causes acceleration. Mechanics

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why? AP Physics 1 Lesson 4.a Nature of Forces Outcomes Define force. State and explain Newton s first Law of Motion. Describe inertia and describe its relationship to mass. Draw free-body diagrams to represent

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

More information

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a. Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

More information